CINXE.COM

Search results for: quenching medium

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quenching medium</title> <meta name="description" content="Search results for: quenching medium"> <meta name="keywords" content="quenching medium"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quenching medium" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quenching medium"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2959</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quenching medium</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2959</span> Finding the Reaction Constant between Humic Acid and Aluminum Ion by Fluorescence Quenching Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Po%20Cheng">Wen Po Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Zhao%20Feng"> Chen Zhao Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey%20Fang%20Yu"> Ruey Fang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jia%20Jun"> Lin Jia Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Ji%20%20Ye"> Lin Ji Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Yuan%20Wei"> Chen Yuan Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Humic acid was used as the removal target for evaluating the coagulation efficiency in this study. When the coagulant ions mix with a humic acid solution, a Fluorescence quenching effect may be observed conditionally. This effect can be described by Stern-Volmer linear equation which can be used for quantifying the quenching value (Kq) of the Fluorescence quenching effect. In addition, a Complex-Formation Titration (CFT) theory was conducted and the result was used to explain the electron-neutralization capability of the coagulant (AlCl₃) at different pH. The results indicated that when pH of the ACl₃ solution was between 6 and 8, fluorescence quenching effect obviously occurred. The maximum Kq value was found to be 102,524 at pH 6. It means that the higher the Kq value is, the better complex reaction between a humic acid and aluminum salts will be. Through the Kq value study, the optimum pH can be quantified when the humic acid solution is coagulated with aluminum ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title="humic acid">humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20quenching%20effect" title=" fluorescence quenching effect"> fluorescence quenching effect</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20reaction" title=" complex reaction"> complex reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=titration" title=" titration"> titration</a> </p> <a href="https://publications.waset.org/abstracts/92882/finding-the-reaction-constant-between-humic-acid-and-aluminum-ion-by-fluorescence-quenching-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2958</span> Investigation the Effect of Quenching Media on Abrasive Wear in Grade Medium Carbon Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20S.%20Alwan">Abbas S. Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20K.%20Hussan"> Waleed K. Hussan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a general verification of possible heat treatment of steel has been done with the view of conditions of real abrasive wear of rotivater with soil texture. This technique is found promising to improve the quality of agriculture components working with the soil in dry condition. Abrasive wear resistance is very important in many applications and in most cases it is directly correlated with the hardness of materials surface. Responded of heat treatments were carried out in various media (Still air, Cottonseed oil, and Brine water 10 %) and follow by low-temperature tempering (250°C) was applied on steel type (AISI 1030). After heat treatment was applied wear with soil texture by using tillage process to determine the (actual wear rate) of the specimens depending on weight loss method. It was found; the wear resistance Increases with increase hardness with varying quenching media as follows; 30 HRC, 45 HRC, 52 HRC, and 60 HRC for nontreated (as received) cooling media as still air, cottonseed oil, and Brine water 10 %, respectively. Martensitic structure with retained austenite can be obtained depending on the quenching medium. Wear was presented on the worn surfaces of the steels which were used in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstructures" title="microstructures">microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasive%20wear" title=" abrasive wear"> abrasive wear</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20texture" title=" soil texture"> soil texture</a> </p> <a href="https://publications.waset.org/abstracts/19571/investigation-the-effect-of-quenching-media-on-abrasive-wear-in-grade-medium-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2957</span> Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tebogo%20Mabotsa">Tebogo Mabotsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamba%20Jamiru"> Tamba Jamiru</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ibrahim"> David Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quenching%20medium" title="quenching medium">quenching medium</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing%20temperature" title=" annealing temperature"> annealing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20phase%20steel" title=" dual phase steel"> dual phase steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a> </p> <a href="https://publications.waset.org/abstracts/154442/effect-of-quenching-medium-on-the-hardness-of-dual-phase-steel-heat-treated-at-a-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2956</span> MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Saikia">Dilip Saikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Suparna%20Bhattacharjee"> Suparna Bhattacharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirab%20%20%20Adhikary"> Nirab Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title="photoluminescence">photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/69326/mas-capped-cdtezns-coreshell-quantum-dot-based-sensor-for-detection-of-hgii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2955</span> Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaz%20Seraj">Sanaz Seraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohre%20Rouhani"> Shohre Rouhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title="fluorescence">fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalimide%20dye" title=" naphthalimide dye"> naphthalimide dye</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a> </p> <a href="https://publications.waset.org/abstracts/76722/fluorescence-quenching-as-an-efficient-tool-for-sensing-application-study-on-the-fluorescence-quenching-of-naphthalimide-dye-by-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2954</span> The Effect of Type of Nanoparticles on the Quenching Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dogan%20Ciloglu">Dogan Ciloglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahim%20Bolukbasi"> Abdurrahim Bolukbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Harun%20Cifci"> Harun Cifci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the experiments were carried out to determine the best coolant for the quenching process among water-based silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. After the spherical test specimen was heated at high temperatures, it was suddenly plunged into the nanofluid suspensions. All experiments were performed at saturated conditions and under atmospheric pressure. Using the temperature-time data of the specimen, the cooling curves were obtained. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quenching" title="quenching">quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=pool%20boiling" title=" pool boiling"> pool boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/31171/the-effect-of-type-of-nanoparticles-on-the-quenching-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2953</span> Effect of Jet Diameter on Surface Quenching at Different Spatial Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Agrawal">C. Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kumar"> R. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gupta"> A. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chatterjee"> B. Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-surface" title="hot-surface">hot-surface</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement" title=" jet impingement"> jet impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20point" title=" stagnation point"> stagnation point</a> </p> <a href="https://publications.waset.org/abstracts/2139/effect-of-jet-diameter-on-surface-quenching-at-different-spatial-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2952</span> Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Neeraj">Neeraj Neeraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumen%20Basu"> Soumen Basu</a>, <a href="https://publications.waset.org/abstracts/search?q=Banibrata%20Maity"> Banibrata Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione" title=" glutathione"> glutathione</a>, <a href="https://publications.waset.org/abstracts/search?q=MnO%E2%82%82%20nanospheres" title=" MnO₂ nanospheres"> MnO₂ nanospheres</a>, <a href="https://publications.waset.org/abstracts/search?q=turn%20off-on" title=" turn off-on"> turn off-on</a> </p> <a href="https://publications.waset.org/abstracts/123370/unveiling-the-detailed-turn-off-on-mechanism-of-carbon-dots-to-different-sized-mno2-nanosensor-for-selective-detection-of-glutathione" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2951</span> A Paper Based Sensor for Mercury Ion Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20G.%20Cansu%20Ergun">Emine G. Cansu Ergun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugated system based sensors for selective detection of metal ions have been taking attention during last two decades. Fluorescent sensors are the promising candidates for ion detection due to their high selectivity towards metal ions, and rapid response times. Detection of mercury in an environmenet is important since mercury is a toxic element for human. Beyond the maximum allowable limit, mercury may cause serious problems in human health by spreading into the atmosphere, water and the food chain. In this study, a quinoxaline and 3,4-ethylenedioxy thiophene based donor-acceptor-donor type conjugated molecule used as a fluorescent sensor for detecting the mercury ion in aqueous medium. Among other various cations, existence of mercury resulted in a full quenching of the fluorescence signal. Then, a paper based sensor is constructed and used for mercury detection. As a result it is concluded that the offering sensor is a good candidate for selective mercury detection in aqueous media both in solution and paper based forms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Conjugated%20molecules" title="Conjugated molecules ">Conjugated molecules </a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20quenching" title=" fluorescence quenching"> fluorescence quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ion%20detection" title=" metal ion detection "> metal ion detection </a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/128523/a-paper-based-sensor-for-mercury-ion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2950</span> Spectrofluorimetric Investigation of Copper (II), Cobalt (II), Calcium (II), and Ferric (III) Influence on the Ciprofloxacin Binding to Bovine Serum Albumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20K.%20Youssef">Ahmed K. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawkat%20M.%20B.%20Aly"> Shawkat M. B. Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between ciprofloxacin and bovine serum albumin (BSA) was investigated by UV-Visible absorption and fluorescence spectroscopy. The influence of Cu²⁺ Ca²⁺, Co²⁺, and Fe³⁺ on the Cip-BSA interaction was investigated. The quenching of the BSA fluorescence emission in presence of ciprofloxacin as well as the influence of metal ions on the interaction was analyzed using the Stern-Volmer equation. The Stern-Volmer quenching constant, Kₛᵥ was calculated in presence and absence of the metal ions at the physiological pH of 7.4 using phosphate buffer. The experimental results showed that interaction mainly static in nature and quenching rate constant is decreased in presence of the studied metal ions with exception of Cu²⁺ ions. The decrease observed in the Kₛᵥ values in presence of Co²⁺, Ca²⁺, and Fe³⁺ can be understood on basis of competition between these metal and Cip when both of them existed in the BSA solution. Cu²⁺ induces interaction between Cip and BSA at faster quenching rates as inferred from the observed increase in the Kₛᵥ value. This allowed us to propose that copper (II) ions are directly involved in the process of Cip binding to BSA. The binding constant for Cip on BSA was determined and the metal ions effect on it was examined as well and their values were in line with the Kₛᵥ values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20serum%20albumin" title="bovine serum albumin">bovine serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title=" ciprofloxacin"> ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions%20effect" title=" metal ions effect"> metal ions effect</a> </p> <a href="https://publications.waset.org/abstracts/97969/spectrofluorimetric-investigation-of-copper-ii-cobalt-ii-calcium-ii-and-ferric-iii-influence-on-the-ciprofloxacin-binding-to-bovine-serum-albumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2949</span> Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rabin">A. Rabin</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mazor"> G. Mazor</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ladizhenski"> I. Ladizhenski</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Shneck"> R. Shneck</a>, <a href="https://publications.waset.org/abstracts/search?q=Z."> Z.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickr’s hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range have a high influence on the hardness of the studied steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%20D2" title="AISI D2">AISI D2</a>, <a href="https://publications.waset.org/abstracts/search?q=controllable%20cooling" title=" controllable cooling"> controllable cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20sulfate%20coating" title=" magnesium sulfate coating"> magnesium sulfate coating</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20cryogenic%20heat%20treatment" title=" rapid cryogenic heat treatment"> rapid cryogenic heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20porous%20layer" title=" temporary porous layer"> temporary porous layer</a> </p> <a href="https://publications.waset.org/abstracts/153436/mechanical-properties-of-d2-tool-steel-cryogenically-treated-using-controllable-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2948</span> Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahnaz%20Ashrafpour">Shahnaz Ashrafpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Tohidi%20Moghadam"> Tahereh Tohidi Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijan%20Ranjbar"> Bijan Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 µM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme-AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title="nanocarrier">nanocarrier</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching%20fluorescence" title=" quenching fluorescence"> quenching fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/14481/fluorescence-spectroscopy-of-lysozyme-silver-nanoparticles-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2947</span> Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20P.%20Starodubtseva">Irina P. Starodubtseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandr%20N.%20Pavlenko"> Aleksandr N. Pavlenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary-porous%20coating" title="capillary-porous coating">capillary-porous coating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Leidenfrost%20phenomenon" title=" Leidenfrost phenomenon"> Leidenfrost phenomenon</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a> </p> <a href="https://publications.waset.org/abstracts/110225/influence-of-structured-capillary-porous-coatings-on-cryogenic-quenching-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2946</span> A Dihydropyridine Derivative as a Highly Selective Fluorometric Probe for Quantification of Au3+ Residue in Gold Nanoparticle Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waroton%20Paisuwan">Waroton Paisuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mongkol%20Sukwattanasinitt"> Mongkol Sukwattanasinitt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamoru%20Tobisu"> Mamoru Tobisu</a>, <a href="https://publications.waset.org/abstracts/search?q=Anawat%20Ajavakom"> Anawat Ajavakom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel dihydroquinoline derivatives (DHP and DHP-OH) were synthesized in one pot via a tandem trimerization-cyclization of methylpropiolate. DHP and DHP-OH possess strong blue fluorescence with high quantum efficiencies over 0.70 in aqueous media. DHP-OH displays a remarkable fluorescence quenching selectively to the presence of Au3+ through the oxidation of dihydropyridine to pyridinium ion as confirmed by NMR and HRMS. DHP-OH was used to demonstrate the quantitative analysis of Au3+ in water samples with the limit of detection of 33 ppb and excellent recovery (>95%). This fluorescent probe was also applied for the determination of Au3+ residue in the gold nanoparticle solution and a paper-based sensing strip for the on-site detection of Au3+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gold%28III%29%20ion%20detection" title="Gold(III) ion detection">Gold(III) ion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Fluorescent%20sensor" title=" Fluorescent sensor"> Fluorescent sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Fluorescence%20quenching" title=" Fluorescence quenching"> Fluorescence quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=Dihydropyridine" title=" Dihydropyridine"> Dihydropyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gold%20nanoparticles%20%28AuNPs%29" title=" Gold nanoparticles (AuNPs)"> Gold nanoparticles (AuNPs)</a> </p> <a href="https://publications.waset.org/abstracts/165620/a-dihydropyridine-derivative-as-a-highly-selective-fluorometric-probe-for-quantification-of-au3-residue-in-gold-nanoparticle-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2945</span> The Mitigation Strategy Analysis of Kuosheng Nuclear Power Plant Spent Fuel Pool Using MELCOR2.1/SNAP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chiang">Y. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Yang"> J. H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Tseng"> Y. S. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of Spent Fuel Pools (SFPs) in Taiwan after Fukushima event. In order to estimate the safety of Kuosheng NPP SFP, by using MELCOR2.1 and SNAP, the safety analysis of Kuosheng NPP SFP was performed combined with the mitigation strategy of NEI 06-12 report. There were several steps in this research. First, the Kuosheng NPP SFP models were established by MELCOR2.1/SNAP. Second, the Station Blackout (SBO) analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition. The results showed that the calculations of MELCOR and TRACE were very similar in this case. Second, the mitigation strategy analysis was done with the MELCOR model by following the NEI 06-12 report. The results showed the effectiveness of NEI 06-12 strategy in Kuosheng NPP SFP. Finally, a sensitivity study of SFP quenching was done to check the differences of different water injection time and the phenomena during the quenching. The results showed that if the cladding temperature was over 1600 K, the water injection may have chance to cause the accident more severe with more hydrogen generation. It was because of the oxidation heat and the &ldquo;Breakaway&rdquo; effect of the zirconium-water reaction. An animation model built by SNAP was also shown in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MELCOR" title="MELCOR">MELCOR</a>, <a href="https://publications.waset.org/abstracts/search?q=SNAP" title=" SNAP"> SNAP</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a> </p> <a href="https://publications.waset.org/abstracts/67490/the-mitigation-strategy-analysis-of-kuosheng-nuclear-power-plant-spent-fuel-pool-using-melcor21snap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2944</span> Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diptiman%20Dinda">Diptiman Dinda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyamal%20Kumar%20Saha"> Shyamal Kumar Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20quenching" title=" fluorescence quenching"> fluorescence quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=FRET" title=" FRET"> FRET</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroexplosive%20detection" title=" nitroexplosive detection "> nitroexplosive detection </a> </p> <a href="https://publications.waset.org/abstracts/25873/luminescent-functionalized-graphene-oxide-based-sensitive-detection-of-deadly-explosive-tnp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2943</span> Tribocorrosion Behavior of Austempered Ductile Iron Microalloyed with Boron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gvazava">S. Gvazava</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khidasheli"> N. Khidasheli</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gordeziani"> G. Gordeziani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20DL.%20Batako"> A. DL. Batako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work presented in this paper studied the tribological characteristics (wear resistance, friction coefficient) of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in dry sliding friction. A range of structural states of the metal matrix was obtained by changing the regimes of isothermal quenching of high-strength cast iron. The tribological tests were carried out using two sets of isothermal quenched cast irons. After austenitization at 900°С for 60 minutes, the specimens from the first group were isothermally quenched at the 300°С temperature and the specimens from the second set – at 400°С. The investigations showed that the isothermal quenching increases the friction coefficient of high-strength cast irons. The friction coefficient was found to be in the range from 0.4 to 0.55 for cast irons, depending on the structures of the metal matrix. The quenched cast irons having lower bainite demonstrate higher wear resistance in dry friction conditions. The dependence of wear resistance on the amount of retained austenite in isothermal quenched cast irons has a nonlinear characteristic and reaches its maximum value when the content of retained austenite is about 15-22%. The boron micro-additives allowed to reduce the friction coefficient of ADI and increase their wear resistance by 1.5-1.7 times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title="wear resistance">wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20sliding" title=" dry sliding"> dry sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=austempering" title=" austempering"> austempering</a>, <a href="https://publications.waset.org/abstracts/search?q=ADI" title=" ADI"> ADI</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20austenite" title=" retained austenite"> retained austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20quenching" title=" isothermal quenching"> isothermal quenching</a> </p> <a href="https://publications.waset.org/abstracts/143702/tribocorrosion-behavior-of-austempered-ductile-iron-microalloyed-with-boron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2942</span> Influence of Different Sports on the Taste Perception and Acceptability of a Commercial Sports Drink among University Student-Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Daher">Jana Daher</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Olabi"> Ammar Olabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elie-Jacques%20Fares"> Elie-Jacques Fares</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Kharrroubi"> Samer Kharrroubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Gherbal"> Tarek Gherbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been previously suggested that the perception and acceptability of fluids significantly varies between exercise and non-exercise situations. The study investigates the influence of different types of sports on the taste perception and acceptability of a commercial sports drink. A sample of Gatorade – red orange flavor was evaluated pre and post exercise by 34 male university athletes (20 weightlifters, 14 runners) recruited from the American University of Beirut. Urine samples were collected from the participants to test for hydration. Sensory testing examined the change in the intensity of sweetness, saltiness, sourness, and the thirst-quenching ability of the drink as well as its acceptability with respect to the type of sport practiced. Results indicated that the acceptability of the drink increased as the hydration status of the athletes decreased (p<0.01). No significant change was found in the perception of the sensory attributes between exercise and non-exercise conditions. However, there were significant differences between the two sports groups in the ratings of the thirst-quenching ability of the drink where runners’ ratings increased after exercise while weightlifters’ ratings decreased after exercise (p<0.01). These findings suggest that exercise has a larger effect on the acceptability and overall liking of the beverage compared to other sensory attributes. An enhanced liking of the beverage is key for optimal replenishment of lost fluids and electrolytes after exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hedonic" title="hedonic">hedonic</a>, <a href="https://publications.waset.org/abstracts/search?q=liking" title=" liking"> liking</a>, <a href="https://publications.waset.org/abstracts/search?q=sweetness" title=" sweetness"> sweetness</a>, <a href="https://publications.waset.org/abstracts/search?q=thirst-quenching" title=" thirst-quenching"> thirst-quenching</a> </p> <a href="https://publications.waset.org/abstracts/137791/influence-of-different-sports-on-the-taste-perception-and-acceptability-of-a-commercial-sports-drink-among-university-student-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2941</span> Spectroscopic and 1.08mm Laser Properties of Nd3+ Doped Oxy-Fluoro Borate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Koneru">Swapna Koneru</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Prakash%20Gaddem"> Vijaya Prakash Gaddem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different concentrations of neodymium-doped (Nd-doped) oxy fluoroborate (OFB) glasses were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements to understand the lasing potentialities of these glasses. Optical absorption spectra were recorded and have been analyzed using Judd–Ofelt theory. The dipole strengths are parameterized in terms of three phenomenological Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) to elucidate the glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as the transition probability (AR), radiative lifetime (τR), branching ratios (βR) and integrated absorption cross-section (σa) have been measured for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses exhibit two peaks at 1085 and 1328 nm corresponding to 4F3/2 to 4I11/2 and 4I13/2 transitions have been obtained for all the glasses upon 808 nm diode laser excitation in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2.0 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses due to the concentration quenching. The decay curves of all these glasses show single exponential behavior. The spectroscopy of Nd3+ in these glasses is well understood and laser properties can be accurately determined from measured spectroscopic properties. The results obtained are compared with reports on similar glasses. The results indicate that the present glasses could be useful for 1.08 µm laser applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20spectroscopy" title=" photoluminescence spectroscopy "> photoluminescence spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/47257/spectroscopic-and-108mm-laser-properties-of-nd3-doped-oxy-fluoro-borate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2940</span> Precipitation and Age Hardening in Al-Mg-Si-(Cu) Alloys for Automotive Body Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Abid">Tahar Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoues%20Ghouss"> Haoues Ghouss</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Boubertakh"> Abdelhamid Boubertakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present work is focused on the hardening precipitation in two AlMgSi(Cu) automotive body sheets. The effect of pre-aging, aging treatment and 0.10 wt % copper addition on the hardening response was investigated using scanning calorimetry (DSC), transmission electron microscopy (TEM), and Vickers microhardness measurements (Hv). The results reveal the apparition of α-AlFeSi, α-AlFe(Mn)Si type precipitates frequently present and witch remain stable at high temperature in Al-Mg-Si alloys. Indeed, the hardening response in both sheets is certainly due to the predominance of very fine typical phases β' and β'' as rods and needles developed during aging with and without pre-aging. The effect of pre ageing just after homogenization and quenching is to correct the undesirable effect of aging at ambient temperature by making faster alloy hardening during artificial aging.The addition of 0.10 wt % copper has allowed to refine and to enhance the precipitation hardening after quenching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlMgSi%20alloys" title="AlMgSi alloys">AlMgSi alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/166964/precipitation-and-age-hardening-in-al-mg-si-cu-alloys-for-automotive-body-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2939</span> Photon-Electron