CINXE.COM

Creatine supplementation enhances immunological function of neutrophils by increasing cellular adenosine triphosphate - PMC

<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Creatine supplementation enhances immunological function of neutrophils by increasing cellular adenosine triphosphate - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="E5FD300A74B5C86308300A0030BC3157.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="bmfh"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <meta name="ncbi_feature" content="associated_data"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC9533032/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Bioscience of Microbiota, Food and Health"> <meta name="citation_title" content="Creatine supplementation enhances immunological function of neutrophils by increasing cellular adenosine triphosphate"> <meta name="citation_author" content="Suguru SAITO"> <meta name="citation_author_institution" content="Division of Virology, Department of Infection and Immunology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0431, Japan"> <meta name="citation_author_institution" content="Biofluid Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichiban-cho, Ashahimachi-dori, Nishi-ku, Niigata, Niigata 951-8510, Japan"> <meta name="citation_author_institution" content="Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada"> <meta name="citation_author" content="Duo-Yao CAO"> <meta name="citation_author_institution" content="College of Animal Science and Technology, Northwest A&amp;F University, Taicheng Rd, Yangling District, Xianyang, Shaanxi 712100, China"> <meta name="citation_author_institution" content="Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA"> <meta name="citation_author" content="Alato OKUNO"> <meta name="citation_author_institution" content="Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori 036-8530, Japan"> <meta name="citation_author" content="Xiaomo LI"> <meta name="citation_author_institution" content="Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA"> <meta name="citation_author" content="Zhenzi PENG"> <meta name="citation_author_institution" content="Institute of Medical Sciences, Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Yuan Jia Ling Shang Quan, Furong District, Changsha, Hunan 410083, China"> <meta name="citation_author" content="Musin KELEL"> <meta name="citation_author_institution" content="Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia"> <meta name="citation_author" content="Noriko M TSUJI"> <meta name="citation_author_institution" content="Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan"> <meta name="citation_author_institution" content="Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan"> <meta name="citation_publication_date" content="2022 Jun 17"> <meta name="citation_volume" content="41"> <meta name="citation_issue" content="4"> <meta name="citation_firstpage" content="185"> <meta name="citation_doi" content="10.12938/bmfh.2022-018"> <meta name="citation_pmid" content="36258765"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC9533032/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC9533032/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC9533032/pdf/bmfh-41-185.pdf"> <meta name="description" content="Creatine is an organic compound which is utilized in biological activities, especially for adenosine triphosphate (ATP) production in the phosphocreatine system. This is a well-known biochemical reaction that is generally recognized as being mainly ..."> <meta name="og:title" content="Creatine supplementation enhances immunological function of neutrophils by increasing cellular adenosine triphosphate"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Creatine is an organic compound which is utilized in biological activities, especially for adenosine triphosphate (ATP) production in the phosphocreatine system. This is a well-known biochemical reaction that is generally recognized as being mainly ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC9533032/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="9533032"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.12938/bmfh.2022-018" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/bmfh-41-185.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC9533032%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/9533032/" data-citation-style="nlm" data-download-format-link="/resources/citations/9533032/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC9533032/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-bmfh.gif" alt="Bioscience of Microbiota, Food and Health logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to Bioscience of Microbiota, Food and Health" title="Link to Bioscience of Microbiota, Food and Health" shape="default" href="https://www.jstage.jst.go.jp/browse/bmfh" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">Biosci Microbiota Food Health</button></div>. 2022 Jun 17;41(4):185–194. doi: <a href="https://doi.org/10.12938/bmfh.2022-018" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.12938/bmfh.2022-018</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22Biosci%20Microbiota%20Food%20Health%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Biosci%20Microbiota%20Food%20Health%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22Biosci%20Microbiota%20Food%20Health%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22Biosci%20Microbiota%20Food%20Health%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Creatine supplementation enhances immunological function of neutrophils by increasing cellular adenosine triphosphate</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22SAITO%20S%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Suguru SAITO</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Suguru SAITO</span></h3> <div class="p"> <sup>1</sup>Division of Virology, Department of Infection and Immunology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0431, Japan</div> <div class="p"> <sup>2</sup>Biofluid Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichiban-cho, Ashahimachi-dori, Nishi-ku, Niigata, Niigata 951-8510, Japan</div> <div class="p"> <sup>3</sup>Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22SAITO%20S%22%5BAuthor%5D" class="usa-link"><span class="name western">Suguru SAITO</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3,</sup><sup>*</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22CAO%20DY%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Duo-Yao CAO</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Duo-Yao CAO</span></h3> <div class="p"> <sup>4</sup>College of Animal Science and Technology, Northwest A&amp;F University, Taicheng Rd, Yangling District, Xianyang, Shaanxi 712100, China</div> <div class="p"> <sup>5</sup>Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22CAO%20DY%22%5BAuthor%5D" class="usa-link"><span class="name western">Duo-Yao CAO</span></a> </div> </div> <sup>4,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22OKUNO%20A%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Alato OKUNO</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Alato OKUNO</span></h3> <div class="p"> <sup>6</sup>Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori 036-8530, Japan</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22OKUNO%20A%22%5BAuthor%5D" class="usa-link"><span class="name western">Alato OKUNO</span></a> </div> </div> <sup>6</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22LI%20X%22%5BAuthor%5D" class="usa-link" aria-describedby="id4"><span class="name western">Xiaomo LI</span></a><div hidden="hidden" id="id4"> <h3><span class="name western">Xiaomo LI</span></h3> <div class="p"> <sup>7</sup>Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22LI%20X%22%5BAuthor%5D" class="usa-link"><span class="name western">Xiaomo LI</span></a> </div> </div> <sup>7</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22PENG%20Z%22%5BAuthor%5D" class="usa-link" aria-describedby="id5"><span class="name western">Zhenzi PENG</span></a><div hidden="hidden" id="id5"> <h3><span class="name western">Zhenzi PENG</span></h3> <div class="p"> <sup>8</sup>Institute of Medical Sciences, Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Yuan Jia Ling Shang Quan, Furong District, Changsha, Hunan 410083, China</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22PENG%20Z%22%5BAuthor%5D" class="usa-link"><span class="name western">Zhenzi PENG</span></a> </div> </div> <sup>8</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22KELEL%20M%22%5BAuthor%5D" class="usa-link" aria-describedby="id6"><span class="name western">Musin KELEL</span></a><div hidden="hidden" id="id6"> <h3><span class="name western">Musin KELEL</span></h3> <div class="p"> <sup>9</sup>Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22KELEL%20M%22%5BAuthor%5D" class="usa-link"><span class="name western">Musin KELEL</span></a> </div> </div> <sup>9</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22TSUJI%20NM%22%5BAuthor%5D" class="usa-link" aria-describedby="id7"><span class="name western">Noriko M TSUJI</span></a><div hidden="hidden" id="id7"> <h3><span class="name western">Noriko M TSUJI</span></h3> <div class="p"> <sup>10</sup>Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan</div> <div class="p"> <sup>11</sup>Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan</div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22TSUJI%20NM%22%5BAuthor%5D" class="usa-link"><span class="name western">Noriko M TSUJI</span></a> </div> </div> <sup>10,</sup><sup>11</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="aff1"> <sup>1</sup>Division of Virology, Department of Infection and Immunology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0431, Japan</div> <div id="aff2"> <sup>2</sup>Biofluid Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichiban-cho, Ashahimachi-dori, Nishi-ku, Niigata, Niigata 951-8510, Japan</div> <div id="aff3"> <sup>3</sup>Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada</div> <div id="aff4"> <sup>4</sup>College of Animal Science and Technology, Northwest A&amp;F University, Taicheng Rd, Yangling District, Xianyang, Shaanxi 712100, China</div> <div id="aff5"> <sup>5</sup>Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA</div> <div id="aff6"> <sup>6</sup>Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori 036-8530, Japan</div> <div id="aff7"> <sup>7</sup>Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA</div> <div id="aff8"> <sup>8</sup>Institute of Medical Sciences, Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Yuan Jia Ling Shang Quan, Furong District, Changsha, Hunan 410083, China</div> <div id="aff9"> <sup>9</sup>Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia</div> <div id="aff10"> <sup>10</sup>Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan</div> <div id="aff11"> <sup>11</sup>Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan</div> <div class="author-notes p"> <div class="fn" id="cor1"> <sup>✉</sup><p class="display-inline">*Corresponding author. Suguru Saito (E-mail: <span>suguru@ualberta.ca</span>)</p> </div> <div class="fn" id="corresp2"> <sup>✉</sup><p class="display-inline">Supplementary materials: refer to PMC https://www.ncbi.nlm.nih.gov/pmc/journals/2480/)</p> </div> </div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2022 Mar 10; Accepted 2022 May 23; Issue date 2022.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>©2022 BMFH Press</div> <p>This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: <a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer"> https://creativecommons.org/licenses/by-nc-nd/4.0/</a>)</p> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC9533032  PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/36258765/" class="usa-link">36258765</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="abstract1"><h2>Abstract</h2> <p>Creatine is an organic compound which is utilized in biological activities, especially for adenosine triphosphate (ATP) production in the phosphocreatine system. This is a well-known biochemical reaction that is generally recognized as being mainly driven in specific parts of the body, such as the skeletal muscle and brain. However, our report shows a novel aspect of creatine utilization and ATP synthesis in innate immune cells. Creatine supplementation enhanced immune responses in neutrophils, such as cytokine production, reactive oxygen species (ROS) production, phagocytosis, and NETosis, which were characterized as antibacterial activities. This creatine-induced functional upregulation of neutrophils provided a protective effect in a murine bacterial sepsis model. The mortality rate in mice challenged with <em>Escherichia coli</em> K-12 was decreased by creatine supplementation compared with the control treatment. Corresponding to this decrease in mortality, we found that creatine supplementation decreased blood pro-inflammatory cytokine levels and bacterial colonization in organs. Creatine supplementation significantly increased the cellular ATP level in neutrophils compared with the control treatment. This ATP increase was due to the phosphocreatine system in the creatine-treated neutrophils. In addition, extracellular creatine was used in this ATP synthesis, as inhibition of creatine uptake abolished the increase in ATP in the creatine-treated neutrophils. Thus, creatine is an effective nutrient for modifying the immunological function of neutrophils, which contributes to enhancement of antibacterial immunity.