CINXE.COM
Search results for: Dimitar Karastojanov
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Dimitar Karastojanov</title> <meta name="description" content="Search results for: Dimitar Karastojanov"> <meta name="keywords" content="Dimitar Karastojanov"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Dimitar Karastojanov" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Dimitar Karastojanov"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Dimitar Karastojanov</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Briquetting of Metal Chips by Controlled Impact: Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Todor%20Penchev">Todor Penchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Karastojanov"> Dimitar Karastojanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Altaparmakov"> Ivan Altaparmakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=briquetting" title="briquetting">briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=chips%20briquetting" title=" chips briquetting"> chips briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20briquetting" title=" impact briquetting"> impact briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20impact" title=" controlled impact"> controlled impact</a> </p> <a href="https://publications.waset.org/abstracts/10962/briquetting-of-metal-chips-by-controlled-impact-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Experimental Study of Iron Metal Powder Compacting by Controlled Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Todor%20N.%20Penchev">Todor N. Penchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20N.%20Karastoianov"> Dimitar N. Karastoianov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20D.%20Gyoshev"> Stanislav D. Gyoshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For compacting of iron powder are used hydraulic presses and high velocity hammers. In this paper are presented initial research on application of an innovative powder compacting method, which uses a hammer working with controlled impact. The results show that by this method achieves the reduction of rebounds and improve efficiency of impact, compared with a high-speed compacting. Depending on the power of the engine (industrial rocket engine), this effect may be amplified to such an extent as to obtain a impact without rebound (sticking impact) and in long-time action of the impact force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20powder%20compacting" title=" iron powder compacting"> iron powder compacting</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title=" rocket engine"> rocket engine</a> </p> <a href="https://publications.waset.org/abstracts/33204/experimental-study-of-iron-metal-powder-compacting-by-controlled-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Study the Influence of the Type of Cast Iron Chips on the Quality of Briquettes Obtained with Controlled Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20N.%20Karastoianov">Dimitar N. Karastoianov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20D.%20Gyoshev"> Stanislav D. Gyoshev</a>, <a href="https://publications.waset.org/abstracts/search?q=Todor%20N.%20Penchev"> Todor N. Penchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preparation of briquettes of metal chips with good density and quality is of great importance for the efficiency of this process. In this paper are presented the results of impact briquetting of grey cast iron chips with rectangular shape and dimensions 15x25x1 mm. Density and quality of briquettes of these chips are compared with those obtained in another work of the authors using cast iron chips with smaller sizes. It has been found that by using a rectangular chips with a large size are produced briquettes with a very low density and poor quality. From the photographs taken by X-ray tomography, it is clear that the reason for this is the orientation of the chip in the peripheral wall of the briquettes, which does not allow of the air to escape from it. It was concluded that in order to obtain briquettes of cast iron chips with a large size, these chips must first be ground, for example in a small ball mill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=briquetting" title="briquetting">briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=chips" title=" chips"> chips</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title=" rocket engine"> rocket engine</a> </p> <a href="https://publications.waset.org/abstracts/33205/study-the-influence-of-the-type-of-cast-iron-chips-on-the-quality-of-briquettes-obtained-with-controlled-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Mobile Wireless Investigation Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Karastoyanov">Dimitar Karastoyanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Todor%20Penchev"> Todor Penchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the research of a kind of autonomous mobile robots, intended for work and adaptive perception in unknown and unstructured environment. The objective are robots, dedicated for multi-sensory environment perception and exploration, like measurements and samples taking, discovering and putting a mark on the objects as well as environment interactions–transportation, carrying in and out of equipment and objects. At that ground classification of the different types mobile robots in accordance with the way of locomotion (wheel- or chain-driven, walking, etc.), used drive mechanisms, kind of sensors, end effectors, area of application, etc. is made. Modular system for the mechanical construction of the mobile robots is proposed. Special PLC on the base of AtMega128 processor for robot control is developed. Electronic modules for the wireless