CINXE.COM
Search results for: insulin
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: insulin</title> <meta name="description" content="Search results for: insulin"> <meta name="keywords" content="insulin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="insulin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="insulin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 338</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: insulin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Effects of Insulin on Osseointegration around Implant in Type 2 Diabetic and Non-Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xing%20Wang">Xing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Feng"> Lin Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20E."> Lingling E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongchen%20Liu"> Hongchen Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In patients with type 2 diabetes mellitus (DM) there is poorer quality osseointegration than in non-diabetic (n-DM) patients, and the success of dental implants is less. Recent studies have demonstrated that insulin could stimulate bone cells to produce and accelerate implant osseointegration in DM patients.This raised the question whether insulin could provide local bone anabolic effects in non-diabetic patients. In this study,48 SD rats were divided into four groups randomly: DM group, DM+insulin group, n-DM group, n-DM + insulin group. All rats were implanted the titanium implant near the epiphyseal end of tibia, then the DM + insulin and n-DM + insulin group received twice-daily subcutaneous injections of insulin (10U/day).Two,four and eight weeks after implantation, rats were killed in batches. Histomorphometry and immunohistochemistry were used to evaluate bone formation and osseointegration. The amount of newly formed bone, Implant–bone contact and the expression of OCN,RUNX2 in the DM+insulin, n-DM and n-DM+insulin group were significantly more than in the DM group (p<0.05). Compared with the n-DM group,the Implant–bone contact and expression of OCN,RUNX2 were significantly increased in n-DM+insulin group (p< 0.05). Taken together,these observations provide evidence that insulin has the potential to increase bone formation and osseointegration around implant not only in diabetic subjects but also in non-diabetic subject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulin" title="insulin">insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=osseointegration" title=" osseointegration"> osseointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a> </p> <a href="https://publications.waset.org/abstracts/21709/effects-of-insulin-on-osseointegration-around-implant-in-type-2-diabetic-and-non-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Robotic Arm Allowing a Diabetic Quadriplegic Patient to Self-Administer Insulin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Parisi">L. Parisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A method which allows a diabetic quadriplegic patient that has had four limb amputations (above the knee and elbow) to self-administer injections of insulin has been designed. The aim of this research project is to improve a quadriplegic patient’s self-management, affected by diabetes, by designing a suitable device for self-administering insulin.The quadriplegic patient affected by diabetes has to be able to self-administer insulin safely and independently to guarantee stable healthy conditions. The device also should be designed to adapt to a number of different varying personal characteristics such as height and body weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title="robotic arm">robotic arm</a>, <a href="https://publications.waset.org/abstracts/search?q=self-administration" title=" self-administration"> self-administration</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=quadriplegia" title=" quadriplegia"> quadriplegia</a> </p> <a href="https://publications.waset.org/abstracts/14684/robotic-arm-allowing-a-diabetic-quadriplegic-patient-to-self-administer-insulin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez">J. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Aguilar"> N. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fernandez%20de%20Canete"> R. Fernandez de Canete</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Ramos-Diaz"> J. C. Ramos-Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title="causal modeling">causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose-insulin%20system" title=" glucose-insulin system"> glucose-insulin system</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title=" causal modeling"> causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenModelica%20software" title=" OpenModelica software"> OpenModelica software</a> </p> <a href="https://publications.waset.org/abstracts/72880/causal-modeling-of-the-glucose-insulin-system-in-type-i-diabetic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Vlachopapadopoulou">E. Vlachopapadopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Dikaiakou"> E. Dikaiakou</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Anagnostou"> E. Anagnostou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Panagiotopoulos"> I. Panagiotopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kaloumenou"> E. Kaloumenou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kafetzi"> M. Kafetzi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fotinou"> A. Fotinou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Michalacos"> S. Michalacos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20fat%20weight" title="body fat weight">body fat weight</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20children" title=" obese children"> obese children</a>, <a href="https://publications.waset.org/abstracts/search?q=waist%20circumference" title=" waist circumference"> waist circumference</a> </p> <a href="https://publications.waset.org/abstracts/64737/insulin-resistance-in-children-and-adolescents-in-relation-to-body-mass-index-waist-circumference-and-body-fat-weight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> A Geometrical Perspective on the Insulin Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuhei%20Kunihiro">Yuhei Kunihiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorin%20V.%20Sabau"> Sorin V. Sabau</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiro%20Shibuya"> Kazuhiro Shibuya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the molecular evolution of insulin from the metric geometry point of view. In mathematics, and particularly in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from the geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metric%20geometry" title="metric geometry">metric geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20elegans" title=" C. elegans "> C. elegans </a> </p> <a href="https://publications.waset.org/abstracts/1430/a-geometrical-perspective-on-the-insulin-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Nademi">Vahid Nademi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose%20monitoring" title="blood glucose monitoring">blood glucose monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20pump" title=" insulin pump"> insulin pump</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20control" title=" predictive control"> predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/96676/improved-blood-glucose-insulin-monitoring-with-dual-layer-predictive-control-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Insulin Secretory Actions of Spirulina platensis in Perfused Rat Pancreas, Isolated Mouse Islets, and Clonal Pancreatic Β-Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jma%20Hannan">Jma Hannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Prawej%20Ansari"> Prawej Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20H.%20A.%20Abdel-Wahab"> Yasser H. A. Abdel-Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20R.