</p> <section id="kwd-group1" class="kwd-group"><p><strong>Keywords:</strong> creatine, neutrophils, adenosine triphosphate (ATP), antibacterial immunity, reactive oxygen species (ROS), neutrophil extracellular traps (NETs), sepsis</p></section></section><section id="s1"><h2 class="pmc_sec_title">INTRODUCTION</h2> <p>Creatine is an organic compound produced from glycine and L-arginine through biosynthesis pathways in the kidney and liver [<a href="#r1" class="usa-link" aria-describedby="r1">1</a>]. In the initial step, glycine and L-arginine are converted to guanidinoacetate (GAA), which is accompanied by L-ornithine production, via the catalytic activity of L-arginine:glycine amidinotransferase (AGAT) in the kidney [<a href="#r2" class="usa-link" aria-describedby="r2">2</a>]. In the second step, this intermediate product is converted to creatine by guanidinoacetate N-methyltransferase (GAMT), which requires the participation of S-adenosylmethionine (SAM), in the liver [<a href="#r3" class="usa-link" aria-describedby="r3">3</a>]. Aside from endogenous synthesis, creatine can be taken in from several foods, such as fish and meat [<a href="#r4" class="usa-link" aria-describedby="r4">4</a>]. The majority of creatine is stored in skeletal muscle, and the brain and testes also hold relatively high levels of creatine as compared with other tissues and organs [<a href="#r5" class="usa-link" aria-describedby="r5">5</a>].</p> <p>Although creatine is not an essential nutrient, excessive loss of creatine leads to critical situations in our health that are epitomized by creatine deficiency disorders (CDDs) [<a href="#r6" class="usa-link" aria-describedby="r6">6</a>]. Impaired creatine metabolism and transportation are major causes of CDDs [<a href="#r7" class="usa-link" aria-describedby="r7">7</a>]. Deficiencies of AGAT and GAMT lead to the impairment of creatine synthesis [<a href="#r8" class="usa-link" aria-describedby="r8">8</a>]. A deficiency or functional loss of the creatine transporter (CrT) critically downregulates the level and utilization of intracellular creatine [<a href="#r9" class="usa-link" aria-describedby="r9">9</a>]. The most famous symptoms of CDDs are neurological disorders, such as developmental delay, intellectual disability, and speech-language disorder [<a href="#r10" class="usa-link" aria-describedby="r10">10</a>, <a href="#r11" class="usa-link" aria-describedby="r11">11</a>]. Therefore, creatine homeostasis is an indispensable factor for maintaining biological function and activity.</p> <p>The most important use of creatine is for adenosine triphosphate (ATP) synthesis [<a href="#r12" class="usa-link" aria-describedby="r12">12</a>]. Creatine is used in the phosphocreatine system, which generates ATP from adenosine diphosphate (ADP) and phosphocreatine (PCr) via the catalytic activity of creatine kinase (CK) [<a href="#r13" class="usa-link" aria-describedby="r13">13</a>]. In the generation of PCr, CK catalyzes the reversible transfer of phosphate from ATP to creatine with its reversible catalytic activity [<a href="#r14" class="usa-link" aria-describedby="r14">14</a>]. Since creatine is able to conjugate with high-energy phosphate, most stored creatine molecules are bound with high-energy phosphate and form PCr [<a href="#r13" class="usa-link" aria-describedby="r13">13</a>]. Therefore, PCr functions as a carrier of phosphate used for rapid ATP generation in the phosphocreatine system [<a href="#r14" class="usa-link" aria-describedby="r14">14</a>, <a href="#r15" class="usa-link" aria-describedby="r15">15</a>]. This is distinguishable from the oxidative phosphorylation-based ATP production in mitochondria and makes it possible to generate ATP in anaerobic manner [<a href="#r16" class="usa-link" aria-describedby="r16">16</a>].</p> <p>The phosphocreatine system has been described as being mainly driven in specific organs and tissues, such as the skeletal muscle, heart, and brain, which have high energy demands [<a href="#r17" class="usa-link" aria-describedby="r17">17</a>, <a href="#r18" class="usa-link" aria-describedby="r18">18</a>]. However, recent studies have revealed novel possibilities indicating that the immune system also requires creatine to enhance its activity. For instance, creatine supplementation promoted the activity of CD8+ T cells in anti-tumor immunity by increasing ATP production [<a href="#r19" class="usa-link" aria-describedby="r19">19</a>]. Innate immunity provides a strong front-line defense against various pathogenic invasions [<a href="#r20" class="usa-link" aria-describedby="r20">20</a>]. Neutrophils are especially important innate immune cells in this defensive mechanism [<a href="#r21" class="usa-link" aria-describedby="r21">21</a>]. In the acute phase of bacterial invasion, neutrophils are mobilized to the infected site and aggressively eliminate the bacteria by phagocytosis and producing antibacterial agents [<a href="#r22" class="usa-link" aria-describedby="r22">22</a>, <a href="#r23" class="usa-link" aria-describedby="r23">23</a>]. Furthermore, they rapidly require sufficient sources of energy to exert these capabilities [<a href="#r24" class="usa-link" aria-describedby="r24">24</a>]. In this context, ATP is the primary energy source and is mainly provided through glycolysis rather than oxidative phosphorylation in mitochondria [<a href="#r25" class="usa-link" aria-describedby="r25">25</a>]. If rapid ATP production under inflammatory conditions involves another metabolic reaction, more neutrophil activity could be promoted than usual. Recent studies showed that various nutrients modify the activity of immune cells, such as T cells and dendritic cells (DCs) [<a href="#r26" class="usa-link" aria-describedby="r26">26</a>, <a href="#r27" class="usa-link" aria-describedby="r27">27</a>]. However, the effects of nutrients on the activity of innate immune cells, especially for neutrophils, have not been described well. Thus, we investigated a nutrient that effectively modifies neutrophil activity and enhances the immune response.</p> <p>In this report, we show that creatine supplementation enhanced the immunological activity of neutrophils and that this was based on increasing the cellular ATP level. This functional modification of neutrophils contributed to attenuation of the mortality rate, based on enhanced antibacterial immunity, in a murine bacterial sepsis model. Our finding indicates a novel aspect of the biological effect of creatine, especially for innate immunity.</p></section><section id="s2"><h2 class="pmc_sec_title">MATERIALS AND METHODS</h2> <section id="sec3"><h3 class="pmc_sec_title">Reagents and antibodies</h3> <p>Creatine monohydrate, phorbol 12-myristate 13-acetate (PMA), lipopolysaccharide (LPS), β-guanidinopropionic acid (β-GPA), and BioTracker ATP-Red Live Cell Dye were purchased from Sigma Aldrich (St. Louis, MO, USA). CellROX<sup>TM</sup> Green, K-12 BioParticles (fluorescein labeled), SYTOX<sup>TM</sup> Green, 4’,6-diamidino-2-phenylindole (DAPI), anti-SLC6A8 polyclonal antibody (PA5-110393), HRP Goat Anti-Rabbit IgG (H+L), and TRIzol were purchased from Thermo Fisher Scientific (Waltham, MA, USA). CellTiter-Glo<sup>®</sup> 2.0 was purchased from Promega (Madison, WI, USA). Anti-CD45 (30-F11), anti-CD11b (M1/70), anti-Ly-6G (1A8), and 7-aminoactinomycin D (7-AAD) were purchased from BioLegend (San Diego, CA, USA).</p></section><section id="sec4"><h3 class="pmc_sec_title">Mice</h3> <p>C57BL/6 J mice were purchased from CLEA Japan (Tokyo, Japan) and the Jackson Laboratory (Bar Harbor, ME, USA). All mice were bred under specific pathogen-free (SPF) conditions with 12 hr day/night cycles and were allowed free access to food and water. Gender-matched 8- and 12-week-old mice were used for the experiments. Some mice received intraperitoneal (i.p.) injection of saline (200 µL) or creatine (200 µL of 50 mg/mL in saline) every 24 hr for 7 days. Both naive and treated mice were used for bone marrow (BM) neutrophil isolation. All experiments were approved by the animal care and use committees of Jichi Medical University (protocol no.: 20036-01, 20037-01), Central South University (protocol no.: 15-10-874), and Shibata Gakuen University (2021-019).</p></section><section id="sec5"><h3 class="pmc_sec_title">Bacterial sepsis model</h3> <p>Frozen <em>Escherichia coli</em> K-12 strain stock was purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). The bacteria were thawed on ice, transferred to LB media (BD Biosciences, Franklin Lakes, NJ, USA), and then cultured at 37°C for 18–20 hr with shaking. Bacterial colony forming units (CFU) were determined in each culture. To establish a bacterial sepsis model, the mice that had been administrated saline or creatine (200 µL of 50 mg/mL in saline) for 7 days received an i.p. injection of live <em>E. coli</em> K-12 (100 µL of 1.0×10<sup>9</sup> CFU/mL suspension). Some mice received an oral administration of β-GPA (200 µL of 10 mg/mL in phosphate-buffered saline (PBS)) every 24 hr for 7 days prior to the K-12 challenge. The numbers of live and dead mice were counted every 12 hr up to 72 hr postinjection of K-12. At 24 hr, serum was collected from surviving mice, and the cytokine concentration was measured by enzyme-linked immunosorbent assay (ELISA). The frequency of NETosis in peripheral blood neutrophils was analyzed by flow cytometry. To measure K-12 colonization in organs of sepsis mice, K-12-challenged mice (a different group of mice from those used for live/dead monitoring) were sacrificed at 24 hr, and then whole spleens and livers were extracted from each mouse for the preparation of suspensions by homogenization in PBS. After centrifugation at 300 <em>g</em> for 5 min, supernatants were collected and used for determination of K-12 CFUs in the organs.</p></section><section id="sec6"><h3 class="pmc_sec_title">Flow cytometry</h3> <p>Flow cytometry analysis was performed by using a flow cytometer (LSR-II, BD Biosciences, Franklin Lakes, NJ, USA) with the fluorochrome-conjugated monoclonal antibodies and chemical probes described in the reagents and antibodies section. For surface marker staining, the cells were incubated with an FcR blocker (anti-CD16/32; 2.4G2) at 4°C for 10 min, and then the cells were incubated with antibodies at 4°C for 30 min. Finally, the samples were stained with 7-AAD and analyzed on the same day without fixation. The NETosis assay was performed by a previously reported method with minor modification [<a href="#r28" class="usa-link" aria-describedby="r28">28</a>, <a href="#r29" class="usa-link" aria-describedby="r29">29</a>]. Briefly, peripheral blood was treated with 1× red blood cell (RBC) lysis buffer at room temperature (RT) for 10 min, washed and fixed with 1% paraformaldehyde (PFA) at RT for 10 min, and subjected to staining for surface markers as well as nuclear and DNA staining. All data were analyzed with BD FACSDiva (BD Biosciences, Franklin Lakes, NJ, USA) or FlowJo (BD Biosciences).</p></section><section id="sec7"><h3 class="pmc_sec_title">Isolation of BM neutrophils</h3> <p>BM neutrophils were isolated from naive or treated (saline or creatine supplementation for 7 days) C57BL/6 J WT mice by following a protocol described in a previous report [<a href="#r28" class="usa-link" aria-describedby="r28">28</a>]. Briefly, tibias and femurs were extracted from the mice, and then BM cells were flushed out by using a 10 mL syringe with a 27G needle and cell culture medium (RPMI 1640 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin). The cells were then washed, and RBCs were eliminated by treatment with 1×RBC lysis buffer at RT for 10 min. Subsequently, the cells were washed again with cell culture medium. The neutrophils were then enriched by using a Neutrophil Isolation Kit, mouse (Miltenyi Biotec, Bergisch Gladbach, North Rhine-Westphalia, Germany). All procedures were performed by following the product manual. Neutrophil purity was determined by flow cytometry. Samples with CD45+CD11b+Ly-6G+ &gt;90% were used for experiments (<a href="#fig_001" class="usa-link">Fig. 1A, 1B</a>).</p> <figure class="fig xbox font-sm" id="fig_001"><h4 class="obj_head">Fig. 1.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=9533032_bmfh-41-185-g001.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ebd/9533032/6b206e42b0ed/bmfh-41-185-g001.jpg" loading="lazy" height="552" width="708" alt="Fig. 1."></a></p> <div class="p text-right font-secondary"><a href="figure/fig_001/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><em>In vitro</em> creatine treatment enhances the immunological activity of neutrophils.</p> <p>A, B) Determination of the purity of neutrophils isolated from bone marrow (BM). A) Gating strategy of flow cytometry for determination of the purity of BM-isolated neutrophils. The purified neutrophils were determined to be the CD11b+Ly-6G+ population (red square) in 7-aminoactinomycin D (7-AAD-) gate (live cells). B) The percentages of CD11b+Ly-6G+ cells in whole BM and purified neutrophils. C) Intracellular creatine concentration in neutrophils. Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) at 37°C for 6 hr, and then the intracellular creatine concentration was measured by ELISA. D) IL-1β production in neutrophils. Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) and then further treated with the vehicle control (−, PBS) or lipopolysaccharide (LPS) (100 ng/mL) at 37°C overnight. The concentration of IL-1β in the cultured medium was measured by ELISA. E, F) reactive oxygen species (ROS) production in neutrophils. Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) and then further treated with the vehicle control (−, PBS) or LPS (100 ng/mL) at 37°C for 60 min. ROS production was analyzed by flow cytometry. E) Representative histogram image of ROS production in the flow cytometry analysis. F) Cumulative data for ROS MFIs. G, H) Phagocytosis activity of neutrophils. Neutrophils (1.0×10<sup>6</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) in the presence of <em>E. coli</em> K-12 BioParticles (fluorescein labeled, 100 µg/mL). The cultures were incubated at 37°C for 120 min, and then the phagocytic activity against K-12 was analyzed by flow cytometry. G) Representative histogram image of phagocytosis in the flow cytometry analysis. H) Cumulative data for K-12 MFIs. I, J) NETosis of phorbol 12-myristate 13-acetate (PMA)-treated neutrophils. Neutrophils (5.0×10<sup>5</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) in the presence of PMA (50 nM). The cultures were incubated at 37°C for 4 hr, the culture medium was collected, and the cell-free DNA (CFD) was then stained with SYTOX<sup>TM</sup> Green. The NETosis images were obtained with a fluorescence microscope. I) Representative image of NETosis. Bar=100 μM. J) Cumulative data for the fluorescence intensity of CFD. The cumulative data are shown as mean ± SEM values of eight samples in three independent experiments. Student’s t-test (B, C, H, J) or one-way ANOVA (D, F) was used to analyze data for significant differences. Asterisks indicate significance: *p&lt;0.05, **p&lt;0.01, ***p&lt;0.001, ****p&lt;0.0001.</p></figcaption></figure></section><section id="sec8"><h3 class="pmc_sec_title">Cytokine production assay</h3> <p>Neutrophils (1.0×10<sup>7</sup>/mL) were seeded in a 96-well flat-bottom plate with cell culture medium containing vehicle control (PBS) or LPS (100 ng/mL). Neutrophils isolated from naive mice were also treated with vehicle control (PBS) or creatine (6.7 mM). The culture was incubated at 37°C overnight, and the plate was immediately frozen at −80°C and stored until use. The cytokine concentration in the culture was measured by ELISA.</p></section><section id="sec9"><h3 class="pmc_sec_title">Reactive oxygen species (ROS) production assay</h3> <p>Neutrophils (1.0×10<sup>7</sup>/mL) were seeded in a 96-well round-bottom plate with cell culture medium containing vehicle control (PBS) or LPS (100 ng/mL) and CellROX<sup>TM</sup> Green (1 μM). Neutrophils isolated from naive mice were also treated with vehicle control (PBS) or creatine (6.7 mM). The culture was incubated at 37°C for 60 min. The ROS signal (mean fluorescence intensity; MFI) was detected in the live neutrophil (7-AAD-CD11b+Ly-6G+) population by flow cytometry.</p></section><section id="sec10"><h3 class="pmc_sec_title">Phagocytosis assay</h3> <p>Neutrophils (1.0×10<sup>7</sup>/mL) were seeded in a 96-well round-bottom plate with cell culture medium containing K-12 BioParticles (100 µg/mL). Neutrophils isolated from naive mice were also treated with vehicle control (PBS) or creatine (6.7 mM). The culture was incubated at 37°C for 2 hr, and then the phagocytosis activity was analyzed by flow cytometry. The incorporated K-12 signal mean fluorescence intensity (MFI) was detected in the neutrophil (CD11b+Ly-6G+) population.</p></section><section id="sec11"><h3 class="pmc_sec_title">NETosis assay</h3> <p>Neutrophils (5.0×10<sup>5</sup>/mL) were seeded in a 96-well flat-bottom plate (poly-L-lysine coated) with cell culture medium supplemented with PMA (50 nM). Neutrophils isolated from naive mice were further treated with vehicle control (PBS) or creatine (6.7 mM). The culture was incubated at 37°C for 4 hr to induce NETosis. After incubation, the culture medium was harvested and stored at −80°C until use. The cells were stained with SYTOX<sup>TM</sup> Green (500 nM) at 37°C for 15 min. After being washed with PBS, they were treated with 1% PFA at 4°C for 10 min. NETosis was observed by fluorescence microscope. The cell-free DNA (CFD) in the culture medium was quantified by staining with SYTOX<sup>TM</sup> Green (500 nM) at 37°C for 15 min. Fluorescence was measured by microplate reader (Tecan, Männedorf, Zürich, Switzerland).</p></section><section id="sec12"><h3 class="pmc_sec_title">ELISA</h3> <p>Cytokine concentrations were measured by ELISA using a Ready-SET-Go!™ Kit (Thermo Fisher Scientific) for each target. All procedures were performed by following the product manuals.</p></section><section id="sec13"><h3 class="pmc_sec_title">Biochemical assay</h3> <p>Neutrophils (1.0×10<sup>7</sup>/mL) isolated from naive mice were treated with vehicle control (PBS) or creatine (6.7 mM) at 37°C for 6 hr before assay. Creatine concentration was measured by using a Creatine Assay Kit (Abcam, Cambridge, UK). ATP level was measured by CellTiter-Glo<sup>®</sup> 2.0 (Promega). PCr levels were measured with a PCr ELISA Kit (MyBioSource, San Diego, CA, USA). CK activity was measured with a Creatine Kinase Activity Assay Kit (Thermo Fisher Scientific). All procedures were performed by following the product manuals. For blocking of mitochondrial ATP production, the neutrophils (1.0×10<sup>7</sup>/mL) were pretreated with oligomycin A (1 µg/mL) at 37°C for 1 hr prior to creatine (6.7 mM) treatment at 37°C for 6 hr. For inhibition of creatine uptake, the neutrophils (1.0×10<sup>7</sup>/mL) were pretreated with β-GPA (10 mM) at 37°C for 1 hr prior to creatine treatment (6.7 mM) at 37°C for 6 hr.</p></section><section id="sec14"><h3 class="pmc_sec_title">Real-time polymerase chain reaction (PCR)</h3> <p>Neutrophils (5.0×10<sup>6</sup>/mL) were treated with vehicle (PBS) or creatine (6.7 mM) at 37°C for 6 hr, and then total RNA was isolated with TRIzol RNA Isolation Reagents (Thermo Fisher Scientific). cDNA was synthesized with 500 ng of total RNA using a PrimeScript RT Reagent Kit (TaKaRa, Tokyo, Japan). The expression level of CrT mRNA was quantified with a TB Green system (TaKaRa) and Thermal Cycler Dice (TaKaRa). GAPDH mRNA expression was used as an internal control. The following primers were used to specifically amplify the target genes: 5′-ACTGGGAGGTGACCTTGTGC-3′ (forward) and 5′-CGATCTTTCCTGTTGACTTG-3′ (reverse) for <em>SLC6A8</em> and 5-TGTGTCCGTCGTGGATCTGA-3′, (forward) and 5′-TTGCTGTTGAAGTCGCAGGAG-3′ (reverse) for <em>Gapdh</em>. All procedures were performed by following the product manuals. The relative expression of the mRNA of interest was calculated using the 2<sup>ΔΔCT</sup> method.</p></section><section id="sec15"><h3 class="pmc_sec_title">Western blot</h3> <p>Neutrophils (1.0×10<sup>7</sup>/mL) were treated with vehicle or creatine (6.7 mM) at 37°C for 6 hr, and then the cells were treated with 1× RIPA buffer. The protein concentration was determined by the bicinchoninic acid (BCA) method. The sample was diluted with distilled water (DW) and 5× sodium dodecyl sulfate (SDS) sample buffer (2% SDS; 62.5 mM Tris–HCl, pH 6.8; 10% glycerol; 0.01% bromophenol blue; 50 mM dithiothreitol (DTT) and boiled at 95°C for 5 min. The cell lysates (20 µg/well) were separated by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (10% gel), and proteins were transferred onto a PVDF membrane using a Trans-Blot Turbo™ Transfer System (Bio-Rad Laboratories, Hercules, CA, USA). The membrane was treated with tris-buffered saline, 0.05% Tween 20 (TBS-T) (20 mM Tris–HCl, pH 7.6; 150 mM NaCl; 0.1% Tween 20) containing 5% skim milk at room temperature for 1 hr and then further incubated with the primary antibody (anti-SAC6A8, 1:1,000) in TBST containing 1% skim milk at RT for 1 hr. After washing with TBST, the membrane was treated with the secondary antibody (HRP Goat Anti-Rabbit IgG (H+L), 1:5,000) in TBST containing 1% skim milk at RT for 30 min. After washing with TBST, the protein bands were visualized with an ECL Western Blotting Detection System (GE Healthcare Bioscience, Chicago, IL, USA), and the image was captured by a ChemiDoc XRS Imaging System (Bio-Rad, Hercules, CA, USA).</p></section><section id="sec16"><h3 class="pmc_sec_title">Statistical analyses</h3> <p>GraphPad Prism (GraphPad Software, La Jolla, CA, USA) was used for the statistical analysis. Student’s t-test and one-way analysis of variance (ANOVA) were used for comparisons between two groups and multiple groups, respectively. Values of p&lt;0.05, p&lt;0.01, p&lt;0.001, and p&lt;0.0001 were considered to be statistically significant.</p></section></section><section id="s3"><h2 class="pmc_sec_title">RESULTS</h2> <section id="sec18"><h3 class="pmc_sec_title">Creatine enhanced the immune response of neutrophils</h3> <p>To investigate the contribution of creatine to neutrophil activity, we characterized the typical immunological response of neutrophils to creatine treatment. We used neutrophils isolated from BM for the experiments. BM cells were isolated from naive C57BL6/J mice, and then the neutrophils were purified from the whole BM cells by magnetic enrichment. The purity of the neutrophils was over 90% in an average of eight samples, which was confirmed by flow cytometry (<a href="#fig_001" class="usa-link">Fig. 1A, 1B</a>). We first measured the intracellular creatine concentration in the neutrophils. The neutrophils treated with creatine showed a significant increase in intracellular creatine concentration compared with the vehicle controls (<a href="#fig_001" class="usa-link">Fig. 1C</a>). To determine the suitable dose of creatine, the intracellular creatine concentrations of the neutrophils were measured at different doses of creatine during culture. When the dose reached 6.7 mM, the intracellular creatine concentration was significantly increased compared with the basal concentration as well as doses lower than 6.7 mM. In addition, the intracellular creatine concentration reached almost a plateau level at doses above 6.7 mM (Supplementary Fig. 1A). Therefore, we decided to use 6.7 mM of creatine in our in vitro experiments. IL-1β is a primary pro-inflammatory cytokine produced by neutrophils [<a href="#r30" class="usa-link" aria-describedby="r30">30</a>]. Creatine treatment significantly increased IL-1β production compared with the vehicle control even under the basal conditions, and the difference was clearly greater when the neutrophils were stimulated with LPS (<a href="#fig_001" class="usa-link">Fig. 1D</a>). ROS production, which is an antibacterial response, was also measured in the neutrophils [<a href="#r31" class="usa-link" aria-describedby="r31">31</a>]. Under the basal and LPS-stimulated conditions, ROS production was significantly increased in the creatine-treated neutrophils as compared with the vehicle controls (<a href="#fig_001" class="usa-link">Fig. 1E, 1F</a>). Neutrophils show aggressive phagocytosis against pathogenic bacteria [<a href="#r32" class="usa-link" aria-describedby="r32">32</a>]. In the phagocytosis assay using <em>E. coli</em> K-12 BioParticles, K-12 incorporation was significantly increased in the creatine-treated neutrophils as compared with the vehicle controls (<a href="#fig_001" class="usa-link">Fig. 1G, 1H</a>). Neutrophil extracellular traps (NETs) formation is another dynamic antibacterial response in neutrophils [<a href="#r28" class="usa-link" aria-describedby="r28">28</a>]. In the NETosis induced by PMA in this study, creatine treatment enhanced the formation of NET structures, which could be observed under fluorescence microscope (<a href="#fig_001" class="usa-link">Fig. 1I</a>). The magnitude of NETosis was quantified based on CFD release in the culture, and the creatine-treated cultures showed significantly high signals of CFD compared with the vehicle controls (<a href="#fig_001" class="usa-link">Fig. 1J</a>).</p> <p>Taken together, creatine treatment enhanced the innate immune response of neutrophils.</p></section><section id="sec19"><h3 class="pmc_sec_title">Creatine supplementation modified the potential immunological activity of neutrophils and decreased the mortality rate of bacterial sepsis in the mice</h3> <p>Next, we investigated the immunomodification of neutrophil function by creatine in the physiological environment. The C57BL/6 J mice received saline or creatine supplementation by i.p. injection every 24 hr for 7 days, and then neutrophils isolated from BM were used for a functional analysis (<a href="#fig_002" class="usa-link">Fig. 2A</a>).</p> <figure class="fig xbox font-sm" id="fig_002"><h4 class="obj_head">Fig. 2.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=9533032_bmfh-41-185-g002.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ebd/9533032/67104c31bd3e/bmfh-41-185-g002.jpg" loading="lazy" height="509" width="708" alt="Fig. 2."></a></p> <div class="p text-right font-secondary"><a href="figure/fig_002/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><em>In vivo</em> creatine supplementation enhances the immunological activity of neutrophils and establishes an environment resistant to bacterial sepsis.