communication on the base of Jennic processor as well as the specific software are developed. The methods, means and algorithms for adaptive environment behaviour and tasks realization are examined. The methods of group control of mobile robots and for suspicious objects detecting and handling are discussed too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title="mobile robots">mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communications" title=" wireless communications"> wireless communications</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20investigations" title=" environment investigations"> environment investigations</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20control" title=" group control"> group control</a>, <a href="https://publications.waset.org/abstracts/search?q=suspicious%20objects" title=" suspicious objects"> suspicious objects</a> </p> <a href="https://publications.waset.org/abstracts/3644/mobile-wireless-investigation-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of the Nature of the Precursor on the Performance of Cu-Mn Catalysts for CO and VOCs Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova">Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov"> Krasimir Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The catalytic oxidation of methanol to formaldehyde is an important industrial process in which the waste gas in addition to CO contains methanol and dimethyl ether (DME). Evaluation of the possibility of removing the harmful components from the exhaust gasses needs a more complex investigation. Our previous work indicates that supported Cu-Mn oxide catalysts are promising for effective deep oxidation of these compounds. This work relates to the catalyst, comprising copper-manganese spinel, coated on carrier γ-Al₂O₃. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. Different organometallic compounds on the base of four natural amino acids (Glycine, Alanine, Valine, Leucine) as precursors were used for the preparation of catalysts with Cu/Mn molar ratio 1:5. X-Ray and TEM analysis were performed on the catalyst’s bulk, and surface composition and the specific surface area was determined by BET method. The results obtained show that the activity of the catalysts increase up to 40% although there are some specific features, depending on the nature of the amino acid and the oxidized compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn%2F%CE%B3-Al%E2%82%82O%E2%82%83" title="Cu-Mn/γ-Al₂O₃">Cu-Mn/γ-Al₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%20and%20VOCs%20oxidation" title=" CO and VOCs oxidation"> CO and VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a> </p> <a href="https://publications.waset.org/abstracts/68203/effect-of-the-nature-of-the-precursor-on-the-performance-of-cu-mn-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Study on the Presence of Protozoal Coinfections among Patients with Pneumocystis jirovecii Pneumonia in Bulgaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20Tsvetkova">Nina Tsvetkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rumen%20Harizanov"> Rumen Harizanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Ivanova"> Aleksandra Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Iskra%20Rainova"> Iskra Rainova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Yancheva-Petrova"> Nina Yancheva-Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Strashimirov"> Dimitar Strashimirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Raina%20Enikova"> Raina Enikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Videnova"> Mihaela Videnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Kaneva"> Eleonora Kaneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Iskren%20Kaftandjiev"> Iskren Kaftandjiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktoria%20Levterova"> Viktoria Levterova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Simeonovski"> Ivan Simeonovski</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Yanev"> Nikolay Yanev</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20Hinkov"> Georgi Hinkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Pneumocystis jirovecii (P. jirovecii) and protozoan of the genera Acanthamoeba, Cryptosporidium, and Toxoplasma gondii are opportunistic pathogens that can cause life-threatening infections in immunocompromised patients. Aim of the study was to evaluate the coinfection rate with opportunistic protozoal agents among Bulgarian patients diagnosed with P. jirovecii pneumonia. Thirty-eight pulmonary samples were collected from 38 patients (28 HIV-infected) with P. jirovecii infection. P. jirovecii DNA was detected by real-time PCR targeting the large mitochondrial subunit ribosomal RNA gene. Acanthamoeba was determined by genus-specific conventional PCR assay. Real-time PCR for the detection of a Toxoplasma gondii and Cryptosporidium DNA fragment was used. Pneumocystis DNA was detected in all 38 specimens; 28 (73.7%) were from HIV-infected patients. Three (10,7%) of them were co-infected with T. gondii and 1 (3.6%) with Cryptosporidium. In the group of non-HIV-infected (n=10), Cryptosporidium DNA was detected in an infant (10%). Acanthamoeba DNA was not found in the tested samples. The current study showed a relatively low rate of coinfections of Cryptosporidium spp./T. gondii and P. jirovecii in the Bulgarian patients studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coinfection" title="coinfection">coinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunistic%20protozoal%20agents" title=" opportunistic protozoal agents"> opportunistic protozoal agents</a>, <a href="https://publications.waset.org/abstracts/search?q=Pneumocystis%20jirovecii" title=" Pneumocystis jirovecii"> Pneumocystis jirovecii</a>, <a href="https://publications.waset.org/abstracts/search?q=pulmonary%20infections" title=" pulmonary infections"> pulmonary infections</a> </p> <a href="https://publications.waset.org/abstracts/151450/study-on-the-presence-of-protozoal-coinfections-among-patients-with-pneumocystis-jirovecii-pneumonia-in-bulgaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova">Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Petya%20Cv.