%20Flatt"> Peter R. Flatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spirulina platensis (SP, Blue-green algae) have been accepted as a supplement for the treatment of pre and post-diabetes. The present study investigated the effects of butanol fraction from ethanol extract of S. platensis on insulin release from BRIN BD11 cells, isolated mouse islets, and perfused rat pancreas, as well as glucose homeostasis in type 2 diabetic rats and their molecular pathways. In a dose-dependent manner, S. platensis increased insulin release from mouse islets and pancreatic β-cells. The extract also elevated insulin release in perfused rat pancreas. Glucose, isobutylmethylxanthine, tolbutamide, and a depolarizing concentration of KCl significantly potentiated insulin release from BRIN BD11 cells. The effect of diazoxide and verapamil, as well as the absence of extracellular Ca2+ showed a reduction in insulin secretion. When administered orally together with glucose (2.5g/kg bw), S. platensis extract improved fasting and postprandial blood glucose in type 2 diabetes. These data suggest that the anti-diabetic activity of S. platensis is partly mediated by insulin secretion via the KATP channel-dependent pathway/the intracellular cAMP pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Insulin" title="Insulin">Insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20platensis" title=" S. platensis"> S. platensis</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a> </p> <a href="https://publications.waset.org/abstracts/154092/insulin-secretory-actions-of-spirulina-platensis-in-perfused-rat-pancreas-isolated-mouse-islets-and-clonal-pancreatic-b-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Relationship Between Muscle Mass and Insulin Resistance in Cirrhotic Patients with Hepatitis B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ey%C3%BCp%20S.%20Akbas">Eyüp S. Akbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Ayaz"> Betul Ayaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Beyza%20S.%20Haksever"> Beyza S. Haksever</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Basat"> Sema Basat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We aimed to evaluate the relationship between insulin resistance, muscle mass and muscle strength in patients with Hepatitis B virus-related cirrhosis. In our study, there were 65 patients with hepatitis B virus-related cirrhosis in Child A and B group and 65 healthy control individual. Control group was chosen between patients who admitted to the internal medicine clinic and had no pathological values in a routine examination. Muscle mass index was calculated with bioimpedance analysis for both groups to determine muscle strength and muscle mass. Handgrip strength, arm, and calf circumference were measured. In both groups, HOMA-IR was calculated to determine insulin resistance. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) value was detected 3,47±3,80 in the study group and 1,83±1,20 in control group. There were significant differences between the two groups in arm circumference, fasting insulin, fasting glucose, HOMA-IR, High-density lipoprotein (HDL) and total cholesterol parameters. The correlation coefficient between muscle mass and insulin resistance was statistically insignificant, especially in the study group. In healthy individuals group and all the groups, there wasn’t a correlation between muscle mass and insulin resistance. The upper limit for HOMA-IR was determined as 3,2. In control group, %78,9 of individuals were in HOMA-IR ( < 3.2) group and %21,1 of them were in ( ≥ 3,2) group. In study group, %68,3 of individuals were in HOMA-IR ( < 3,2) group and %31.7 were in HOMA-IR ( ≥ 3,2) group. In our study, we did not find a relationship between muscle mass and insulin resistance in patients with liver cirrhosis. In the study group, we detected a positive relationship between muscle mass, handgrip strength, and calf circumference. We did not find a relationship between insulin resistance and handgrip strength in our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cirrhosis" title="cirrhosis">cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20B" title=" hepatitis B"> hepatitis B</a>, <a href="https://publications.waset.org/abstracts/search?q=Insulin%20resistance" title=" Insulin resistance"> Insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20mass" title=" muscle mass"> muscle mass</a> </p> <a href="https://publications.waset.org/abstracts/104448/relationship-between-muscle-mass-and-insulin-resistance-in-cirrhotic-patients-with-hepatitis-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Response of Insulin Resistance Indicators to Aerobic Exercise at Different Intensities in Obese College Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Long-Shan%20Wu">Long-Shan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chen%20Ko"> Ming-Chen Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chang%20Ho"> Chien-Chang Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Fu%20Lee"> Po-Fu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Yun%20Chen"> Li-Yun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Yu%20Tseng"> Ching-Yu Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to determine whether progressive aerobic exercise intensity effects the changes in insulin resistance indicators among obese college students in Taiwan. Forty-eight obese subjects [body mass index (BMI) ≧ 27 kg/m2, aged 18-26 years old] were randomized into four equal groups (n = 12): light-intensity training group (LITG): 40-50% of their heart rate reserve (HRR); middle-intensity training group (MITG): 50-70% of their HRR; high-intensity training group (HITG): 70-80% of their HRR, and control group (CG). The aerobic exercise training program was performed 60 minutes per day on a treadmill three days/week in a training period of 12 weeks. All subjects’ anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, all insulin resistance indicators did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG had significantly more changes in insulin level than the MITG, LITG, and CG. Our findings suggested that a short-term aerobic exercise program can play an important role in improving insulin resistance indicators; either middle-intensity training significantly increases the insulin level, but the high-intensity exercise training program effectively improves obese college students’ insulin resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20training" title="aerobic training">aerobic training</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise%20intensity" title=" exercise intensity"> exercise intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/71374/response-of-insulin-resistance-indicators-to-aerobic-exercise-at-different-intensities-in-obese-college-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arefeh%20Jafarian">Arefeh Jafarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taghikani"> Mohammad Taghikani</a>, <a href="https://publications.waset.org/abstracts/search?q=Saied%20Abroun"> Saied Abroun</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Allahverdi"> Amir Allahverdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Soleimani"> Masoud Soleimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=MSCs" title=" MSCs"> MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20producing%20cells" title=" insulin producing cells"> insulin producing cells</a>, <a href="https://publications.waset.org/abstracts/search?q=miR-375" title=" miR-375"> miR-375</a>, <a href="https://publications.waset.org/abstracts/search?q=miR-9" title=" miR-9 "> miR-9 </a> </p> <a href="https://publications.waset.org/abstracts/31158/the-generation-of-insulin-producing-cells-from-human-mesenchymal-stem-cells-by-mir-375-and-anti-mir-9" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Insulin Resistance in Patients with Chronic Hepatitis C Virus Infection: Upper Egypt Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kassem">Ali Kassem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In the last few years, factors such as insulin resistance (IR) and hepatic steatosis have been linked to progression of hepatic fibrosis.Patients with chronic liver disease, and cirrhosis in particular, are known to be prone to IR. However, chronic HCV (hepatitis C) infection may induce IR, regardless of the presence of liver cirrhosis. Our aims are to study insulin resistance (IR) assessed by HOMA-IR (Homeostatic Model Assessment Insulin Resistance) as a possible risk factor in disease progression in cirrhotic patients and to evaluate the role of IR in hepatic fibrosis progression. The correlations of HOMA-IR values to laboratory, virological and histopathological parameters of chronic HCV are also examined. Methods: The study included 50 people divided into 30 adult chronic hepatitis C patients diagnosed by PCR (polymerase chain reaction) within previous 