Interaction in the Different Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Borji">Vahid Borji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between photons and particles is a common phenomenon in nature that is discussed in order to obtain information about the environment and the conditions governing the phenomena. In the astrophysics, like others, we study these interactions to get useful knowledge and can be predict aftercoming events. One of the events is the transition of photon beam through medium with special conditions, like shocked medium. In our discussion, we have studied this situation and obtained results for different conditions that transition of photon depends on the energy of photon and distributions of electrons in medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20section" title="cross section">cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=astrophysics" title=" astrophysics"> astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=GRB" title=" GRB"> GRB</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a> </p> <a href="https://publications.waset.org/abstracts/163852/photon-electron-interaction-in-the-different-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2938</span> Quorum Quenching Activities of Bacteria Isolated from Red Sea Sediments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Rehman">Zahid Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=TorOve%20Leiknes"> TorOve Leiknes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quorum sensing (QS) is the process by which bacteria communicate with each other through small signaling molecules, such as N-acylhomoserine lactones (AHLs). Also, certain bacteria have the ability to degrade AHL molecules by a process referred to as quorum quenching (QQ); therefore, QQ can be used to control bacterial infections and biofilm formation. In this study, we aimed to identify new species of bacteria with QQ activities. To achieve this, sediments from Red Sea were collected either in the close vicinity of Sea grass or from area with no vegetation. From these samples, we isolated 72 bacterial strains and tested their ability to degrade/inactivate AHL molecules. Chromobacterium violaceum based bioassay was used in initial screening of isolates for QQ activity. The QQ activity of the positive isolates was further confirmed and quantified by employing liquid chromatography and mass spectrometry. These analyses showed that isolated bacterial strain could degrade AHL molecules with different acyl chain length and modifications. Sequencing of 16S-rRNA genes of positive isolates revealed that they belong to three different genera. Specifically, two isolates belong to genus Erythrobacter, four to Labrenzia and one isolate belongs to Bacterioplanes. Time course experiment showed that isolate belonging to genus Erythrobacter could degrade AHLs faster than other isolates. Furthermore, these isolates were tested for their ability to inhibit formation of biofilm and degradation of 3OXO-C12 AHLs produced by P. aeruginosa PAO1. Our results showed that isolate VG12 is better at controlling biofilm formation. This aligns with the ability of VG12 to cause at least 10-fold reduction in the amount of different AHLs tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quorum%20sensing" title="quorum sensing">quorum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=quorum%20quenching" title=" quorum quenching"> quorum quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-biofouling" title=" anti-biofouling"> anti-biofouling</a> </p> <a href="https://publications.waset.org/abstracts/83564/quorum-quenching-activities-of-bacteria-isolated-from-red-sea-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2937</span> Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mufath%20Zorgani">Mufath Zorgani</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Garcia-Mateo"> Carlos Garcia-Mateo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jahazi"> Mohammad Jahazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ausforming" title="ausforming">ausforming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20free%20bainite" title=" carbide free bainite"> carbide free bainite</a>, <a href="https://publications.waset.org/abstracts/search?q=dilatometry" title=" dilatometry"> dilatometry</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/117105/effect-of-plastic-deformation-on-the-carbide-free-bainite-transformation-in-medium-c-si-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2936</span> Enzyme Redesign: From Metal-Dependent to Metal-Independent, a Symphony Orchestra without Concertmasters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Na%20Zhao">Li Na Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Arieh%20Warshel"> Arieh Warshel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of enzymes is an extremely challenging task, and this is also true for metalloenzymes. In the case of naturally evolved enzymes, one may consider the active site residues as the musicians in the enzyme orchestra, while the metal can be considered as their concertmaster. Together they catalyze reactions as if they performed a masterpiece written by nature. The Lactonase can be thought as a member of the amidohydrolase family, with two concertmasters, Fe and Zn, at its active site. It catalyzes the quorum sensing signal- N-acyl homoserine lactones (AHLs or N-AHLs)- by hydrolyzing the lactone ring. This process, known as quorum quenching, provides a strategy in the treatment of infectious diseases without introducing selection pressure. However, the activity of lactonase is metal-dependent, and this dependence hampers the clinic usage. In our study, we use the empirical valence bond (EVB) approach to evaluate the catalytic contributions decomposing them to electrostatic and other components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20redesign" title="enzyme redesign">enzyme redesign</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20valence%20%20bond" title=" empirical