%20Petrova"> Petya Cv. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20D.%20Nihtianova"> Diana D. Nihtianova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al<sub>2</sub>O<sub>3 </sub>supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH<sub>3</sub>OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La<sub>2</sub>O<sub>3</sub>, MnO<sub>2</sub> and Cu<sub>1.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn-La%20oxide%20catalysts" title="Cu-Mn-La oxide catalysts">Cu-Mn-La oxide catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20oxide" title=" carbon oxide"> carbon oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20oxidation" title=" deep oxidation"> deep oxidation</a> </p> <a href="https://publications.waset.org/abstracts/52487/alumina-supported-cu-mn-la-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Supported Gold Nanocatalysts for CO Oxidation in Mainstream Cigarette Smoke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Tabakova"> Tatyana Tabakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefka%20Kirkova"> Stefka Kirkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Stoilova"> Anna Stoilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova"> Violina Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been suggested that nicotine, CO and tar in mainstream smoke are the most important substances and have been judged as the most harmful compounds, responsible for the health hazards of smoking. As nicotine is extremely important for smoking qualities of cigarettes and the tar yield in the tobacco smoke is significantly reduced due to the use of filters with various content and design, the main efforts of cigarettes researchers and manufacturers are related to the search of opportunities for CO content reduction. Highly active ceria supported gold catalyst was prepared by the deposition-precipitation method, and the possibilities for CO oxidation in the synthetic gaseous mixture were evaluated using continuous flow equipment with fixed bed glass reactor at atmospheric pressure. The efficiently of the catalyst in CO oxidation in the real cigarette smoke was examined by a single port, puf-by-puff smoking machine. Quality assessment of smoking using cigarette holder containing catalyst was carried out. It was established that the catalytic activity toward CO oxidation in cigarette smoke rapidly decreases from 70% for the first cigarette to nearly zero for the twentieth cigarette. The present study shows that there are two critical factors which do not permit the successful use of catalysts to reduce the CO content in the mainstream cigarette smoke: (i) significant influence of the processes of adsorption and oxidation on the main characteristics of tobacco products and (ii) rapid deactivation of the catalyst due to the covering of the catalyst’s grains with condensate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke" title="cigarette smoke">cigarette smoke</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%20oxidation" title=" CO oxidation"> CO oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20catalyst" title=" gold catalyst"> gold catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=mainstream" title=" mainstream"> mainstream</a> </p> <a href="https://publications.waset.org/abstracts/79868/supported-gold-nanocatalysts-for-co-oxidation-in-mainstream-cigarette-smoke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Petya%20Petrova"> Petya Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Tabakova"> Tatyana Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn-Cr%20oxide%20catalysts" title="Cu-Mn-Cr oxide catalysts">Cu-Mn-Cr oxide catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20oxidation" title=" deep oxidation"> deep oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20ether%20%28DME%29" title=" dimethyl ether (DME)"> dimethyl ether (DME)</a> </p> <a href="https://publications.waset.org/abstracts/23641/alumina-supported-cu-mn-cr-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper-manganese%20catalysts" title="copper-manganese catalysts">copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gases" title=" exhaust gases"> exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/22828/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-effect-of-preparation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov">Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova"> Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20copper-manganese%20catalysts" title="supported copper-manganese catalysts">supported copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20of%20exhaust%20gases" title=" combustion of exhaust gases"> combustion of exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/23639/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-catalysts-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova">Tatyana T. Tabakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova"> Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yordanka%20G.%20Karakirova"> Yordanka G. Karakirova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petya%20Cv.%20Petrova"> Petya Cv. