CINXE.COM
Jury theorem - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Jury theorem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"33192fca-fdee-4907-a958-9ebae60d8edf","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Jury_theorem","wgTitle":"Jury theorem","wgCurRevisionId":1241401954,"wgRevisionId":1241401954,"wgArticleId":67752523,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with Stanford Encyclopedia of Philosophy links","Articles with short description","Short description matches Wikidata","Probability theorems","Voting theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Jury_theorem","wgRelevantArticleId":67752523,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q107177007","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns" ,"ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Jury theorem - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Jury_theorem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Jury_theorem&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Jury_theorem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Jury_theorem rootpage-Jury_theorem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Jury+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Jury+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Jury+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Jury+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Setting" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Setting"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Setting</span> </div> </a> <ul id="toc-Setting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Independence,_competence,_and_uniformity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Independence,_competence,_and_uniformity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Independence, competence, and uniformity</span> </div> </a> <ul id="toc-Independence,_competence,_and_uniformity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Correlated_votes:_weakening_the_independence_assumption" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Correlated_votes:_weakening_the_independence_assumption"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Correlated votes: weakening the independence assumption</span> </div> </a> <button aria-controls="toc-Correlated_votes:_weakening_the_independence_assumption-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Correlated votes: weakening the independence assumption subsection</span> </button> <ul id="toc-Correlated_votes:_weakening_the_independence_assumption-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Truth-sensitive_independence_and_competence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Truth-sensitive_independence_and_competence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Truth-sensitive independence and competence</span> </div> </a> <ul id="toc-Truth-sensitive_independence_and_competence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Effect_of_an_opinion_leader" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Effect_of_an_opinion_leader"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Effect of an opinion leader</span> </div> </a> <ul id="toc-Effect_of_an_opinion_leader-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Problem-sensitive_independence_and_competence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Problem-sensitive_independence_and_competence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Problem-sensitive independence and competence</span> </div> </a> <ul id="toc-Problem-sensitive_independence_and_competence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bounded_correlation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bounded_correlation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Bounded correlation</span> </div> </a> <ul id="toc-Bounded_correlation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_solutions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_solutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Other solutions</span> </div> </a> <ul id="toc-Other_solutions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Diverse_capabilities:_weakening_the_uniformity_assumption" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Diverse_capabilities:_weakening_the_uniformity_assumption"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Diverse capabilities: weakening the uniformity assumption</span> </div> </a> <button aria-controls="toc-Diverse_capabilities:_weakening_the_uniformity_assumption-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Diverse capabilities: weakening the uniformity assumption subsection</span> </button> <ul id="toc-Diverse_capabilities:_weakening_the_uniformity_assumption-sublist" class="vector-toc-list"> <li id="toc-Stronger_competence_requirements" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stronger_competence_requirements"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Stronger competence requirements</span> </div> </a> <ul id="toc-Stronger_competence_requirements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Random_voter_selection" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Random_voter_selection"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Random voter selection</span> </div> </a> <ul id="toc-Random_voter_selection-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Weighted_majority_rule" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Weighted_majority_rule"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Weighted majority rule</span> </div> </a> <ul id="toc-Weighted_majority_rule-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-More_than_two_options" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#More_than_two_options"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>More than two options</span> </div> </a> <ul id="toc-More_than_two_options-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Indirect_majority_systems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Indirect_majority_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Indirect majority systems</span> </div> </a> <ul id="toc-Indirect_majority_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Strategic_voting" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Strategic_voting"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Strategic voting</span> </div> </a> <ul id="toc-Strategic_voting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subjective_opinions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Subjective_opinions"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Subjective opinions</span> </div> </a> <ul id="toc-Subjective_opinions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applicability" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applicability"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Applicability</span> </div> </a> <ul