6 months and 20 healthy controls. The functional and morphological status of the liver were evaluated by ultrasonography and laboratory investigations including liver function tests and by liver biopsy. Fasting blood glucose and fasting insulin levels were measured and body mass index and insulin resistance were calculated. Patients having HOMA-IR >2.5 were labeled as insulin resistant. Results: Chronic hepatitis C patients with IR showed significantly higher mean values of BMI (body mass index) and fasting insulin than those without IR (P < 0.000). Patients with IR were more likely to have steatosis (p = 0.006), higher necroinflammatory activity (p = 0.05). No significant differences were found between the two groups regarding hepatic fibrosis. Conclusion: HOMA-IR measurement could represent a novel marker to identify the cirrhotic patients at greater risk for the progression of liver disease. As IR is a potentially modifiable risk factor, these findings may have important prognostic and therapeutic implications. Assessment of IR by HOMA-IR and improving insulin sensitivity are recommended in patients with HCV and related chronic liver disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatic%20fibrosis" title="hepatic fibrosis">hepatic fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20C%20virus%20infection" title=" hepatitis C virus infection"> hepatitis C virus infection</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20steatosis" title=" hepatic steatosis"> hepatic steatosis</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a> </p> <a href="https://publications.waset.org/abstracts/94698/insulin-resistance-in-patients-with-chronic-hepatitis-c-virus-infection-upper-egypt-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Serum 25-Dihydroxy Vitamin D3 Level Estimation and Insulin Resistance in Women of 18-40 Years Age Group with Polycystic Ovarian Syndrome </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thakur%20Pushpawati">Thakur Pushpawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Singh%20Vinita"> Singh Vinita</a>, <a href="https://publications.waset.org/abstracts/search?q=Agrawal%20Sarita"> Agrawal Sarita</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohapatra%20Eli"> Mohapatra Eli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycystic ovary syndrome (PCOS) is a disease of endocrine and frequently encountered in women in their reproductive period, and it is characterized by clinical features of anovulation, clinical and biochemical features of hyperandrogenism, and PCOS morphology on ultrasonographic examination. In Indian scenario, only a few studies are available on the correlation of serum 25-dihydroxy vitamin D3 level and insulin level. The present study is a prospective case-control study and aims to estimate the concentration of serum 25-dihydroxy vitamin D3 and insulin resistance and determine the association of serum 25-dihydroxy vitamin D3 with insulin resistance in PCOS women of 18-40 years age group. In this study, the primary objective is to estimate the concentration of 25-dihydroxy vitamin D3, insulin, glycaemic status, calcium and phosphorus levels in 18-40 year age women with polycystic ovary syndrome and to compare these parameters with age and BMI matched healthy control of same age group women. The secondary objective is to determine the association between 25-dihydroxy vitamin D3 concentration and insulin resistance among PCOS cases in 18-40 years age group women. This study was carried on at outpatient Department of Obstetrics & Gynaecology, Aiims Raipur. It took one year from the date of approval. In case, 32 women were diagnosed (Diagnosed PCOS cases as per Rotterdoms criteria among women of 18-40 years of age), as control group 32 women of 18-40 years of age were diagnosed As a result, serum insulin level was elevated among PCOS women along with 25-dihydroxy vitamin D3 deficiency.Conclude up, PCOS is more common in the age group of 20-40 years. There is a strong correlation between vitamin D deficiency and insulin resistance among PCOS patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitamin%20D" title="vitamin D">vitamin D</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=PCOS" title=" PCOS"> PCOS</a>, <a href="https://publications.waset.org/abstracts/search?q=reproductive%20age%20group" title=" reproductive age group "> reproductive age group </a> </p> <a href="https://publications.waset.org/abstracts/110693/serum-25-dihydroxy-vitamin-d3-level-estimation-and-insulin-resistance-in-women-of-18-40-years-age-group-with-polycystic-ovarian-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Evaluation of Insulin Sensitizing Effects of Different Fractions from Total Alcoholic Extract of Moringa oleifera Lam. Bark in Dexamethasone-Induced Insulin Resistant Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasanpasha%20N.%20Sholapur">Hasanpasha N. Sholapur</a>, <a href="https://publications.waset.org/abstracts/search?q=Basanagouda%20M.Patil"> Basanagouda M.Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alcoholic extract of the bark of Moringa oleifera Lam. (MO), (Moringaceae), has been evaluated experimentally in the past for its insulin sensitizing potentials. In order to explore the possibility of the class of phytochemical(s) responsible for this experimental claim, the alcoholic extract was fractionated into non-polar [petroleum ether (PEF)], moderately non-polar [ethyl acetate (EAF)] and polar [aqueous (AQF)] fractions. All the fractions and pioglitazone (PIO) as standard (10mg/kg were p.o., once daily for 11 d) were investigated for their chronic effect on fasting plasma glucose, triglycerides, total cholesterol, insulin, oral glucose tolerance and acute effect on oral glucose tolerance in dexamethasone-induced (1 mg/kg s.c., once daily for 11 d) chronic model and acute model (1 mg/kg i.p., for 4 h) respectively for insulin resistance (IR) in rats. Among all the fractions tested, chronic treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced IR, indicated by prevention of hypertriglyceridemia, hyperinsulinemia and oral glucose intolerance, whereas treatment with AQF (95 mg/kg) prevented hepatic IR but not peripheral IR. In acute study single dose treatment with EAF (140 mg/kg) and PIO (10 mg/kg) prevented dexamethasone-induced oral glucose intolerance, fraction PEF did not show any effect on these parameters in both the models. The present study indicates that the triterpenoidal and the phenolic class of phytochemicals detected in EAF of alcoholic extract of MO bark may be responsible for the prevention of dexamethasone-induced insulin resistance in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title="Moringa oleifera">Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dexamethasone" title=" dexamethasone"> dexamethasone</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20triglyceride" title=" serum triglyceride"> serum triglyceride</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20glucose%20tolerance%20test" title=" oral glucose tolerance test"> oral glucose tolerance test</a> </p> <a href="https://publications.waset.org/abstracts/15644/evaluation-of-insulin-sensitizing-effects-of-different-fractions-from-total-alcoholic-extract-of-moringa-oleifera-lam-bark-in-dexamethasone-induced-insulin-resistant-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Selma">B. Selma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chouraqui"> S. Chouraqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose-insulin" title=" glucose-insulin"> glucose-insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=blood" title=" blood"> blood</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a> </p> <a href="https://publications.waset.org/abstracts/76765/an-algorithm-of-regulation-of-glucose-insulin-concentration-in-the-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> Oleuropein Ameliorates Palmitate-Induced Insulin Resistance by Increasing GLUT4 Translocation through Activation of AMP-Activated Protein Kinase in Rat Soleus Muscles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakam%20Alkhateeb">Hakam Alkhateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleuropein, the main constituent of leaves and fruits of the olive tree, has been demonstrated to exert beneficial effects on parameters relevant to the normal homeostatic mechanisms of glucose regulation in rat skeletal muscle. However, the antidiabetic effect of