valence bond"> empirical valence bond</a>, <a href="https://publications.waset.org/abstracts/search?q=lactonase" title=" lactonase"> lactonase</a>, <a href="https://publications.waset.org/abstracts/search?q=quorum%20quenching" title=" quorum quenching"> quorum quenching</a> </p> <a href="https://publications.waset.org/abstracts/84437/enzyme-redesign-from-metal-dependent-to-metal-independent-a-symphony-orchestra-without-concertmasters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2935</span> Study on the Changes in Material Strength According to Changes in Forming Methods in Hot-Stamping Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Jeon">Yong-Jun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Pil%20Park"> Hyung-Pil Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Jae%20Song"> Min-Jae Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Baeg-Soon%20Cha"> Baeg-Soon Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following the recent trend of having increased demand in producing lighter-weight car bodies for improvement of automobile safety and gas mileage, there is a forming method that makes use of hot-stamping technique, which satisfies all conditions mentioned above. Hot-stamping is a forming technique with advantages of excellent formability, good dimensional precision and others since it is a process in which steel plates are heated up to temperatures of at least approximately 900°C after which forming is conducted in die at room temperature followed by rapid cooling. In addition, it has characteristics of allowing for improvement in material strength through achievement of quenching effect by having simultaneous forming and rapid cooling of material of high temperatures. However, there is insufficient information on the changes in material strength according to changes in material temperature with regards to material heating method and forming process in hot-stamping. Accordingly, this study aims to design and press die for T-type product of the scale models of the center pillar and to understand the changes in material strength in relation to changes in forming methods of hot-stamping process. Thus in order to understand the changes in material strength due to quenching effect among the hot-stamping process, material strength and material forming precision were to be studied while varying the forming and forming method when forming. For test methods, material strength was observed by using boron steel that has boron additives, which was heated up to 950°C, after which it was transferred to a die and was cooled down to material temperature of 400°C followed by air cooling process. During the forming and cooling process here, experiment was conducted with forming parameters of 2 holding rates and 3 flange heating rates wherein changing appearance in material strength according to changes forming method were observed by verifying forming strength and forming precision for each of the conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-stamping" title="hot-stamping">hot-stamping</a>, <a href="https://publications.waset.org/abstracts/search?q=formability" title=" formability"> formability</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=forming" title=" forming"> forming</a>, <a href="https://publications.waset.org/abstracts/search?q=press%20die" title=" press die"> press die</a>, <a href="https://publications.waset.org/abstracts/search?q=forming%20methods" title=" forming methods"> forming methods</a> </p> <a href="https://publications.waset.org/abstracts/7061/study-on-the-changes-in-material-strength-according-to-changes-in-forming-methods-in-hot-stamping-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2934</span> Impact of Instructional Mode and Medium of Instruction on the Learning Outcomes of Secondary Level School Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipti%20Parida">Dipti Parida</a>, <a href="https://publications.waset.org/abstracts/search?q=Atasi%20Mohanty"> Atasi Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this research is to examine the interaction effect of flipped teaching and traditional teaching mode across two different medium (English and Odia) of instructional groups. Both Science and History subjects were taken to be taught in the Class- VIII in two different instructional mode/s. In total, 180 students of Class-VIII of both Odia and English medium schools were taken as the samples of this study; 90 participants (each group) were from both English and Odia medium schools ; 45 participants of each of these two groups were again assigned either to flip or traditional teaching method. We have two independent variables and each independent variable with two levels. Medium and mode of instruction are the two independent variables. Medium of instruction has two levels of Odia medium and English medium groups. The mode of instruction has also two levels of flip and traditional teaching method. Here we get 4 different groups, such as Odia medium students with traditional mode of teaching (O.M.T), Odia medium students with flipped mode of teaching (O.M.F), English medium students with traditional mode of teaching (E.M.T) and English medium students with flipped mode of teaching (E.M.F). Before the instructional administration, these four groups were given a test on the concerned topic to be taught. Based on this result, a one-way ANOVA was computed and the obtained result showed that these four groups don’t differ significantly from each other at the beginning. Then they were taught the concerned topic either in traditional or flip mode of teaching method. After that a 2×2×2 repeated measures ANOVA was done to analyze the group differences as well as the learning outcome before and after the teaching. The result table also shows that in post-test the learning outcome is highest in case of English medium students with flip mode of instruction. From the statistical analysis it is clear that the flipped mode of teaching is as effective for Odia medium students as it is for English