</p> <p>A) Design of in vivo creatine supplementation. The mice (n=8 in each group) received an i.p. injection of saline (200 µL) or creatine (200 µL of 50 mg/mL in saline) every 24 hr for 7 days. After completion of the administration procedures, neutrophils were isolated from bone marrow (BM) and used for subsequent in vitro experiments. B) Serum creatine concentrations of mice i.p. injected with saline or creatine at day 7. C) IL-1β production in neutrophils. Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (−, PBS) or lipopolysaccharide (LPS) (100 ng/mL) at 37°C overnight. The concentration of IL-1β in the culture medium was measured by ELISA. D) reactive oxygen species (ROS) production in neutrophils. Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (−, PBS) or LPS (100 ng/mL) at 37°C for 60 min. The ROS production was analyzed by flow cytometry. E) Phagocytosis activity in neutrophils. Neutrophils (1.0×10<sup>7</sup>/mL) were incubated with <em>E. coli</em> K-12 BioParticles (100 µg/mL) at 37°C for 120 min. The phagocytosis activity against K-12 was analyzed by flow cytometry. F) NETosis of PMA-treated neutrophils. Neutrophils (5.0×10<sup>5</sup>/mL) were treated with PMA (50 nM) at 37°C for 4 hr. The cell-free DNA (CFD) in the cultured medium was stained with SYTOX<sup>TM</sup> Green, and the fluorescence was analyzed with a microplate reader. G) Design of the bacterial sepsis model. The mice (n=10 in each group) received an i.p. injection of saline (200 µL) or creatine (200 µL of 50 mg/mL in saline) every 24 hr for 7 days (days −7 to 0). Live <em>E. coli</em> K-12 (100 µL of 1.0×10<sup>9</sup> CFU/mL of suspension in saline) was i.p. injected into the mice (at day 0). The numbers of live and dead mice in each group were monitored every 12 hr up to 72 hr (days 0 to +3). Plasma cytokine concentration, K-12 CFU in organs, and NETosis in peripheral blood circulating neutrophils were analyzed in the surviving mice at 24 hr post-challenge with K-12. H) Survival curve of bacterial sepsis mice. I, J) Serum cytokine levels in sepsis mice. The serum samples were collected from surviving mice at 24 hr post-challenge with K-12, and IL-6 (I) and TNF-α (J) concentrations were measured by ELISA. K–L) Bacteria colonization in organs of sepsis mice. The spleen and liver were extracted from surviving mice at 24 hr post-challenge with K-12 (a different group of mice from those used for live/dead monitoring). The K-12 CFUs in whole organs were measured in the spleen (K) and liver (L), respectively. M, N) NETosis activity of blood circulating neutrophils. Peripheral blood was collected from surviving mice at 24 hr post-challenge with K-12, and NETosis in neutrophils was analyzed by flow cytometry. The SYTOX<sup>TM</sup> Green+DAPI+ population in the CD45+CD11b+Ly-6G+ gate was determined to comprise NETosis neutrophils. L) Representative image of NETosis neutrophils in the flow cytometry analysis. M) Cumulative data for the percentage of NETosis neutrophils. The cumulative data are shown as mean ± SEM values of six or eight samples in two independent experiments. Student’s t-test (B, E, F, K, L, N) or one-way ANOVA (C, D, I, J) was used to analyze data for significant differences. Asterisks indicate significance: *p&lt;0.05, **p&lt;0.01, ***p&lt;0.001, ****p&lt;0.0001. ns, not significant.</p></figcaption></figure><p>Intraperitoneal injection of creatine significantly increased the serum creatine concentration in the mice at day 7 compared with saline injection (<a href="#fig_002" class="usa-link">Fig. 2B</a>). The serum creatine concentration was dose-dependently increased; however, the level reached a plateau at injection with 50 mg/mL, which we used in the <em>in vivo</em> experiment (Supplementary Fig. 2).</p> <p>In the stimulation assay, neutrophils isolated from creatine-supplemented mice showed a significantly larger amount of IL-1β production with LPS stimulation compared with that of the control mice. Interestingly, the basal IL-1β production was already slightly upregulated in the neutrophils that originated from creatine-supplemented mice (<a href="#fig_002" class="usa-link">Fig. 2C</a>). Both ROS production and K-12 phagocytosis were significantly enhanced in the neutrophils isolated from creatine-supplemented mice as compared with those of the control mice (<a href="#fig_002" class="usa-link">Fig. 2D, 2E</a>). Furthermore, NETosis was also enhanced in the neutrophils that originated from creatine-supplemented mice (<a href="#fig_002" class="usa-link">Fig. 2F</a>).</p> <p>To investigate the contribution of creative supplementation to neutrophil-based antibacterial immunity, we established a murine bacterial sepsis model. C57BL/6 J mice first received saline or creatine administration for 7 days (Day −7 to 0). At day 0, live <em>E. coli</em> (K-12 strain) was i.p. injected into the mice. The mortality rate was monitored every 12 hr up to 72 hr after the K-12 challenge. The serum cytokine concentrations and NETosis of blood circulating neutrophils were measured in surviving mice at 24 hr. Furthermore, bacterial CFUs were assessed in the spleen and liver of the surviving mice (a different group of mice from those used for live/dead monitoring) at 24 hr (<a href="#fig_002" class="usa-link">Fig. 2G</a>).</p> <p>In the saline-supplemented group of mice, 40% of the population was dead at 24 hr, and all of the mice were dead by 48 hr post-challenge with K-12. On the other hand, the creatine-supplemented mice showed high resistance to bacterial sepsis. At 24 hr and 48 hr, 100% and 50% of the creatine-supplemented mice were still alive, respectively. Ultimately, all of the mice in the creatine-supplemented group were dead by 72 hr; however, the surviving numbers of mice in this group were larger than those of the control group at all other time points (<a href="#fig_002" class="usa-link">Fig. 2H</a>).</p> <p>Pro-inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α), are generally dramatically increased in bacteria sepsis [<a href="#r33" class="usa-link" aria-describedby="r33">33</a>, <a href="#r34" class="usa-link" aria-describedby="r34">34</a>]. Abnormal levels of these cytokines are major causes of death in septic shock, as they induce cytokine storms and multiple organ dysfunction [<a href="#r35" class="usa-link" aria-describedby="r35">35</a>]. The plasma concentration of IL-6 was markedly increased in sepsis mice compared with naive mice. Creatine supplementation significantly decreased the plasma IL-6 level compared with that of the control mice (<a href="#fig_002" class="usa-link">Fig. 2I</a>). The TNF-α level was also slightly decreased in the creatine-supplemented mice compared with the control mice, although the difference was smaller than that for IL-6 (<a href="#fig_002" class="usa-link">Fig. 2J</a>). The creatine-supplemented mice showed significantly smaller K-12 CFUs compared with the control mice in both the spleen and liver at 24 hr of K-12 challenge (<a href="#fig_002" class="usa-link">Fig. 2K, 2L</a>). NETosis in blood circulating neutrophils was promoted in the creatine-supplemented mice at 24 hr postinjection of K-12 (<a href="#fig_002" class="usa-link">Fig. 2M, 2N</a>).</p> <p>Taken together, creatine supplementation enhanced the potential immunological activity of neutrophils in the physiological environment. Furthermore, the modified immunological environment attenuated the mortality rate in bacterial sepsis by enhancing neutrophil activity.</p></section><section id="sec20"><h3 class="pmc_sec_title">Creatine supplementation increased the intracellular ATP level in neutrophils</h3> <p>ATP is a universal energy in mammalian cells [<a href="#r36" class="usa-link" aria-describedby="r36">36</a>]. The cellular level increasing of uptake and the production of ATP are frequently correlated with cell activation [<a href="#r19" class="usa-link" aria-describedby="r19">19</a>, <a href="#r37" class="usa-link" aria-describedby="r37">37</a>]. In fact, some reports have shown that increases in ATP promote the activity of immune cells [<a href="#r19" class="usa-link" aria-describedby="r19">19</a>, <a href="#r38" class="usa-link" aria-describedby="r38">38</a>, <a href="#r39" class="usa-link" aria-describedby="r39">39</a>]. Mammalian cells are capable of cytosolic ATP synthesis, which is distinct from oxidative phosphorylation-based ATP production in mitochondria [<a href="#r40" class="usa-link" aria-describedby="r40">40</a>]. The intracellular creatine concentration has an important role to this reaction, as high-energy phosphate-conjugated creatine (PCr) is utilized in the rapid production of ATP via the phosphocreatine system catalyzed by CK [<a href="#r41" class="usa-link" aria-describedby="r41">41</a>]. To investigate the effect of creatine supplementation on ATP production in neutrophils, we performed biochemical assays. We found a significant increase in the intracellular ATP concentration in creatine-treated neutrophils compared with the controls (<a href="#fig_003" class="usa-link">Fig. 3A</a>). The intracellular ATP concentration increased with the creatine dose; however, it reached a plateau at 6.7 mM of creatine, which was the dose we used in this study (Supplementary Fig. 1B).</p> <figure class="fig xbox font-sm" id="fig_003"><h4 class="obj_head">Fig. 3.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=9533032_bmfh-41-185-g003.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ebd/9533032/05942d745db1/bmfh-41-185-g003.jpg" loading="lazy" height="710" width="708" alt="Fig. 3."></a></p> <div class="p text-right font-secondary"><a href="figure/fig_003/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Creatine supplementation increases cellular adenosine triphosphate (ATP), which is one of the major causes of the functional enhancement of neutrophils.</p> <p>A–J) Biochemical assays in neutrophils. Neutrophils were isolated from naive mice for use in the assays (A–C, F–J). <em>In vivo</em> assays (D, E) were performed by using peripheral blood neutrophils collected from creatine-administered mice (following the administration schedule indicated in <a href="#fig_002" class="usa-link">Fig. 2A</a>). A–C) Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) at 37°C for 6 hr and then used for each assay. A) ATP concentration in neutrophils. B) phosphocreatine (PCr ) level of neutrophils. C) creatine kinase (CK) activity of neutrophils. D, E) ATP level in peripheral blood circulating neutrophils. The mice (n=6 in each group) received an i.p. injection of saline (200 µL) or creatine (200 µL of 50 mg/mL in saline) every 24 hr for 7 days. After completion of the administration procedures, peripheral blood was used for ATP assays by flow cytometry. D) Representative histogram image of ATP in the flow cytometry analysis. E) Cumulative data for ATP MFIs. F) ATP concentrations of neutrophils with blocking of oxidative phosphorylation-based ATP production. Neutrophils (1.0×10<sup>6</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) in the presence or absence of oligomycin A (1 µg/mL) at 37°C for 6 hr, and then the intracellular ATP concentration was measured in the neutrophils. G–I) CrT expression in neutrophils. Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (PBS) or creatine (6.7 mM) at 37°C for 6 hr, and then total RNA or proteins were isolated for real-time PCR and western blotting (WB), respectively. G) Cumulative data for quantification of the CrT mRNA level. H) Total expression of CrT protein in WB. I) Cumulative data for CrT expression intensity in WB. J) ATP concentration in neutrophils with CrT blocking. Neutrophils (1.0×10<sup>7</sup>/mL) were treated with the vehicle control (PBS) or β-PGA (10 mM) at 37°C for 1 hr followed by creatine (6.7 mM) treatment at 37°C for 6 hr, and then the intracellular ATP concentration was measured in the neutrophils. K–P) Comparison of mortality rate and antibacterial responses with or without the inhibition of ATP uptake in bacterial sepsis. The mice (n=10 in each group) received an i.p. injection of saline (200 µL) or creatine (200 µL of 50 mg/mL in saline) every 24 hr for 7 days (days −7 to 0). At the same time, some mice received oral administration of saline (200 µL) or β-GPA (200 µL of 100 mg/mL in saline). Live <em>E. coli</em> K-12 (100 µL of 1.0×10<sup>9</sup> CFU/mL of suspension in saline) was i.p. injected into the mice (at day 0). The numbers of live and dead mice in each group were monitored every 12 hr up to 72 hr (days 0 to +3 K). K) Survival curve of bacterial sepsis mice. L, M) Serum cytokine levels in sepsis mice. The serum samples were collected from surviving mice at 24 hr post-challenge with K-12, and IL-6 (L) and TNF-α (M) concentrations were measured by ELISA. N, O) Bacteria colonization in organs of sepsis mice. The spleen and liver were extracted from surviving mice at 24 hr post-challenge with K-12 (a different group of mice from those used for live/dead monitoring). The K-12 CFUs in whole organs were measured in the spleen (N) and liver (O), respectively. P) NETosis activity of blood circulating neutrophils. Peripheral blood was collected from surviving mice at 24 hr post-challenge with K-12, and NETosis in neutrophils was analyzed by flow cytometry. The SYTOX<sup>TM</sup> Green+DAPI+ population in the CD45+CD11b+Ly-6G+ gate was determined to comprise NETosis neutrophils. Q) Correlation between the neutrophil ATP levels and survival times in bacterial sepsis mice. Both the ATP MFIs in blood neutrophils and survival times in bacterial sepsis mice (four groups in total in this study) are summarized in a linear regression graph. The ATP levels were analyzed in peripheral blood neutrophils collected from surviving mice at 24 hr post-challenge with K-12. The cumulative data are shown as mean ± SEM values of six samples in two independent experiments. Student’s t-test (A–C, E, G, I, L–P) or one-way ANOVA (F, J) was used to analyze data for significant differences. Asterisks indicate significance: *p&lt;0.05, **p&lt;0.01, ****p&lt;0.001. ns, not significant.