oleuropein, to our knowledge, has not been examined. Therefore, in this study, we examined whether oleuropein ameliorated palmitate-induced insulin resistance in skeletal muscle. To examine this question, insulin resistance was rapidly induced by incubating (12h) soleus muscle with a high concentration of palmitate(2mM). Subsequently, we attempted to restore insulin sensitivity by incubating (12h) muscles with oleuropien (1.5mM), while maintaining high concentrations of palmitate. Palmitate treatment for 12 h reduced insulin-stimulated glucose transport, GLUT4 translocationandAS160 phosphorylation. Oleuropein treatment (12 h) fully restoredinsulin-stimulated glucose transport, GLUT4translocationandAS160 phosphorylation. Inhibition of PI3K phosphorylation with wortmannin (1µM)did not affect the oleuropein-induced improvements in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. These results suggested that the improvements in these parameters cannot account for activating PI3K pathway. Taken altogether, it appears that oleuropein, through activation of another pathway like activated protein kinase (AMPK), may provide a possible strategy by which they ameliorate palmitate-induced insulin resistance in skeletal muscles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AS160" title="AS160">AS160</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=GLUT4" title=" GLUT4"> GLUT4</a>, <a href="https://publications.waset.org/abstracts/search?q=oleuropein" title=" oleuropein"> oleuropein</a> </p> <a href="https://publications.waset.org/abstracts/98754/oleuropein-ameliorates-palmitate-induced-insulin-resistance-by-increasing-glut4-translocation-through-activation-of-amp-activated-protein-kinase-in-rat-soleus-muscles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> Regulation on Macrophage and Insulin Resistance after Aerobic Exercise in High-Fat Diet Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiaofeng%20Guo">Qiaofeng Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Obesity is often accompanied by insulin resistance (IR) and whole-body inflammation. Aerobic exercise is an effective treatment to improve insulin resistance and inflammation. However, the anti-inflammatory mechanisms of exercise on epididymal and subcutaneous adipose remain to be elucidated. Here, we compared the macrophage polarization between epididymal and subcutaneous adipose after aerobic exercise. Methods: Male C57BL/6 mice were fed a normal diet group or a high-fat diet group for 12 weeks and performed aerobic training on a treadmill at 55%~65% VO₂ max for eight weeks. Food intake, body weight, and fasting blood glucose levels were monitored weekly. The intraperitoneal glucose tolerance test was to evaluate the insulin resistance model. Fat mass, blood lipid profile, serum IL-1β, TNF-α levels, and CD31/CD206 rates were analysed after the intervention. Results: FBG (P<0.01), AUCIPGTT (P<0.01), and HOMA-IR (P<0.01) increased significantly for a high-fat diet and decreased significantly after the exercise. Eight weeks of aerobic exercise attenuated HFD-induced weight gain and glucose intolerance and improved insulin sensitivity. Serum IL-1β, TNF-α, CD11C/CD206 expression in subcutaneous adipose tissue were not changed before and after exercise, but not in epididymal adipose tissue (P<0.01). Conclusion: Insulin resistance is not accompanied by chronic inflammation and M1 polarization of subcutaneous adipose tissue macrophages in high-fat diet mice. Aerobic exercise effectively improved lipid metabolism and insulin sensitivity, which may be closely associated with reduced M1 polarization of epididymal adipose macrophages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20exercise" title="aerobic exercise">aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20inflammation" title=" chronic inflammation"> chronic inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose" title=" adipose"> adipose</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage%20polarization" title=" macrophage polarization"> macrophage polarization</a> </p> <a href="https://publications.waset.org/abstracts/161042/regulation-on-macrophage-and-insulin-resistance-after-aerobic-exercise-in-high-fat-diet-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Antidiabetic Effects of Bitter Melon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinhyun%20Ryu">Jinhyun Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengliang%20Xie"> Chengliang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Nal%20Ae%20Yoon"> Nal Ae Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lee"> Dong Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Seob%20Roh"> Gu Seob Roh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Joon%20Kim"> Hyun Joon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyeong%20Jae%20Cho"> Gyeong Jae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Sung%20Choi"> Wan Sung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soo%20Kang"> Sang Soo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 diabetes is a heterogeneous group of metabolic disorders featured by a deficit in or loss of insulin activity to maintain normal glucose homeostasis. Mainly, it results from the compromised insulin secretion and/or reduced insulin activity. The frequency of type 2 diabetes (T2D) has been increased rapidly in recent decades with the increase in the trend of obesity due to life style and food habit. Obesity is considered to be the primary risk factor for the development of insulin resistance and thereby developing T2D. Traditionally naturally occurring fruits, vegetables etc. are being used to treat many pathogenic conditions. In this study, we tried to find out the effect of a popularly used vegetable in Bangladesh and several other Asian countries, ‘bitter melon’ on high fat diet induced T2D. To investigate the effect, we used 70% ethanol extract of bitter melon (BME) as dietary supplement with chow. BME was found to attenuate the high fat diet (HFD) induced body weight and total fat mass significantly. We also observed that BME reduced the insulin resistance induced by HFD effectively. Furthermore, dietary supplementation of BME was highly effective in increasing insulin sensitivity, and reducing the hepatic fat and obesity. These results indicate that BME could be effective to attenuate T2D and could be a preventive measure against T2D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title="bitter melon">bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a> </p> <a href="https://publications.waset.org/abstracts/41779/antidiabetic-effects-of-bitter-melon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Zakaria">Mahmoud M. Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20F.%20Elmoursi"> Omnia F. Elmoursi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Gabr"> Mahmoud M. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Camelia%20A.%20AbdelMalak"> Camelia A. AbdelMalak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Ghoneim"> Mohamed A. Ghoneim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20producing%20cells" title=" insulin producing cells"> insulin producing cells</a>, <a href="https://publications.waset.org/abstracts/search?q=conophylline%20protein" title=" conophylline protein"> conophylline protein</a>, <a href="https://publications.waset.org/abstracts/search?q=trichostatin-A" title=" trichostatin-A"> trichostatin-A</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-mercaptoethanol" title=" beta-mercaptoethanol"> beta-mercaptoethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=immunofluorescence%20technique" title=" immunofluorescence technique"> immunofluorescence technique</a> </p> <a href="https://publications.waset.org/abstracts/85954/evaluation-of-gene-expression-after-in-vitro-differentiation-of-human-bone-marrow-derived-stem-cells-to-insulin-producing-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Effect of Concurrent Training and Detraining on Insulin Resistance in Obese Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaveh%20Azadeh">Kaveh Azadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Fazelifar"> Saeid Fazelifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of the present study was to examine the effect of 12 weeks (3 days/week) concurrent training followed by 4 weeks detraining on insulin resistance in obese boys without dietary intervention. Methods: 24 obese children boys (body mass index> 28, age= 11- 13year