medium students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medium%20of%20instruction" title="medium of instruction">medium of instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20of%20instruction" title=" mode of instruction"> mode of instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20mode" title=" test mode"> test mode</a>, <a href="https://publications.waset.org/abstracts/search?q=vernacular%20medium" title=" vernacular medium"> vernacular medium</a> </p> <a href="https://publications.waset.org/abstracts/71475/impact-of-instructional-mode-and-medium-of-instruction-on-the-learning-outcomes-of-secondary-level-school-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2933</span> Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tukeaban%20Hasanova">Tukeaban Hasanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamila%20Imamalieva"> Jamila Imamalieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylinder" title="cylinder">cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wave" title=" wave"> wave</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20medium" title=" elastic medium"> elastic medium</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a> </p> <a href="https://publications.waset.org/abstracts/101749/nonstationary-waves-excited-by-the-rigid-cylinder-in-elastic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2932</span> Analysis of Various Factors Affecting Hardness and Content of Phases Resulting from 1030 Carbon Steel Heat Treatment Using AC3 Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Shahraki">Saeid Shahraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Kaekha"> Mohammad Mahdi Kaekha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 1030 steel, a kind of carbon steel used in homogenization, cold-forming, quenching, and tempering conditions, is generally utilized in small parts resisting medium stress, such as connection foundations, hydraulic cylinders, tiny gears, pins, clamps, automotive normal forging parts, camshafts, levers, pundits, and nuts. In this study, AC3 software was used to measure the effect of carbon and manganese percentage, dimensions and geometry of pieces, the type of the cooling fluid, temperature, and time on hardness and the content of 1030 steel phases. Next, the results are compared with the analytical values obtained from the Lumped Capacity Method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1030Steel" title="1030Steel">1030Steel</a>, <a href="https://publications.waset.org/abstracts/search?q=AC3software" title=" AC3software"> AC3software</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20capacity%20method" title=" lumped capacity method"> lumped capacity method</a> </p> <a href="https://publications.waset.org/abstracts/51308/analysis-of-various-factors-affecting-hardness-and-content-of-phases-resulting-from-1030-carbon-steel-heat-treatment-using-ac3-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2931</span> Study of Interaction between Ascorbic Acid and Bovine Hemoglobin by Multispectroscopic Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishnamoorthy%20Shanmugaraj">Krishnamoorthy Shanmugaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaichamy%20Ilanchelian"> Malaichamy Ilanchelian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ascorbic acid is an essential component in the diet of humans, and also is a typical long used pharmaceutical agent. In the present contribution, we have carried out a detailed study on the binding interaction of ascorbic acid (AA) with bovine hemoglobin (BHb) using steady state emission, time resolved fluorescence, UV-Vis absorption, circular dichroism (CD), Fourier transform infra-red (FT-IR) and three dimensional emission (3D) spectral studies. The results from the emission spectral studies unveiled that the quenching of BHb emission by AA is attributed to the formation of a complex in the ground state (static in nature) after correcting for inner filter effect. The binding parameters calculated from corrected emission quenching data revealed that BHb exhibited a significant binding affinity towards AA. Moreover, AA induced tertiary and secondary conformational changes of BHb were monitored by UV-Vis absorption, CD, FT-IR and 3D emission spectral studies. The results presented here will help to further understand the credible mechanism of BHb-AA system which is expected to provide insights into conformational and microenvironmental changes of BHb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title="ascorbic acid">ascorbic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=bovine%20hemoglobin" title=" bovine hemoglobin"> bovine hemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20dichroism" title=" circular dichroism"> circular dichroism</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20emission%20spectral%20studies" title=" three dimensional emission spectral studies"> three dimensional emission spectral studies</a> </p> <a href="https://publications.waset.org/abstracts/35592/study-of-interaction-between-ascorbic-acid-and-bovine-hemoglobin-by-multispectroscopic-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">977</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2930</span> Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Gandhi">Abhishek Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Bhatnagar"> Naresh Bhatnagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foams" title="foams">foams</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy" title=" microscopy"> microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=open-cell%20foams" title=" open-cell foams"> open-cell foams</a> </p> <a href="https://publications.waset.org/abstracts/18675/surface-quenching-induced-cell-opening-technique-in-extrusion-of-thermoplastic-foamed-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=98">98</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=99">99</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quenching%20medium&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10