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH<sub>3</sub>OH and (CH<sub>3</sub>)<sub>2</sub>O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH<sub>3</sub>OH conversion at about 60 and 140 <sup>o</sup>C, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al<sub>2</sub>O<sub>3</sub> 1:5 exhibited higher activity for CO and CH<sub>3</sub>OH oxidation in comparison with Au on Cu-Ce/γ-Al<sub>2</sub>O<sub>3</sub> 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%20and%20VOCs%20oxidation" title="CO and VOCs oxidation">CO and VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceria" title=" Ceria"> Ceria</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20catalysts" title=" gold catalysts"> gold catalysts</a> </p> <a href="https://publications.waset.org/abstracts/68871/structure-activity-relationship-of-gold-catalysts-on-alumina-supported-cu-ce-oxides-for-co-and-volatile-organic-compound-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova">Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasko%20Idakiev"> Vasko Idakiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Tabakova"> Tatyana Tabakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov"> Krasimir Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn-Co%20catalysts" title="Cu-Mn-Co catalysts">Cu-Mn-Co catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20oxide" title=" carbon oxide"> carbon oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a> </p> <a href="https://publications.waset.org/abstracts/68064/alumina-supported-copper-manganese-cobalt-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Predicting Success and Failure in Drug Development Using Text Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Hao%20Chow">Zhi Hao Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=Cian%20Mulligan"> Cian Mulligan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Walsh"> Jack Walsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Garzon%20Vico"> Antonio Garzon Vico</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Krastev"> Dimitar Krastev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20development" title=" drug development"> drug development</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=text-mining" title=" text-mining"> text-mining</a> </p> <a href="https://publications.waset.org/abstracts/121298/predicting-success-and-failure-in-drug-development-using-text-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Evaluating of Chemical Extractants for Assessment of Bioavailable Heavy Metals in Polluted Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov"> Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Krustev"> Stefan Krustev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Availability of a metal is characterised by its quantity transgressing from soil into different extractants or by its content in plants. In literature, the terms 'available forms of compounds' and 'mobile' are often considered as equivalents of the term 'accessible' to plants. Rapid and a sufficiently reliable method for defining the accessible for plants forms turns out to be their extraction through different extractants, imitating the functioning of the root system. As a criterion for the pertinence of the extractant to this purpose usually serves the significant statistic correlation between the extracted quantities of the element from soil and its content in plants. The aim of this work was to evaluate the effectiveness of various extractions (DTPA-TEA, AB-DTPA, Mehlich 3, 0.01 M CaCl₂, 1M NH₄NO₃) for the determination of bioavailability of heavy metals in industrially polluted soils from the metallurgical activity near Plovdiv and Kardjali, Bulgaria. Quantity measurements for contents of heavy metals were performed with ICP-OES. The results showed that extraction capacity was as follows: Mehlich 3>ABDTPA>DTPA-TEA>CaCl₂>NaNO₃. The content of the mobile form of heavy metals depends on the nature of metal ion, the nature of extractant and pH. The obtained results show that CaCl₂ extracts a greater quantity of mobile forms of heavy metals than NH₄NO₃. DTPA-TEA and AB-DTPA are capable of extracting from the soil not only the heavy metals participating in the exchange processes but also the heavy metals bound in carbonates and organic complexes, as well as bound and occluded in oxide and secondary clay minerals. AB-DTPA extracts a bit more heavy metals than DTPA-TEA. The darker color of the solutions obtained with AB-DTPA indicates that considerable quantities organic matter are being destructed. A comparison of the mobile forms of heavy metals extracted from clean and highly polluted soils has revealed that in the polluted soils the greater portion of heavy metals exists in a mobile form. High correlation coefficients are obtained between the metals extracted with different extractants and their total content in soil (r=0.9). A positive correlation between the pH, soil organic matter and the extracted quantities of heavy metals has been found. The results of correlation analysis revealed that the heavy metals extracted by DTPA-TEA, AB-DTPA, Mehlich 3, CaCl₂ and NaNO₃ correlated significantly with plant uptake. Significant correlation was found between DTPA-TEA, AB-DTPA, and CaCl₂ with heavy metals concentration in plants. Application of extracting methods contains chelating agents would be recommended in the future research onthe availabilityof heavy metals in polluted soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20extractants" title=" chemical extractants"> chemical extractants</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20forms" title=" mobile forms"> mobile forms</a> </p> <a href="https://publications.waset.org/abstracts/68204/evaluating-of-chemical-extractants-for-assessment-of-bioavailable-heavy-metals-in-polluted-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>