old) voluntarily participated in the study. Biochemical factors, body composition, and functional physical fitness were assessed in three stages [baseline, after 12 week’s combined endurance and resistance training and 4 week’s detraining in the experimental group (n=12); baseline and after 12 weeks in control group (n=12)]. Results: Indepented - Sample T test revealed that in experimental group after 12weeks trainings the insulin resistance, and body fat mass were significantly declined, whereas endurance and strength of abdominal muscles significantly increased compared to control group (p<0/05). One-way ANOVA for three different periods showed that insulin resistance, body fat mass, strength of abdominal muscles after 12week training was significantly improved in the experimental group compared with the baseline. Following 4weeks detraining insulin resistance again significantly increased (p<0/05). After detraining disturbances of physiological adaptation in obese children have more rapid course in comparison with those anthropological and functional indices. Conclusion: Results showed that participation in the regular concurrent trainings provides a decrease of insulin resistance in obese children. It may serve as a strategy in treatment of obesity and management on insulin resistance, as well as to increase endurance and strength muscles in obese children. Adaptations resulting from regular exercises following detraining are reversible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endurance%20and%20resistance%20trainings" title="endurance and resistance trainings">endurance and resistance trainings</a>, <a href="https://publications.waset.org/abstracts/search?q=detraining" title=" detraining"> detraining</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20children" title=" obese children"> obese children</a> </p> <a href="https://publications.waset.org/abstracts/72352/effect-of-concurrent-training-and-detraining-on-insulin-resistance-in-obese-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Circulating Oxidized LDL and Insulin Resistance among Obese School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayera%20E.%20Hassan">Nayera E. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20A.%20El-Masry"> Sahar A. El-Masry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mones%20M.%20Abu%20Shady"> Mones M. Abu Shady</a>, <a href="https://publications.waset.org/abstracts/search?q=Rokia%20A.%20El%20Banna"> Rokia A. El Banna</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Al-Tohamy"> Muhammad Al-Tohamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrevan%20M.%20Abd%20El-Moniem"> Mehrevan M. Abd El-Moniem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Anwar"> Mona Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Circulating oxidized LDL (ox-LDL) is associated with obesity, insulin resistance (HOMA), metabolic syndrome, and cardiovascular disease in adults. Little is known about relations in children. Aim: To assess association of ox-LDL with fat distribution and insulin resistance in a group of obese Egyptian children. Methods: Study is cross-sectional consisting of 68 obese children, with a mean age of 9.96 ± 1.32. Each underwent a complete physical examination; blood pressure (SBP, DBP) and anthropometric measurements (weight, height, BMI; waist, hip circumferences, waist/hip ratio), biochemical tests of fasting blood glucose (FBS), insulin levels; lipid profile (TC, LDL,HDL, TG) and ox-LDL; calculated HOMA. Sample was classified according to waist/hip ratio into: group I with and group II without central obesity. Results: ox-LDL showed significant positive correlation with LDL and TC in all groups of obesity. After adjustment for age and sex, significant positive correlation was detected between ox-LDL with SBP, DBP, TC, LDL, insulin, and HOMA in group II and with TC and FBS in group I. Insignificant association was detected between ox-LDL and other anthropometric parameters including BMI in any group of obese children (p > 0.05). Conclusions: ox-LDL, as a marker of oxidative stress is not correlated with BMI among all studied obese children (aged 6-12 years). Increased oxidative stress has causal effects on insulin resistance in obese children without central obesity and on fasting blood sugar in those with central obesity. These findings emphasize the importance of obesity during childhood and suggest that the metabolic complications of obesity and body fat distribution are detectable early in life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ox-LDL" title="ox-LDL">ox-LDL</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/9028/circulating-oxidized-ldl-and-insulin-resistance-among-obese-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Sub-Chronic Exposure to Dexamethasone Impairs Cognitive Function and Insulin in Prefrontal Cortex of Male Wistar Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alli-Oluwafuyi">A. Alli-Oluwafuyi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amin"> A. Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Fii"> S. M. Fii</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Amusa"> S. O. Amusa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Imam"> A. Imam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20T.%20Asogwa"> N. T. Asogwa</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20I.%20Abdulmajeed"> W. I. Abdulmajeed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Olaseinde"> F. Olaseinde</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Owoyele"> B. V. Owoyele </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic stress or prolonged glucocorticoid administration impairs higher cognitive functions in rodents and humans. However, the mechanisms are not fully clear. Insulin and receptors are expressed in the brain and are involved in cognition. Insulin resistance accompanies Alzheimer’s disease and associated cognitive decline. The goal of this study was to evaluate the effects of sub-chronic administration of a glucocorticoid, dexamethasone (DEX) on behavior and biochemical changes in prefrontal cortex (PFC). Male Wistar rats were administered DEX (2, 4 & 8 mg/kg, IP) or saline for seven consecutive days and behavior was assessed in the following paradigms: “Y” maze, elevated plus maze, Morris’ water maze and novel object recognition (NOR) tests. Insulin, lactate dehydrogenase (LDH) and Superoxide Dismutase (SOD) activity were evaluated in homogenates of the prefrontal cortex. DEX-treated rats exhibited impaired prefrontal cortex function manifesting as reduced locomotion, impaired novel object exploration and impaired short- and long-term spatial memory compared to normal controls (p < 0.05). These effects were not consistently dose-dependent. These behavioral alterations were accompanied by a decrease in insulin concentration observed in PFC of 4 mg/kg DEX-treated rats compared to control (10μIU/mg vs. 50μIU/mg; p < 0.05) but not 2mg/kg. Furthermore, we report a modification of brain stress markers LDH and SOD (p > 0.05). These results indicate that prolonged activation of GCs disrupt prefrontal cortex function which may be related to insulin impairment. These effects may not be attributable to a non-specific elevation of oxidative stress in the brain. Future studies would evaluate mechanisms of GR-induced insulin loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dexamethasone" title="dexamethasone">dexamethasone</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=prefrontal%20cortex" title=" prefrontal cortex"> prefrontal cortex</a> </p> <a href="https://publications.waset.org/abstracts/71933/sub-chronic-exposure-to-dexamethasone-impairs-cognitive-function-and-insulin-in-prefrontal-cortex-of-male-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> Effect of Fenugreek Seed with Aerobic Exercise Training on Insulin Resistance in Women with Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasiri">M. Nasiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Considering the hypoglisimic ad hipolipidimic effect of the fenugreek seed and aerobic exercise training, this study was conducted to evaluate the effect of fenugreek and aerobic exercise training on insulin resistance in women with type 2 diabetes. Methodology: 32 patients with type II diabetes were selected and randomly divided into four groups: control, fenugreek, training and fenugreek - training. Fenugreek groups used 10 grams of fenugreek seeds daily for