</p></figcaption></figure><p>In conjunction with the ATP upregulation, the PCr levels increased in the creatine-treated neutrophils (<a href="#fig_003" class="usa-link">Fig. 3B</a>). In addition, CK activities were also significantly upregulated in the creatine-treated neutrophils compared with the controls (<a href="#fig_003" class="usa-link">Fig. 3C</a>).</p> <p><em>In vivo</em> creatine administration resulted in a significant increase in cellular ATP level in peripheral blood neutrophils compared with saline administration in the mice (<a href="#fig_003" class="usa-link">Fig. 3D, 3E</a>).</p> <p>Treatment with oligomycin A, an inhibitor of complex V in mitochondrial electron transport chain (ETC), did not suppress the creatine-mediated ATP increase in neutrophils (<a href="#fig_003" class="usa-link">Fig. 3F</a>) [<a href="#r42" class="usa-link" aria-describedby="r42">42</a>]. This showed that this creatine-mediated ATP increase occurred via a pathway independent from ETC in mitochondria. Creatine is generally taken up by the creatine transporter, which is expressed on the cellular membrane [<a href="#r43" class="usa-link" aria-describedby="r43">43</a>]. Creatine treatment increased CrT mRNA expression in neutrophils (<a href="#fig_003" class="usa-link">Fig. 3G</a>). In addition, we confirmed creatine-mediated CrT protein upregulation in neutrophils by western blotting (WB; <a href="#fig_003" class="usa-link">Fig. 3H</a>). The expression intensity of CrT was significantly upregulated in neutrophils by creatine treatment compared with the vehicle control (<a href="#fig_003" class="usa-link">Fig. 3I</a>).</p> <p>β-guanidinopropionic acid is a creatine mimetic substance which competitively inhibits creatine uptake by inhibiting the CrT on cells [<a href="#r44" class="usa-link" aria-describedby="r44">44</a>,<a href="#r45" class="usa-link" aria-describedby="r45">45</a>,<a href="#r46" class="usa-link" aria-describedby="r46">46</a>]. When neutrophils were treated with creatine in the presence of β-GPA, the cellular ATP concentration did not increase, and it was similar to that of the vehicle control (<a href="#fig_003" class="usa-link">Fig. 3J</a>). Interestingly, oral administration of β-GPA attenuated the creatine-mediated protective effect against bacterial sepsis in the mice. At 24 hr of K-12 challenge, 40% of the mice administered both creatine and β-GPA were dead, which was higher than the rate for the mice administered creatine only (<a href="#fig_003" class="usa-link">Fig. 3K</a>). Furthermore, the concentrations of serum IL-6 and TNF-α were both significantly higher in β-GPA-treated mice compared with those of the control mice (<a href="#fig_003" class="usa-link">Fig. 3L, 3M</a>). In addition, β-GPA-treated mice showed significantly larger bacterial CFUs in the spleen and liver compared with the control mice (<a href="#fig_003" class="usa-link">Fig. 3N, 3O</a>). The β-GPA treatment also downregulated the NETosis activity of neutrophils in the blood stream (<a href="#fig_003" class="usa-link">Fig. 3P</a>). Finally, we found a correlation between the cellular ATP levels in neutrophils and survival times (hours post-challenge with K-12) of the mice with bacterial sepsis. The mice with high ATP levels, which were mostly administered creatine but not treated with β-GPA, showed extended survival times compared with the mice without creatine administration or with administration of both creatine and β-GPA (<a href="#fig_003" class="usa-link">Fig. 3Q</a>).</p> <p>Taken together, creatine supplementation increased the intracellular ATP level by driving the phosphocreatine system in neutrophils, and this was based on the uptake of extracellular creatine via CrT. In addition, the ATP increase was one of the major mechanisms in the functional modification of neutrophils that provided an environment resistant to bacterial sepsis.</p></section></section><section id="s4"><h2 class="pmc_sec_title">DISCUSSION</h2> <p>In the present study, creatine supplementation effectively promoted the immunological activity of neutrophils by increasing ATP synthesis. Functional modification of neutrophils is generally a difficult approach, because neutrophils are biologically fragile and sensitive to the external environment. Hence, the finding of an effective approach to enhance neutrophil function is valuable from both the biological and immunological perspectives. In fact, we previously tried to enhance the activity of neutrophils with several nutrients and food-derived factors; however, all of our attempts to date have failed, except creatine. Eventually, we confirmed that creatine supplementation enhanced the antibacterial activity of neutrophils in both <em>in vitro</em> and <em>in vivo</em> environments (<a href="#fig_001" class="usa-link">Fig. 1D–1J</a> and <a href="#fig_002" class="usa-link">Fig. 2B–2E</a>). This phenomenon contributed to a reduction in the mortality late of bacterial sepsis in the mouse model (<a href="#fig_002" class="usa-link">Fig. 2G</a>). To the best of our knowledge, this is the first report of creatine-mediated functional modification in neutrophils.</p> <p>We found that this creatine-induced functional upregulation is based on intracellular ATP increase in the neutrophils (<a href="#fig_003" class="usa-link">Fig. 3A, 3D and 3E</a>). In this biological mechanism, the phosphocreatine system might have primarily been involved in cytosolic ATP synthesis, as both the PCr level and CK activity were upregulated in the creatine-treated neutrophils (<a href="#fig_003" class="usa-link">Fig. 3B, 3C</a>). This is one of the possible mechanisms by which rapid ATP production was induced in the creatine-exposed neutrophils. This creatine-mediated ATP increase was observed in the neutrophils within 6 hr of creatine treatment (<a href="#fig_003" class="usa-link">Fig. 3A</a>). It was a relatively fast response, and this suggests that creatine was utilized for rapid ATP production in neutrophils by driving the phosphocreatine system in the cytosol. We also confirmed that the creatine-mediated ATP increase was an independent response from mitochondrial phosphorylation-based ATP production by treating neutrophils with oligomycin A, which selectively inhibits complex V in the ETC (<a href="#fig_003" class="usa-link">Fig. 3F</a>) [<a href="#r42" class="usa-link" aria-describedby="r42">42</a>]. A previous report showed that ATP supplementation enhanced the immunological activities of neutrophils [<a href="#r47" class="usa-link" aria-describedby="r47">47</a>, <a href="#r48" class="usa-link" aria-describedby="r48">48</a>]. Neutrophils require ATP for their inflammatory responses, and previous studies reported that ATP treatment directly enhanced the activities of neutrophils, which were characterized by promoted cytokine production and chemotaxis [<a href="#r47" class="usa-link" aria-describedby="r47">47</a>, <a href="#r48" class="usa-link" aria-describedby="r48">48</a>]. This evidence supports our findings. There were also interesting findings indicating that creatine administration promoted the potential activity and intracellular ATP level of neutrophils in the mice (<a href="#fig_002" class="usa-link">Fig. 2B–2E</a> and <a href="#fig_003" class="usa-link">Fig. 3D, 3E</a>). The neutrophils isolated from the creatine-supplemented mice showed significantly promoted immunological activities compared with the control mice, even at the basal level (<a href="#fig_002" class="usa-link">Fig. 2B–2E</a>). This means that creatine supplementation has sufficient potential to also modify our innate immunity. Previous reports indicated that the phosphocreatine system has a pathway via mitochondria and that mitochondrial CK has a role in this biosynthesis [<a href="#r49" class="usa-link" aria-describedby="r49">49</a>, <a href="#r50" class="usa-link" aria-describedby="r50">50</a>]. This means that creatine might be utilized for ATP production via mitochondrial CK in neutrophils. We did not investigate this in the present study; however, we intend to perform another experiment to investigate it in the near future.</p> <p>We found that CrT expression was upregulated in creatine-treated neutrophils at both the mRNA and protein levels (<a href="#fig_003" class="usa-link">Fig. 3G–3I</a>). The ATP increase in creatine-treated neutrophils was based on extracellular creatine uptake, which was proven by an experiment in which creatine transport was blocked with β-GPA. There was clear suppression of the increase in intracellular ATP in the neutrophils (<a href="#fig_003" class="usa-link">Fig. 3J</a>). We did not investigate the exact biological mechanism of CrT upregulation in creatine-treated neutrophils; however, we suspected that it was positive feedback to effectively utilize extracellular creatine depending on the circumstances. Since immune cells have no dynamic abilities to synthesize creatine, we hypothesize that neutrophils must sense the creatine abundance and promote uptake into the cytosol for maximum utilization of it. This is an interesting biological response of neutrophils in creatine utilization; therefore, we will work to describe this mechanism in detail.</p> <p>Finally, we found that the inhibition of creatine uptake impaired the creatine-derived extension of survival time in bacterial sepsis mice (<a href="#fig_003" class="usa-link">Fig. 3K</a>). In addition, there was a strong correlation between the cellular ATP level in neutrophils and survival times of bacterial sepsis mice (<a href="#fig_003" class="usa-link">Fig. 3L</a>). These two findings were strong proof that the antibacterial response of neutrophils was enhanced by the uptake of creatine, which subsequently promoted ATP synthesis in the neutrophils. This finding is based on experiments in mice; however, we believe that this positive effect of creatine is conserved in the human immune system.</p> <p>In this report, we introduced a positive aspect of creatine uptake in innate immunity; however, we must also consider the negative side effects on the immune response. A previous report indicated that creatine promoted the inflammatory response in the respiratory tract accompanied by increases in T helper 2-type cytokines and granulocyte accumulation in the inflamed region in a murine experimental asthma model [<a href="#r51" class="usa-link" aria-describedby="r51">51</a>]. Since some types of inflammatory diseases are also connected to overactivation of neutrophils, unsuitable creatine supplementation might have a potential risk of aggravating the inflammation [<a href="#r52" class="usa-link" aria-describedby="r52">52</a>, <a href="#r53" class="usa-link" aria-describedby="r53">53</a>]. Similar to the characters of other nutrients, creatine supplementation must take into consideration the circumstances and background of the individual.</p> <p>Creatine is easily supplemented orally in humans as a powder-based supplement. Therefore, it can be used for self-maintenance of the immune system on a daily basis. Our findings are still insufficient evidence for the use of creatine in a clinical setting; however, future studies have the potential to uncover further evidence indicating that creatine is highly effective for the treatment of several infectious diseases.</p></section><section id="s5"><h2 class="pmc_sec_title">AUTHOR CONTRIBUTIONS</h2> <p>Conceptualization, S.S., D.Y.C., and A.O.; methodology, S.S.; experiments, S.S., D.Y.C., A.O., and Z.P.; data analysis, S.S., D.Y.C., A.O., X.L., and Z.P.; resources, S.S. and A.O.; discussion, S.S., D.Y.C., A.O., X.L., Z.P., N.M.T., and M.K.; writing manuscript, S.S., X.L., and M.K.; supervision, S.S.; project administration, S.S. and A.O.; funding acquisition, S.S. and A.O. All authors have read and agreed to the published version of the manuscript.</p></section><section id="s6"><h2 class="pmc_sec_title">CONFLICTS OF INTEREST</h2> <p>The authors declare no conflict of interest.</p></section><section id="sec24"><h2 class="pmc_sec_title">Supplementary Material</h2> <section class="sm xbox font-sm" id="pdf_001"><div class="caption p"><span>Supplement Files</span></div> <div class="media p" id="d64e787"><div class="caption"> <a href="/articles/instance/9533032/bin/bmfh-41-185-s001.pdf" data-ga-action="click_feat_suppl" class="usa-link">bmfh-41-185-s001.pdf</a><sup> (401.2KB, pdf) </sup> </div></div></section></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Acknowledgments</h2> <p>This research was funded by the Japan Society for the Promotion of Science (Grant number 16H06814 to S.S., 21K15958 to S.S., and 21K20573 to A.O.), Mishima-Kaiun Memorial Fund (to S.S.), and private funds provided by the Shounai Midori Group (to S.S.).</p></section><section id="ref-list1" class="ref-list"><h2 class="pmc_sec_title">REFERENCES</h2> <section id="ref-list1_sec2"><ul class="ref-list font-sm" style="list-style-type:none"> <li id="r1"> <span class="label">1.