eight weeks on two occasions before noon and evening meal. Training of groups is also performed a regular program of aerobic exercise 65-55% of maximum heart rate (4 days per week).Two days before and after the training period, blood samples were taken from their brachial veins in a fasting state (12 hours prior to the test) in a sitting position. The data was analyzed used of t-independent and ANOVA at a significance level of α < 0.05. Results: Intra-group changes in all experimental groups showed that significant decrease insulin resistance, and the difference between groups showed significant difference between the groups of fenugreek - training than other groups there. Conclusions: According to the research findings to fenugreek combined with aerobic exercise more beneficial effect on the inhibition of insulin resistance in women with diabetes are recommended to them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title="fenugreek">fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/35847/effect-of-fenugreek-seed-with-aerobic-exercise-training-on-insulin-resistance-in-women-with-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Effect of 8 Weeks of Intervention on Physical Fitness, Hepatokines, and Insulin Resistance in Obese Subjects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adela%20Penesova">Adela Penesova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zofia%20Radikova"> Zofia Radikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Bajer"> Boris Bajer</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Havranova"> Andrea Havranova</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Vlcek"> Miroslav Vlcek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The aim of our study was to compare the effect of intensified lifestyle intervention on insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fibroblast growth factor (FGF) 21 after 8 weeks of lifestyle intervention. Methods: A group of 43 obese patients (13M/30F; 43.0±12.4 years; BMI (body mass index) 31.2±6.3 kg/m2 participated in a weight loss interventional program (NCT02325804) following an 8-week hypocaloric diet (-30% energy expenditure) and physical activity 150 minutes/week. Insulin sensitivity was evaluated according to the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity indices according to Matsuda and Cederholm were calculated (ISImat and ISIced). Plasma ALT, AST, Fetuin-A, FGF 21, and physical fitness were measured. Results: The average reduction of body weight was 6.8±4.9 kg (0-15 kg; p=0.0006), accompanied with a significant reduction of body fat amount of fat mass (p=0.03), and waist circumference (p=0.02). Insulin sensitivity has been improved (IR HOMA 2.71±3.90 vs 1.24±0.83; p=0.01; ISIMat 6.64±4.38 vs 8.93±5.36 p ≤ 0.001). Total, LDL cholesterol, and triglycerides decreased (p=0.05, p=0.04, p=0.04, respectively). Physical fitness significantly improved after intervention (as measure VO2 max (maximal oxygen uptake) (p ≤ 0.001). ALT decreased significantly (0.44±0.26 vs post 0.33±0.18 ukat/l, p=0.004); however, AST not (pre 0.40±0.15 vs 0.35±0.09 ukat/l, p=0.07). Hepatokine Fetuin-A significantly decreased after intervention (43.1±10.8 vs 32.6±8.6 ng/ml, p < 0.001); however, FGF 21 levels tended to decrease (146±152 vs 132±164 pg/ml, p=0.07). Conclusion: 8-weeks of diet and physical activity intervention program in obese otherwise healthy subjects led to an improvement of insulin resistance parameters and liver marker profiles, as well as increased physical fitness. This study was supported by grants APVV 15-0228; VEGA 2/0161/16. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=exercice" title=" exercice"> exercice</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20sensitivity" title=" insulin sensitivity"> insulin sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/92749/effect-of-8-weeks-of-intervention-on-physical-fitness-hepatokines-and-insulin-resistance-in-obese-subjects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> The Effect of Acute Aerobic Exercise after Consumption of Four Different Diets on Serum Levels Irisin, Insulin and Glucose in Overweight Men</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mardaniyan%20Ghahfarokhi">Majid Mardaniyan Ghahfarokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolhamid%20Habibi"> Abdolhamid Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mohammad%20Shahi"> Majid Mohammad Shahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combination of exercise and diet as the most important strategy to reduce weight and control obesity-related factors, including Irisin, Insulin, and Glucose was raised. The aim of this study was to investigate the effect of aerobic exercise combined with four different diets on serum levels of Irisin, Insulin, and Glucose in overweight men. Methods: In this quasi-experimental study, 8 overweight men (BMI 29.23±0.47) with average age of (23±1.6) voluntarily participated in 4 sessions by one-week interval. The study was done in exercise physiology lab. In each session, subjects performed a 30 minutes treadmill test with 60-70% of maximum heart rate, after consuming a high carbohydrate, high-fat, high-protein and normal diet. For biochemical measurement, three blood samples were taken in fasting state, two hours after meals and after exercise Results: Statistical analysis of data showed that the serum levels of Irisin after consumption all four diets had been reduced which this reduce as a result of high-fat diet that were significantly (p ≤ 0/038). Serum concentration of Insulin and Glucose increased after consuming four diets. However, increase in serum Insulin and Glucose was significant only after consuming high-carbohydrate diet (Respectively p ≤ 0/001, p ≤ 0/042). In addition, during exercise after consuming all four regular diet, high carbohydrate, high-protein and high-fat, Irisin significant increased significantly (Respectively p ≤ 0/021, p ≤ 0/049, p ≤ 0/001, P ≤ 0/003), Insulin decreased significantly (Respectively p ≤ 0/002, p ≤ 0/001, p ≤ 0/001, p ≤ 0/002) and Glucose were significantly reduced (Respectively p ≤ 0/001, p ≤ 0/001, P ≤ 0/001, p ≤ 0/002). After aerobic activity following the consumption of a high protein diet the highest increase in irisin levels, and after aerobic exercise following consumption of high carbohydrate diet the greatest decrease in insulin and glucose levels were observed. Conclusion: It seems that diet alone and exercises following different consumption diets can have a significant effect on Irisin, Insulin, and Glucose serum levels in overweight young men. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20aerobic%20exercise" title="acute aerobic exercise">acute aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=irisin" title=" irisin"> irisin</a>, <a href="https://publications.waset.org/abstracts/search?q=overweight" title=" overweight"> overweight</a> </p> <a href="https://publications.waset.org/abstracts/74071/the-effect-of-acute-aerobic-exercise-after-consumption-of-four-different-diets-on-serum-levels-irisin-insulin-and-glucose-in-overweight-men" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Zinc Nanoparticles Modified Electrode as an Insulin Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radka%20Gorejova">Radka Gorejova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Sisolakova"> Ivana Sisolakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Shepa"> Jana Shepa</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederika%20Chovancova"> Frederika Chovancova</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Orinakova"> Renata Orinakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus (DM) is a serious metabolic disease characterized by chronic hyperglycemia. Often, the symptoms are not sufficiently observable at early stages, and so hyperglycemia causes pathological and functional changes before the diagnosis of the DM. Therefore, the development of an electrochemical sensor that will be fast, accurate, and instrumentally undemanding is currently needful. Screen-printed carbon electrodes (SPCEs) can be considered as the most suitable matrix material for insulin sensors because of the small size of the working electrode. It leads to the analyst's volume reduction to only 50 µl for each measurement. The surface of bare SPCE was modified by a combination of chitosan, multi-walled carbon nanotubes (MWCNTs), and zinc nanoparticles (ZnNPs) to obtain