</span><cite>Kazak L, Cohen P. 2020. Creatine metabolism: energy homeostasis, immunity and cancer biology. Nat Rev Endocrinol 16: 421–436. </cite> [<a href="https://doi.org/10.1038/s41574-020-0365-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32493980/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Endocrinol&amp;title=Creatine%20metabolism:%20energy%20homeostasis,%20immunity%20and%20cancer%20biology&amp;volume=16&amp;publication_year=2020&amp;pages=421-436&amp;pmid=32493980&amp;doi=10.1038/s41574-020-0365-5&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r2"> <span class="label">2.</span><cite>Braissant O, Henry H. 2008. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. J Inherit Metab Dis 31: 230–239. </cite> [<a href="https://doi.org/10.1007/s10545-008-0826-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18392746/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Inherit%20Metab%20Dis&amp;title=AGAT,%20GAMT%20and%20SLC6A8%20distribution%20in%20the%20central%20nervous%20system,%20in%20relation%20to%20creatine%20deficiency%20syndromes:%20a%20review&amp;volume=31&amp;publication_year=2008&amp;pages=230-239&amp;pmid=18392746&amp;doi=10.1007/s10545-008-0826-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r3"> <span class="label">3.</span><cite>Barsunova K, Vendelin M, Birkedal R. 2020. Marker enzyme activities in hindleg from creatine-deficient AGAT and GAMT KO mice—differences between models, muscles, and sexes. Sci Rep 10: 7956. </cite> [<a href="https://doi.org/10.1038/s41598-020-64740-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7224371/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32409787/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Rep&amp;title=Marker%20enzyme%20activities%20in%20hindleg%20from%20creatine-deficient%20AGAT%20and%20GAMT%20KO%20mice%E2%80%94differences%20between%20models,%20muscles,%20and%20sexes&amp;volume=10&amp;publication_year=2020&amp;pages=7956&amp;pmid=32409787&amp;doi=10.1038/s41598-020-64740-8&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r4"> <span class="label">4.</span><cite>Roschel H, Gualano B, Ostojic SM, Rawson ES. 2021. Creatine supplementation and brain health. Nutrients 13: 586. </cite> [<a href="https://doi.org/10.3390/nu13020586" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7916590/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33578876/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Creatine%20supplementation%20and%20brain%20health&amp;volume=13&amp;publication_year=2021&amp;pages=586&amp;pmid=33578876&amp;doi=10.3390/nu13020586&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r5"> <span class="label">5.</span><cite>Kreider RB, Stout JR. 2021. Creatine in health and disease. Nutrients 13: 447. </cite> [<a href="https://doi.org/10.3390/nu13020447" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7910963/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33572884/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Creatine%20in%20health%20and%20disease&amp;volume=13&amp;publication_year=2021&amp;pages=447&amp;pmid=33572884&amp;doi=10.3390/nu13020447&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r6"> <span class="label">6.</span><cite>Joncquel-Chevalier Curt M, Voicu PM, Fontaine M, Dessein AF, Porchet N, Mention-Mulliez K, Dobbelaere D, Soto-Ares G, Cheillan D, Vamecq J. 2015. Creatine biosynthesis and transport in health and disease. Biochimie 119: 146–165. </cite> [<a href="https://doi.org/10.1016/j.biochi.2015.10.022" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26542286/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochimie&amp;title=Creatine%20biosynthesis%20and%20transport%20in%20health%20and%20disease&amp;volume=119&amp;publication_year=2015&amp;pages=146-165&amp;pmid=26542286&amp;doi=10.1016/j.biochi.2015.10.022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r7"> <span class="label">7.</span><cite>Ostojic SM. 2019. Benefits and drawbacks of guanidinoacetic acid as a possible treatment to replenish cerebral creatine in AGAT deficiency. Nutr Neurosci 22: 302–305. </cite> [<a href="https://doi.org/10.1080/1028415X.2017.1385176" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28971744/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutr%20Neurosci&amp;title=Benefits%20and%20drawbacks%20of%20guanidinoacetic%20acid%20as%20a%20possible%20treatment%20to%20replenish%20cerebral%20creatine%20in%20AGAT%20deficiency&amp;volume=22&amp;publication_year=2019&amp;pages=302-305&amp;pmid=28971744&amp;doi=10.1080/1028415X.2017.1385176&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r8"> <span class="label">8.</span><cite>Mercimek-Mahmutoglu S, Stoeckler-Ipsiroglu S, Adami A, Appleton R, Araújo HC, Duran M, Ensenauer R, Fernandez-Alvarez E, Garcia P, Grolik C, Item CB, Leuzzi V, Marquardt I, Mühl A, Saelke-Kellermann RA, Salomons GS, Schulze A, Surtees R, van der Knaap MS, Vasconcelos R, Verhoeven NM, Vilarinho L, Wilichowski E, Jakobs C. 2006. GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 67: 480–484. </cite> [<a href="https://doi.org/10.1212/01.wnl.0000234852.43688.bf" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16855203/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neurology&amp;title=GAMT%20deficiency:%20features,%20treatment,%20and%20outcome%20in%20an%20inborn%20error%20of%20creatine%20synthesis&amp;volume=67&amp;publication_year=2006&amp;pages=480-484&amp;pmid=16855203&amp;doi=10.1212/01.wnl.0000234852.43688.bf&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r9"> <span class="label">9.</span><cite>Skelton MR, Schaefer TL, Graham DL, Degrauw TJ, Clark JF, Williams MT, Vorhees CV. 2011. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS One 6: e16187. </cite> [<a href="https://doi.org/10.1371/journal.pone.0016187" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3020968/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21249153/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20One&amp;title=Creatine%20transporter%20(CrT;%20Slc6a8)%20knockout%20mice%20as%20a%20model%20of%20human%20CrT%20deficiency&amp;volume=6&amp;publication_year=2011&amp;pages=e16187&amp;pmid=21249153&amp;doi=10.1371/journal.pone.0016187&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r10"> <span class="label">10.</span><cite>Braissant O, Henry H, Béard E, Uldry J. 2011. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40: 1315–1324. </cite> [<a href="https://doi.org/10.1007/s00726-011-0852-z" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21390529/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Amino%20Acids&amp;title=Creatine%20deficiency%20syndromes%20and%20the%20importance%20of%20creatine%20synthesis%20in%20the%20brain&amp;volume=40&amp;publication_year=2011&amp;pages=1315-1324&amp;pmid=21390529&amp;doi=10.1007/s00726-011-0852-z&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r11"> <span class="label">11.</span><cite>Adriano E, Gulino M, Arkel M, Salis A, Damonte G, Liessi N, Millo E, Garbati P, Balestrino M. 2018. Di-acetyl creatine ethyl ester, a new creatine derivative for the possible treatment of creatine transporter deficiency. Neurosci Lett 665: 217–223. </cite> [<a href="https://doi.org/10.1016/j.neulet.2017.12.020" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29229397/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neurosci%20Lett&amp;title=Di-acetyl%20creatine%20ethyl%20ester,%20a%20new%20creatine%20derivative%20for%20the%20possible%20treatment%20of%20creatine%20transporter%20deficiency&amp;volume=665&amp;publication_year=2018&amp;pages=217-223&amp;pmid=29229397&amp;doi=10.1016/j.neulet.2017.12.020&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r12"> <span class="label">12.</span><cite>Adhihetty PJ, Beal MF. 2008. Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromolecular Med 10: 275–290. </cite> [<a href="https://doi.org/10.1007/s12017-008-8053-y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2886719/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19005780/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuromolecular%20Med&amp;title=Creatine%20and%20its%20potential%20therapeutic%20value%20for%20targeting%20cellular%20energy%20impairment%20in%20neurodegenerative%20diseases&amp;volume=10&amp;publication_year=2008&amp;pages=275-290&amp;pmid=19005780&amp;doi=10.1007/s12017-008-8053-y&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r13"> <span class="label">13.</span><cite>Sahlin K, Harris RC. 2011. The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 40: 1363–1367. </cite> [<a href="https://doi.org/10.1007/s00726-011-0856-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21394603/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Amino%20Acids&amp;title=The%20creatine%20kinase%20reaction:%20a%20simple%20reaction%20with%20functional%20complexity&amp;volume=40&amp;publication_year=2011&amp;pages=1363-1367&amp;pmid=21394603&amp;doi=10.1007/s00726-011-0856-8&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r14"> <span class="label">14.</span><cite>Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. 2021. Metabolic basis of creatine in health and disease: a bioinformatics-assisted review. Nutrients 13: 1238. </cite> [<a href="https://doi.org/10.3390/nu13041238" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8070484/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33918657/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Metabolic%20basis%20of%20creatine%20in%20health%20and%20disease:%20a%20bioinformatics-assisted%20review&amp;volume=13&amp;publication_year=2021&amp;pages=1238&amp;pmid=33918657&amp;doi=10.3390/nu13041238&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r15"> <span class="label">15.</span><cite>Papalazarou V, Zhang T, Paul NR, Juin A, Cantini M, Maddocks ODK, Salmeron-Sanchez M, Machesky LM. 2020. The creatine-phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nat Metab 2: 62–80. </cite> [<a href="https://doi.org/10.1038/s42255-019-0159-z" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32694686/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Metab&amp;title=The%20creatine-phosphagen%20system%20is%20mechanoresponsive%20in%20pancreatic%20adenocarcinoma%20and%20fuels%20invasion%20and%20metastasis&amp;volume=2&amp;publication_year=2020&amp;pages=62-80&amp;pmid=32694686&amp;doi=10.1038/s42255-019-0159-z&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r16"> <span class="label">16.</span><cite>Mehta MM, Weinberg SE, Chandel NS. 2017. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol 17: 608–620. </cite> [<a href="https://doi.org/10.1038/nri.2017.66" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28669986/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Immunol&amp;title=Mitochondrial%20control%20of%20immunity:%20beyond%20ATP&amp;volume=17&amp;publication_year=2017&amp;pages=608-620&amp;pmid=28669986&amp;doi=10.1038/nri.2017.66&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r17"> <span class="label">17.</span><cite>Wallimann T, Tokarska-Schlattner M, Schlattner U. 2011. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40: 1271–1296. </cite> [<a href="https://doi.org/10.1007/s00726-011-0877-3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3080659/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21448658/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Amino%20Acids&amp;title=The%20creatine%20kinase%20system%20and%20pleiotropic%20effects%20of%20creatine&amp;volume=40&amp;publication_year=2011&amp;pages=1271-1296&amp;pmid=21448658&amp;doi=10.1007/s00726-011-0877-3&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r18"> <span class="label">18.</span><cite>Adriano E, Salis A, Damonte G, Millo E, Balestrino M. 2022. Effects of delivering guanidinoacetic acid or its prodrug to the neural tissue: possible relevance for creatine transporter deficiency. Brain Sci 12: 85. </cite> [<a href="https://doi.org/10.3390/brainsci12010085" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8773658/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35053827/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Sci&amp;title=Effects%20of%20delivering%20guanidinoacetic%20acid%20or%20its%20prodrug%20to%20the%20neural%20tissue:%20possible%20relevance%20for%20creatine%20transporter%20deficiency&amp;volume=12&amp;publication_year=2022&amp;pages=85&amp;pmid=35053827&amp;doi=10.3390/brainsci12010085&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r19"> <span class="label">19.</span><cite>Di Biase S, Ma X, Wang X, Yu J, Wang YC, Smith DJ, Zhou Y, Li Z, Kim YJ, Clarke N, To A, Yang L. 2019. Creatine uptake regulates CD8 T cell antitumor immunity. J Exp Med 216: 2869–2882. </cite> [<a href="https://doi.org/10.1084/jem.20182044" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6888972/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31628186/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Med&amp;title=Creatine%20uptake%20regulates%20CD8%20T%20cell%20antitumor%20immunity&amp;volume=216&amp;publication_year=2019&amp;pages=2869-2882&amp;pmid=31628186&amp;doi=10.1084/jem.20182044&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r20"> <span class="label">20.</span><cite>Liu CH, Liu H, Ge B. 2017. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 14: 963–975. </cite> [<a href="https://doi.org/10.1038/cmi.2017.88" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5719146/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28890547/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Mol%20Immunol&amp;title=Innate%20immunity%20in%20tuberculosis:%20host%20defense%20vs%20pathogen%20evasion&amp;volume=14&amp;publication_year=2017&amp;pages=963-975&amp;pmid=28890547&amp;doi=10.1038/cmi.2017.88&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r21"> <span class="label">21.</span><cite>Castanheira FVS, Kubes P. 2019. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133: 2178–2185. </cite> [<a href="https://doi.org/10.1182/blood-2018-11-844530" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30898862/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Blood&amp;title=Neutrophils%20and%20NETs%20in%20modulating%20acute%20and%20chronic%20inflammation&amp;volume=133&amp;publication_year=2019&amp;pages=2178-2185&amp;pmid=30898862&amp;doi=10.1182/blood-2018-11-844530&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r22"> <span class="label">22.</span><cite>Khan Z, Shen XZ, Bernstein EA, Giani JF, Eriguchi M, Zhao TV, Gonzalez-Villalobos RA, Fuchs S, Liu GY, Bernstein KE. 2017. Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood 130: 328–339. </cite> [<a href="https://doi.org/10.1182/blood-2016-11-752006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5520468/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28515091/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Blood&amp;title=Angiotensin-converting%20enzyme%20enhances%20the%20oxidative%20response%20and%20bactericidal%20activity%20of%20neutrophils&amp;volume=130&amp;publication_year=2017&amp;pages=328-339&amp;pmid=28515091&amp;doi=10.1182/blood-2016-11-752006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r23"> <span class="label">23.</span><cite>Cao DY, Giani JF, Veiras LC, Bernstein EA, Okwan-Duodu D, Ahmed F, Bresee C, Tourtellotte WG, Karumanchi SA, Bernstein KE, Khan Z. 2021. An ACE inhibitor reduces bactericidal activity of human neutrophils in vitro and impairs mouse neutrophil activity in vivo. Sci Transl Med 13: eabj2138. </cite> [<a href="https://doi.org/10.1126/scitranslmed.abj2138" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10370421/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34321319/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Transl%20Med&amp;title=An%20ACE%20inhibitor%20reduces%20bactericidal%20activity%20of%20human%20neutrophils%20in%20vitro%20and%20impairs%20mouse%20neutrophil%20activity%20in%20vivo&amp;volume=13&amp;publication_year=2021&amp;pages=eabj2138&amp;pmid=34321319&amp;doi=10.1126/scitranslmed.abj2138&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r24"> <span class="label">24.</span><cite>Sadiku P, Willson JA, Ryan EM, Sammut D, Coelho P, Watts ER, Grecian R, Young JM, Bewley M, Arienti S, Mirchandani AS, Sanchez Garcia MA, Morrison T, Zhang A, Reyes L, Griessler T, Jheeta P, Paterson GG, Graham CJ, Thomson JP, Baillie K, Thompson AAR, Morgan JM, Acosta-Sanchez A, Dardé VM, Duran J, Guinovart JJ, Rodriguez-Blanco G, Von Kriegsheim A, Meehan RR, Mazzone M, Dockrell DH, Ghesquiere B, Carmeliet P, Whyte MKB, Walmsley SR. 2021. Neutrophils fuel effective immune responses throughgluconeogenesis and glycogenesis. Cell Metab 33: 411–423.e4. </cite> [<a href="https://doi.org/10.1016/j.cmet.2020.11.016" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7863914/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33306983/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Metab&amp;title=Neutrophils%20fuel%20effective%20immune%20responses%20throughgluconeogenesis%20and%20glycogenesis&amp;volume=33&amp;publication_year=2021&amp;pages=411-423.e4&amp;pmid=33306983&amp;doi=10.1016/j.cmet.2020.11.016&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r25"> <span class="label">25.</span><cite>Ohms M, Ferreira C, Busch H, Wohlers I, Guerra de Souza AC, Silvestre R, Laskay T. 2021. Enhanced glycolysis is required for antileishmanial functions of neutrophils upon infection with <em>Leishmania donovani</em>. Front Immunol 12: 632512. </cite> [<a href="https://doi.org/10.3389/fimmu.2021.632512" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8017142/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33815385/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Immunol&amp;title=Enhanced%20glycolysis%20is%20required%20for%20antileishmanial%20functions%20of%20neutrophils%20upon%20infection%20with%20Leishmania%20donovani&amp;volume=12&amp;publication_year=2021&amp;pages=632512&amp;pmid=33815385&amp;doi=10.3389/fimmu.2021.632512&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r26"> <span class="label">26.</span><cite>Magrì A, Germano G, Lorenzato A, Lamba S, Chilà R, Montone M, Amodio V, Ceruti T, Sassi F, Arena S, Abrignani S, D’Incalci M, Zucchetti M, Di Nicolantonio F, Bardelli A. 2020. High-dose vitamin C enhances cancer immunotherapy. Sci Transl Med 12: eaay8707. </cite> [<a href="https://doi.org/10.1126/scitranslmed.aay8707" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32102933/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Transl%20Med&amp;title=High-dose%20vitamin%20C%20enhances%20cancer%20immunotherapy&amp;volume=12&amp;publication_year=2020&amp;pages=eaay8707&amp;pmid=32102933&amp;doi=10.1126/scitranslmed.aay8707&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r27"> <span class="label">27.</span><cite>Barragan M, Good M, Kolls JK. 2015. Regulation of dendritic cell function by vitamin D. Nutrients 7: 8127–8151. </cite> [<a href="https://doi.org/10.3390/nu7095383" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4586578/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26402698/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Regulation%20of%20dendritic%20cell%20function%20by%20vitamin%20D&amp;volume=7&amp;publication_year=2015&amp;pages=8127-8151&amp;pmid=26402698&amp;doi=10.3390/nu7095383&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r28"> <span class="label">28.</span><cite>Saito S, Cao DY, Victor AR, Peng Z, Wu HY, Okwan-Duodu D. 2021. RASAL3 is a putative RasGAP modulating inflammatory response by neutrophils. Front Immunol 12: 744300. </cite> [<a href="https://doi.org/10.3389/fimmu.2021.744300" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8579101/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34777356/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Immunol&amp;title=RASAL3%20is%20a%20putative%20RasGAP%20modulating%20inflammatory%20response%20by%20neutrophils&amp;volume=12&amp;publication_year=2021&amp;pages=744300&amp;pmid=34777356&amp;doi=10.3389/fimmu.2021.744300&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r29"> <span class="label">29.</span><cite>Zharkova O, Tay SH, Lee HY, Shubhita T, Ong WY, Lateef A, MacAry PA, Lim LHK, Connolly JE, Fairhurst AM. 2019. A flow cytometry-based assay for high-throughput detection and quantification of neutrophil extracellular traps in mixed cell populations. Cytometry A 95: 268–278. </cite> [<a href="https://doi.org/10.1002/cyto.a.23672" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6590256/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30549398/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cytometry%20A&amp;title=A%20flow%20cytometry-based%20assay%20for%20high-throughput%20detection%20and%20quantification%20of%20neutrophil%20extracellular%20traps%20in%20mixed%20cell%20populations&amp;volume=95&amp;publication_year=2019&amp;pages=268-278&amp;pmid=30549398&amp;doi=10.1002/cyto.a.23672&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r30"> <span class="label">30.</span><cite>Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13: 159–175. </cite> [<a href="https://doi.org/10.1038/nri3399" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23435331/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Immunol&amp;title=Neutrophil%20recruitment%20and%20function%20in%20health%20and%20inflammation&amp;volume=13&amp;publication_year=2013&amp;pages=159-175&amp;pmid=23435331&amp;doi=10.1038/nri3399&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r31"> <span class="label">31.</span><cite>Peng Z, Cao DY, Wu HY, Saito S. 2020. Immunization with a bacterial lipoprotein establishes an immuno-protective response with upregulation of effector CD4+ T cells and neutrophils against methicillin-resistant <em>Staphylococcus aureus</em> infection. Pathogens 9: 138. </cite> [<a href="https://doi.org/10.3390/pathogens9020138" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7169464/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32093163/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Pathogens&amp;title=Immunization%20with%20a%20bacterial%20lipoprotein%20establishes%20an%20immuno-protective%20response%20with%20upregulation%20of%20effector%20CD4+%20T%20cells%20and%20neutrophils%20against%20methicillin-resistant%20Staphylococcus%20aureus%20infection&amp;volume=9&amp;publication_year=2020&amp;pages=138&amp;pmid=32093163&amp;doi=10.3390/pathogens9020138&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r32"> <span class="label">32.</span><cite>Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. 2021. The neutrophil. Immunity 54: 1377–1391. </cite> [<a href="https://doi.org/10.1016/j.immuni.2021.06.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34260886/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=The%20neutrophil&amp;volume=54&amp;publication_year=2021&amp;pages=1377-1391&amp;pmid=34260886&amp;doi=10.1016/j.immuni.2021.06.006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r33"> <span class="label">33.</span><cite>Carestia A, Mena HA, Olexen CM, Ortiz Wilczyñski JM, Negrotto S, Errasti AE, Gómez RM, Jenne CN, Carrera Silva EA, Schattner M. 2019. Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice. Cell Rep 28: 896–908.e5. </cite> [<a href="https://doi.org/10.1016/j.celrep.2019.06.062" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31340152/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Rep&amp;title=Platelets%20promote%20macrophage%20polarization%20toward%20pro-inflammatory%20phenotype%20and%20increase%20survival%20of%20septic%20mice&amp;volume=28&amp;publication_year=2019&amp;pages=896-908.e5&amp;pmid=31340152&amp;doi=10.1016/j.celrep.2019.06.062&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r34"> <span class="label">34.</span><cite>Sutherland RE, Olsen JS, McKinstry A, Villalta SA, Wolters PJ. 2008. Mast cell IL-6 improves survival from <em>Klebsiella</em> pneumonia and sepsis by enhancing neutrophil killing. J Immunol 181: 5598–5605. </cite> [<a href="https://doi.org/10.4049/jimmunol.181.8.5598" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2610024/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18832718/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&amp;title=Mast%20cell%20IL-6%20improves%20survival%20from%20Klebsiella%20pneumonia%20and%20sepsis%20by%20enhancing%20neutrophil%20killing&amp;volume=181&amp;publication_year=2008&amp;pages=5598-5605&amp;pmid=18832718&amp;doi=10.4049/jimmunol.181.8.5598&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r35"> <span class="label">35.</span><cite>Kumar V. 2020. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 89Pt B: 107087. </cite> [<a href="https://doi.org/10.1016/j.intimp.2020.107087" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7550173/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33075714/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20Immunopharmacol&amp;title=Toll-like%20receptors%20in%20sepsis-associated%20cytokine%20storm%20and%20their%20endogenous%20negative%20regulators%20as%20future%20immunomodulatory%20targets&amp;volume=89&amp;issue=Pt%20B&amp;publication_year=2020&amp;pages=107087&amp;pmid=33075714&amp;doi=10.1016/j.intimp.2020.107087&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r36"> <span class="label">36.</span><cite>Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman AA. 2017. ATP as a biological hydrotrope. Science 356: 753–756. </cite> [<a href="https://doi.org/10.1126/science.aaf6846" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28522535/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Science&amp;title=ATP%20as%20a%20biological%20hydrotrope&amp;volume=356&amp;publication_year=2017&amp;pages=753-756&amp;pmid=28522535&amp;doi=10.1126/science.aaf6846&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r37"> <span class="label">37.</span><cite>Ring S, Enk AH, Mahnke K. 2010. ATP activates regulatory T cells in vivo during contact hypersensitivity reactions. J Immunol 184: 3408–3416. </cite> [<a href="https://doi.org/10.4049/jimmunol.0901751" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20208014/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol&amp;title=ATP%20activates%20regulatory%20T%20cells%20in%20vivo%20during%20contact%20hypersensitivity%20reactions&amp;volume=184&amp;publication_year=2010&amp;pages=3408-3416&amp;pmid=20208014&amp;doi=10.4049/jimmunol.0901751&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r38"> <span class="label">38.</span><cite>Zumerle S, Calì B, Munari F, Angioni R, Di Virgilio F, Molon B, Viola A. 2019. Intercellular calcium signaling induced by ATP potentiates macrophage phagocytosis. Cell Rep 27: 1–10.e4. </cite> [<a href="https://doi.org/10.1016/j.celrep.2019.03.011" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6449513/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30943393/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Rep&amp;title=Intercellular%20calcium%20signaling%20induced%20by%20ATP%20potentiates%20macrophage%20phagocytosis&amp;volume=27&amp;publication_year=2019&amp;pages=1-10.e4&amp;pmid=30943393&amp;doi=10.1016/j.celrep.2019.03.011&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r39"> <span class="label">39.