better electrocatalytic activity towards insulin oxidation. ZnNPs were electrochemically deposited on the chitosan-MWCNTs/SPCE surface using the pulse deposition method. Thereafter, insulin was determined on the prepared electrode using chronoamperometry and electrochemical impedance spectroscopy (EIS). The chronoamperometric measurement was performed by adding a constant amount of insulin in 0.1 M NaOH and PBS (2 μl) with the concentration of 2 μM, and the current response of the system was monitored after a gradual increase in concentration. Subsequently, the limit of detection (LOD) of the prepared electrode was determined via the Randles-Ševčík equation. The LOD was 0.47 µM. Prepared electrodes were studied also as the impedimetric sensors for insulin determination. Therefore, various insulin concentrations were determined via EIS. Based on the performed measurements, the ZnNPs/chitosan-MWCNTs/SPCE can be considered as a potential candidate for novel electrochemical sensor for insulin determination. Acknowledgments: This work has been supported by the projects Visegradfund project number 22020140, VEGA 1/0095/21 of the Slovak Scientific Grant Agency, and APVV-PP-COVID-20-0036 of the Slovak Research and Development Agency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20nanoparticles" title="zinc nanoparticles">zinc nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=chronoamperometry" title=" chronoamperometry"> chronoamperometry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title=" electrochemical impedance spectroscopy"> electrochemical impedance spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/134209/zinc-nanoparticles-modified-electrode-as-an-insulin-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> The Relationship of Weight Regain with Biochemical and Psychological Factors in Non Postmenopausal Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Shidfar">Farzad Shidfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Rostami"> Najmeh Rostami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziaodin%20Mazhari"> Ziaodin Mazhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Hosseini%20Baharanchi"> Fatemeh Hosseini Baharanchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aim: The rate of failure to maintain a reduced weight has been increased. By definition, people who regain about one-third to two-thirds of their lost weight after one year from the end of the dietary treatment and return all the lost weight after 5 years it is called weight regain. This study was performed to find the causes of weight regain and its relationship with biochemical and psychological factors. Materials and Methods: This cross-sectional study was performed by reviewing the files of people who followed the dietary treatment in 1397-1398.seventy-three persons was in the weight regain group, and seventy-three people were in the weight maintenance group. Psychological factors such as depression, anxiety, quality of life, physical activity, and dietary frequency were assessed through a questionnaire, and biochemical factors such as serum insulin and fasting blood sugar were measured. The mean basal energy in the weight regain group was significantly higher than the weight maintenance group (p = 0.004). There was no significant difference between the two groups in terms of food intake and inflammatory index of food. There was no significant difference between the two groups in terms of food intake and inflammatory index of food. Mean serum insulin concentration (p = 0.023), mean fasting blood sugar (p = 0.04) and insulin resistance (p = 0.013) in the weight regain group were higher than the weight maintenance group. The weight maintenance group showed higher insulin sensitivity than the weight regain group (p = 0.005). There was no significant difference between the two groups in terms of psychological indicators. Conclusion: The only body mass index after one year from the end of the treatment period, insulin sensitivity, serum insulin concentration, fasting blood sugar, insulin resistance, selenium intake, and basal energy expenditure Specific and significant with weight regain. However, the significance of insulin resistance, basal energy expenditure, and body mass index after one year from the end of the treatment period was higher than other variables in the weight regain group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20weight%20maintenance" title="body weight maintenance">body weight maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20regain" title=" weight regain"> weight regain</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20sensitivity" title=" insulin sensitivity"> insulin sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/155419/the-relationship-of-weight-regain-with-biochemical-and-psychological-factors-in-non-postmenopausal-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Preventive Effect of Stem Back Extracts of Coula edulis Baill. against High-Fat / High Sucrose Diet-Induced Insulin Resistance and Oxidative Stress in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Beyegue">Eric Beyegue</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Azantza"> Boris Azantza</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Laure%20Ngondi"> Judith Laure Ngondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20E.%20Oben"> Julius E. Oben</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Insulin resistance (IR) and oxidative stress are associated with obesity, diabetes mellitus, and other cardio metabolic disorders. The aim of this study was to investigate the effect of Coula edulis extracts (CEE) on insulin resistance and oxidative stress markers in high-fat/high sucrose diet-induced insulin resistance in rats. Materials and Methods: Thirty male rats were divided into 6 groups of 5 rats each fed, received daily oral administration of CE extracts for 8 weeks as follows: Group 1 or negative control group, fed with standard diet (SD); Group 2 fed with high-fat/high sucrose diet (HFHS) only; Group3 fed with HFHS + CEAq 200; Group 4 fed with HFHS + CEAq 400; Group 5 fed with HFHS + CEEt 200; Group 6 fed with HFHS + CEEt 400. At the end of the experiment (8 weeks), animals were sacrificed plasma lipid profile, glucose, insulin, oxidative marker and digestive enzyme activities were measured. The homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Results: Feedings with HFHS significantly (p < 0.01) induced plasma hyperglycaemia, hyperinsulinaemia, increased triglyceride, total cholesterol, and low-density lipoprotein levels, decreased high-density lipoprotein levels, alterations of α amylase, and glucose-6-phosphatase activities, and oxidative stress. Daily oral administration with CEE for eight weeks after insulin resistance induction had a hypolipidaemic action, antioxidative activities and modulated metabolic markers. Ethanolic extract at the higher dose had the best effect on body weight gain and insulin resistance, whereas aqueous extract showed the better activity on hyperlipidemia. Conclusion: These results suggest that CEAq and CEEt at 400mg/kg are promising complementary supplements that can be used to protect better from metabolic disorders associated with HFHS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coula%20edulis%20Baill" title="Coula edulis Baill">Coula edulis Baill</a>, <a href="https://publications.waset.org/abstracts/search?q=high-fat%20%2F%20high%20sucrose%20diet" title=" high-fat / high sucrose diet"> high-fat / high sucrose diet</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/64504/preventive-effect-of-stem-back-extracts-of-coula-edulis-baill-against-high-fat-high-sucrose-diet-induced-insulin-resistance-and-oxidative-stress-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Effect of Intraperitoneal Administration of Ghrelin on Serum Glucose and Insulin Levels in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habib%20Aghdam%20Shahryar">Habib Aghdam Shahryar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was investigation on the effect of intraperipheral (IP) injection of ghrelin on serum insulin and glucose levels in native turkey. Seventy-two 28 day (d)-old native turkey were assigned into three treatments and four replicate for 40 days experimental rearing period: group 1, intact without any injection, group 2, injected 50 ng ghrelin/kg body weight (BW), and group 3, injected 100 ng ghrelin/kg BW. Intraperitoneal injection of