</span><cite>Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG. 2009. Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 23: 1685–1693. </cite> [<a href="https://doi.org/10.1096/fj.08-126458" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2718802/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19211924/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=FASEB%20J&amp;title=Autocrine%20regulation%20of%20T-cell%20activation%20by%20ATP%20release%20and%20P2X7%20receptors&amp;volume=23&amp;publication_year=2009&amp;pages=1685-1693&amp;pmid=19211924&amp;doi=10.1096/fj.08-126458&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r40"> <span class="label">40.</span><cite>García-Aguilar A, Cuezva JM. 2018. A review of the inhibition of the mitochondrial ATP synthase by IF1 <em>in vivo</em>: reprogramming energy metabolism and inducing mitohormesis. Front Physiol 9: 1322. </cite> [<a href="https://doi.org/10.3389/fphys.2018.01322" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6156145/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30283362/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Physiol&amp;title=A%20review%20of%20the%20inhibition%20of%20the%20mitochondrial%20ATP%20synthase%20by%20IF1%20in%20vivo:%20reprogramming%20energy%20metabolism%20and%20inducing%20mitohormesis&amp;volume=9&amp;publication_year=2018&amp;pages=1322&amp;pmid=30283362&amp;doi=10.3389/fphys.2018.01322&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r41"> <span class="label">41.</span><cite>Zhao TJ, Yan YB, Liu Y, Zhou HM. 2007. The generation of the oxidized form of creatine kinase is a negative regulation on muscle creatine kinase. J Biol Chem 282: 12022–12029. </cite> [<a href="https://doi.org/10.1074/jbc.M610363200" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17303563/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Biol%20Chem&amp;title=The%20generation%20of%20the%20oxidized%20form%20of%20creatine%20kinase%20is%20a%20negative%20regulation%20on%20muscle%20creatine%20kinase&amp;volume=282&amp;publication_year=2007&amp;pages=12022-12029&amp;pmid=17303563&amp;doi=10.1074/jbc.M610363200&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r42"> <span class="label">42.</span><cite>Cao DY, Spivia WR, Veiras LC, Khan Z, Peng Z, Jones AE, Bernstein EA, Saito S, Okwan-Duodu D, Parker SJ, Giani JF, Divakaruni AS, Van Eyk JE, Bernstein KE. 2020. ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. J Biol Chem 295: 1369–1384. </cite> [<a href="https://doi.org/10.1074/jbc.RA119.011244" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6996878/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31871049/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Biol%20Chem&amp;title=ACE%20overexpression%20in%20myeloid%20cells%20increases%20oxidative%20metabolism%20and%20cellular%20ATP&amp;volume=295&amp;publication_year=2020&amp;pages=1369-1384&amp;pmid=31871049&amp;doi=10.1074/jbc.RA119.011244&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r43"> <span class="label">43.</span><cite>Ji L, Zhao X, Zhang B, Kang L, Song W, Zhao B, Xie W, Chen L, Hu X. 2019. Slc6a8-mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses. Immunity 51: 272–284.e7. </cite> [<a href="https://doi.org/10.1016/j.immuni.2019.06.007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31399282/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=Slc6a8-mediated%20creatine%20uptake%20and%20accumulation%20reprogram%20macrophage%20polarization%20via%20regulating%20cytokine%20responses&amp;volume=51&amp;publication_year=2019&amp;pages=272-284.e7&amp;pmid=31399282&amp;doi=10.1016/j.immuni.2019.06.007&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r44"> <span class="label">44.</span><cite>Fitch CD, Shields RP, Payne WF, Dacus JM. 1968. Creatine metabolism in skeletal muscle. 3. Specificity of the creatine entry process. J Biol Chem 243: 2024–2027. </cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/5646492/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Biol%20Chem&amp;title=Creatine%20metabolism%20in%20skeletal%20muscle.%203.%20Specificity%20of%20the%20creatine%20entry%20process&amp;volume=243&amp;publication_year=1968&amp;pages=2024-2027&amp;pmid=5646492&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r45"> <span class="label">45.</span><cite>Fitch CD, Chevli R. 1980. Inhibition of creatine and phosphocreatine accumulation in skeletal muscle and heart. Metabolism 29: 686–690. </cite> [<a href="https://doi.org/10.1016/0026-0495(80)90115-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/7382831/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Metabolism&amp;title=Inhibition%20of%20creatine%20and%20phosphocreatine%20accumulation%20in%20skeletal%20muscle%20and%20heart&amp;volume=29&amp;publication_year=1980&amp;pages=686-690&amp;pmid=7382831&amp;doi=10.1016/0026-0495(80)90115-8&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r46"> <span class="label">46.</span><cite>Kurth I, Yamaguchi N, Andreu-Agullo C, Tian HS, Sridhar S, Takeda S, Gonsalves FC, Loo JM, Barlas A, Manova-Todorova K, Busby R, Bendell JC, Strauss J, Fakih M, McRee AJ, Hendifar AE, Rosen LS, Cercek A, Wasserman R, Szarek M, Spector SL, Raza S, Tavazoie MF, Tavazoie SF. 2021. Therapeutic targeting of SLC6A8 creatine transporter suppresses colon cancer progression and modulates human creatine levels. Sci Adv 7: eabi7511. </cite> [<a href="https://doi.org/10.1126/sciadv.abi7511" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8494442/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34613776/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Adv&amp;title=Therapeutic%20targeting%20of%20SLC6A8%20creatine%20transporter%20suppresses%20colon%20cancer%20progression%20and%20modulates%20human%20creatine%20levels&amp;volume=7&amp;publication_year=2021&amp;pages=eabi7511&amp;pmid=34613776&amp;doi=10.1126/sciadv.abi7511&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r47"> <span class="label">47.</span><cite>Karmakar M, Katsnelson MA, Dubyak GR, Pearlman E. 2016. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat Commun 7: 10555. </cite> [<a href="https://doi.org/10.1038/ncomms10555" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4756306/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26877061/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Commun&amp;title=Neutrophil%20P2X7%20receptors%20mediate%20NLRP3%20inflammasome-dependent%20IL-1%CE%B2%20secretion%20in%20response%20to%20ATP&amp;volume=7&amp;publication_year=2016&amp;pages=10555&amp;pmid=26877061&amp;doi=10.1038/ncomms10555&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r48"> <span class="label">48.</span><cite>Wang X, Chen D. 2018. Purinergic regulation of neutrophil function. Front Immunol 9: 399. </cite> [<a href="https://doi.org/10.3389/fimmu.2018.00399" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5837999/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29545806/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Immunol&amp;title=Purinergic%20regulation%20of%20neutrophil%20function&amp;volume=9&amp;publication_year=2018&amp;pages=399&amp;pmid=29545806&amp;doi=10.3389/fimmu.2018.00399&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r49"> <span class="label">49.</span><cite>Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W. 1996. Structure of mitochondrial creatine kinase. Nature 381: 341–345. </cite> [<a href="https://doi.org/10.1038/381341a0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8692275/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Structure%20of%20mitochondrial%20creatine%20kinase&amp;volume=381&amp;publication_year=1996&amp;pages=341-345&amp;pmid=8692275&amp;doi=10.1038/381341a0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r50"> <span class="label">50.</span><cite>Perry CG, Kane DA, Herbst EA, Mukai K, Lark DS, Wright DC, Heigenhauser GJ, Neufer PD, Spriet LL, Holloway GP. 2012. Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle. J Physiol 590: 5475–5486. </cite> [<a href="https://doi.org/10.1113/jphysiol.2012.234682" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3515832/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22907058/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Physiol&amp;title=Mitochondrial%20creatine%20kinase%20activity%20and%20phosphate%20shuttling%20are%20acutely%20regulated%20by%20exercise%20in%20human%20skeletal%20muscle&amp;volume=590&amp;publication_year=2012&amp;pages=5475-5486&amp;pmid=22907058&amp;doi=10.1113/jphysiol.2012.234682&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r51"> <span class="label">51.</span><cite>Garcia M, Santos-Dias A, Bachi ALL, Oliveira-Junior MC, Andrade-Souza AS, Ferreira SC, Aquino-Junior JCJ, Almeida FM, Rigonato-Oliveira NC, Oliveira APL, Savio LEB, Coutinho-Silva R, Müller T, Idzko M, Siepmann T, Vieira RP. 2019. Creatine supplementation impairs airway inflammation in an experimental model of asthma involving P2 × 7 receptor. Eur J Immunol 49: 928–939. </cite> [<a href="https://doi.org/10.1002/eji.201847657" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30888047/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Immunol&amp;title=Creatine%20supplementation%20impairs%20airway%20inflammation%20in%20an%20experimental%20model%20of%20asthma%20involving%20P2%20%C3%97%207%20receptor&amp;volume=49&amp;publication_year=2019&amp;pages=928-939&amp;pmid=30888047&amp;doi=10.1002/eji.201847657&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r52"> <span class="label">52.</span><cite>Wu X, Pippin J, Lefkowith JB. 1993. Platelets and neutrophils are critical to the enhanced glomerular arachidonate metabolism in acute nephrotoxic nephritis in rats. J Clin Invest 91: 766–773. </cite> [<a href="https://doi.org/10.1172/JCI116295" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC288026/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8450058/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Invest&amp;title=Platelets%20and%20neutrophils%20are%20critical%20to%20the%20enhanced%20glomerular%20arachidonate%20metabolism%20in%20acute%20nephrotoxic%20nephritis%20in%20rats&amp;volume=91&amp;publication_year=1993&amp;pages=766-773&amp;pmid=8450058&amp;doi=10.1172/JCI116295&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="r53"> <span class="label">53.</span><cite>Nishi H, Furuhashi K, Cullere X, Saggu G, Miller MJ, Chen Y, Rosetti F, Hamilton SL, Yang L, Pittman SP, Liao J, Herter JM, Berry JC, DeAngelo DJ, Zhu C, Tsokos GC, Mayadas TN. 2017. Neutrophil FcγRIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J Clin Invest 127: 3810–3826. </cite> [<a href="https://doi.org/10.1172/JCI94039" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5617671/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28891817/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Clin%20Invest&amp;title=Neutrophil%20Fc%CE%B3RIIA%20promotes%20IgG-mediated%20glomerular%20neutrophil%20capture%20via%20Abl/Src%20kinases&amp;volume=127&amp;publication_year=2017&amp;pages=3810-3826&amp;pmid=28891817&amp;doi=10.1172/JCI94039&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ul></section></section><section id="_ad93_" lang="en" class="associated-data"><h2 class="pmc_sec_title">Associated Data</h2> <p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p> <section id="_adsm93_" lang="en" class="supplementary-materials"><h3 class="pmc_sec_title">Supplementary Materials</h3> <section class="sm xbox font-sm" id="db_ds_supplementary-material1_reqid_"><div class="caption p"><span>Supplement Files</span></div> <div class="media p"><div class="caption"> <a href="/articles/instance/9533032/bin/bmfh-41-185-s001.pdf" data-ga-action="click_feat_suppl" class="usa-link">bmfh-41-185-s001.pdf</a><sup> (401.2KB, pdf) </sup> </div></div></section></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Bioscience of Microbiota, Food and Health are provided here courtesy of <strong>IPEC, Inc.</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.12938/bmfh.2022-018" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/bmfh-41-185.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (2.4 MB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/9533032/" data-citation-style="nlm" data-download-format-link="/resources/citations/9533032/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC9533032%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC9533032/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC9533032/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC9533032/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/36258765/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC9533032/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/36258765/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC9533032/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/9533032/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="oQN72dwHEeAYWOgxilTUuLJ9bxKAjWJ27eO3d7J8SOiFsmomtu0t96pT4YHuFk8g"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^&quot;&amp;=&lt;&gt;/]*" title="The following characters are not allowed in the Name field: &quot;&amp;=&lt;&gt;/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10