rat ghrelin was conducted on d 28 and before the onset of the experimental rearing period. Blood samples were taken 12 hr after injection and 40 days after injection. The result showed glucose concentrations have been affected by administered ghrelin and significant between groups (P<0.01). Injection of ghrelin at G 100 increased glucose level of serum in 12 hr after injection and 40 days after injection (276.6 and 260.0 mg/dl, respectively). Also, by increasing the dose of injected ghrelin, insulin levels than the control group showed an increase (P < 0.001). This study suggests roles of ghrelin in serum biochemical regulation may show a different effect of ghrelin on blood parameters in avian species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ghrelin%20injection" title="ghrelin injection">ghrelin injection</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=turkey" title=" turkey "> turkey </a> </p> <a href="https://publications.waset.org/abstracts/34466/effect-of-intraperitoneal-administration-of-ghrelin-on-serum-glucose-and-insulin-levels-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Insulin Resistance in Early Postmenopausal Women Can Be Attenuated by Regular Practice of 12 Weeks of Yoga Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveena%20Sinha">Praveena Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Diabetes is a global public health burden, particularly affecting postmenopausal women. Insulin resistance (IR) is prevalent in this population, and it is associated with an increased risk of developing type 2 diabetes. Yoga therapy is gaining attention as a complementary intervention for diabetes due to its potential to address stress psychophysiology. This study focuses on the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Research Aim: The aim of this research is to investigate the effect of a 3-month long yoga practice on insulin resistance in early postmenopausal women. Methodology: The study conducted a prospective longitudinal design with 67 women within five years of menopause. Participants were divided into two groups based on their willingness to join yoga. The Yoga group (n = 37) received routine gynecological management along with an integrated yoga module, while the Non-Yoga group (n = 30) received only routine management. Insulin resistance was measured using the homeostasis model assessment of insulin resistance (HOMA-IR) method before and after the intervention. Statistical analysis was performed using GraphPad Prism Version 5 software, with statistical significance set at P < 0.05. Findings: The results indicate a significant decrease in serum fasting insulin levels and HOMA-IR measurements in the Yoga group, although the decrease did not reach statistical significance. In contrast, the Non-Yoga group showed a significant rise in serum fasting insulin levels and HOMA-IR measurements after 3 months, suggesting a detrimental effect on insulin resistance in these postmenopausal women. Theoretical Importance: This study provides evidence that a 12-week yoga practice can attenuate the increase in insulin resistance in early postmenopausal women. It highlights the potential of yoga as a preventive measure against the early onset of insulin resistance and the development of type 2 diabetes mellitus. Regular yoga practice can be a valuable tool in addressing hormonal imbalances associated with early postmenopause, leading to a decrease in morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in this population. Data Collection and Analysis Procedures: Data collection involved measuring serum fasting insulin levels and calculating HOMA-IR. Statistical analysis was performed using GraphPad Prism Version 5 software, and mean values with standard error of the mean were reported. The significance level was set at P < 0.05. Question Addressed: The study aimed to address whether a 3-month long yoga practice could attenuate insulin resistance in early postmenopausal women. Conclusion: The research findings support the efficacy of a 12-week yoga practice in attenuating insulin resistance in early postmenopausal women. Regular yoga practice has the potential to prevent the early onset of insulin resistance and the development of type 2 diabetes mellitus in this population. By addressing the hormonal imbalances associated with early post menopause, yoga could significantly decrease morbidity and mortality related to insulin resistance and type 2 diabetes mellitus in these subjects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post%20menopause" title="post menopause">post menopause</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMA-IR" title=" HOMA-IR"> HOMA-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=yoga" title=" yoga"> yoga</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a> </p> <a href="https://publications.waset.org/abstracts/170403/insulin-resistance-in-early-postmenopausal-women-can-be-attenuated-by-regular-practice-of-12-weeks-of-yoga-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Relationship Between Insulin Resistance and Some Coagulation and Fibrinolytic Parameters in Subjects With Metabolic Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amany%20Ragab">Amany Ragab</a>, <a href="https://publications.waset.org/abstracts/search?q=Nashwa%20Khairat%20Abousamra"> Nashwa Khairat Abousamra</a>, <a href="https://publications.waset.org/abstracts/search?q=Omayma%20Saleh"> Omayma Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20Higazy"> Asmaa Higazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulin resistance syndrome has been shown to be associated with many coagulation and fibrinolytic proteins and these associations suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders. This study was conducted to determine the levels of some of the haemostatic parameters in subjects having metabolic syndrome and to correlate these values with the anthropometric and metabolic variables associated with this syndrome. The study included 46 obese non diabetic subjects of whom 28 subjects(group1) fulfilled the ATP III criteria of the metabolic syndrome and 18 subjects (group2) did not have metabolic syndrome as well as 14 lean subjects (group 3) of matched age and sex as a control group. Clinical and laboratory evaluation of the study groups stressed on anthropometric measurements (weight, height, body mass index, waist circumference, and sagittal abdominal diameter), blood pressure, and laboratory measurements of fasting plasma glucose, fasting insulin, serum lipids, tissue plasminogen activator (t-PA), antithrombin III activity (ATIII), protein C and von Willebrand factor (vWf) antigen. There was significant increase in the concentrations of t-PA and vWf antigens in subjects having metabolic syndrome (group 1) in comparison to the other groups while there were non-significant changes in the levels of protein C antigen and AT III activity. Both t-PA and vWf showed significant correlation with HOMA-IR as a measure of insulin sensitivity. The t-PA showed also significant correlation with most of the variables of metabolic syndrome including waist circumference, BMI, systolic blood pressure, fasting plasma glucose, fasting insulin, and HDL cholesterol. On the other hand, vWf showed significant correlations with fasting plasma glucose, fasting insulin and sagital abdominal diameter, with non-significant correlations with the other variables. Haemostatic and fibrinolytic parameters should be included in the features and characterization of the insulin resistance syndrome. t-PA and vWf antigens concentrations were increased in subjects with metabolic syndrome and correlated with the HOMA-IR measure of insulin sensitivity. Taking into consideration that both t-PA and vWf are mainly released from vascular endothelium, these findings could be an indicator of endothelial dysfunction in that group of subjects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title="insulin resistance">insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20syndrome" title=" metabolic syndrome"> metabolic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation" title=" coagulation"> coagulation</a> </p> <a href="https://publications.waset.org/abstracts/154223/relationship-between-insulin-resistance-and-some-coagulation-and-fibrinolytic-parameters-in-subjects-with-metabolic-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=insulin&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>