id="toc-Applicability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Jury theorem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q107177007#sitelinks-wikipedia" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Jury_theorem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Jury_theorem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Jury_theorem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Jury_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Jury_theorem&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Jury_theorem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Jury_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Jury_theorem&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Jury_theorem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Jury_theorem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Jury_theorem&oldid=1241401954" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Jury_theorem&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Jury_theorem&id=1241401954&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJury_theorem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJury_theorem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Jury_theorem&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Jury_theorem&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q107177007" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical theory of majority voting</div> <p>A <b>jury theorem</b> is a <a href="/wiki/Mathematical_theorem" class="mw-redirect" title="Mathematical theorem">mathematical theorem</a> proving that, under certain assumptions, a decision attained using <a href="/wiki/Majority_voting" class="mw-redirect" title="Majority voting">majority voting</a> in a large group is more likely to be correct than a decision attained by a single expert. It serves as a formal argument for the idea of <a href="/wiki/Wisdom_of_the_crowd" title="Wisdom of the crowd">wisdom of the crowd</a>, for decision of <a href="/wiki/Question_of_fact" class="mw-redirect" title="Question of fact">questions of fact</a> by <a href="/wiki/Jury_trial" title="Jury trial">jury trial</a>, and for <a href="/wiki/Democracy" title="Democracy">democracy</a> in general.<sup id="cite_ref-:2_1-0" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>The first and most famous jury theorem is <a href="/wiki/Condorcet%27s_jury_theorem" title="Condorcet's jury theorem">Condorcet's jury theorem</a>. It assumes that all voters have independent probabilities to vote for the correct alternative, these probabilities are larger than 1/2, and are the same for all voters. Under these assumptions, the probability that the majority decision is correct is strictly larger when the group is larger; and when the group size tends to infinity, the probability that the majority decision is correct tends to 1. </p><p>There are many other jury theorems, relaxing some or all of these assumptions. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Setting">Setting</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=1" title="Edit section: Setting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The premise of all jury theorems is that there is an <i><a href="/wiki/Objective_truth" class="mw-redirect" title="Objective truth">objective truth</a></i>, which is unknown to the voters. Most theorems focus on <i>binary issues</i> (issues with two possible states), for example, whether a certain <a href="/wiki/Defendant" title="Defendant">defendant</a> is guilty or innocent, whether a certain <a href="/wiki/Stock" title="Stock">stock</a> is going to rise or fall, etc. There are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> voters (or jurors), and their goal is to reveal the truth. Each voter has an <i><a href="/wiki/Opinion" title="Opinion">opinion</a></i> about which of the two options is correct. The opinion of each voter is either correct (i.e., equals the true state), or wrong (i.e., differs than the true state). This is in contrast to other settings of <a href="/wiki/Voting" title="Voting">voting</a>, in which the opinion of each voter represents his/her subjective preferences and is thus always "correct" for this specific voter. The opinion of a voter can be considered a <a href="/wiki/Random_variable" title="Random variable">random variable</a>: for each voter, there is a positive probability that his opinion equals the true state. </p><p>The group decision is determined by the <i><a href="/wiki/Majority_rule" title="Majority rule">majority rule</a></i>. For example, if a majority of voters says "guilty" then the decision is "guilty", while if a majority says "innocent" then the decision is "innocent". To avoid ties, it is often assumed that the number of voters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is odd. Alternatively, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is even, then ties are broken by tossing a <a href="/wiki/Fair_coin" title="Fair coin">fair coin</a>. </p><p>Jury theorems are interested in the <i>probability of correctness</i> - the probability that the majority decision coincides with the objective truth. Typical jury theorems make two kinds of claims on this probability:<sup id="cite_ref-:2_1-1" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <ol><li><i>Growing Reliability</i>: the probability of correctness is larger when the group is larger.</li> <li><i>Crowd Infallibility</i>: the probability of correctness goes to 1 when the group size goes to infinity.</li></ol> <p>Claim 1 is often called the <i>non-asymptotic part</i> and claim 2 is often called the <i>asymptotic part</i> of the jury theorem. </p><p>Obviously, these claims are not always true, but they are true under certain assumptions on the voters. Different jury theorems make different assumptions. </p> <div class="mw-heading mw-heading2"><h2 id="Independence,_competence,_and_uniformity"><span id="Independence.2C_competence.2C_and_uniformity"></span>Independence, competence, and uniformity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=2" title="Edit section: Independence, competence, and uniformity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Condorcet%27s_jury_theorem" title="Condorcet's jury theorem">Condorcet's jury theorem</a></div> <p>Condorcet's jury theorem makes the following three assumptions: </p> <ol><li><i>Unconditional Independence</i>: the voters make up their minds independently. In other words, their opinions are <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent random variables</a>.</li> <li><i>Unconditional Competence</i>: the probability that the opinion of a single voter coincides with the objective truth is larger than 1/2 (i.e., the voter is smarter than a random coin-toss).</li> <li><i>Uniformity</i>: all voters have the same probability of being correct.</li></ol> <p>The jury theorem of Condorcet says that these three assumptions imply Growing Reliability and Crowd Infallibility. </p> <div class="mw-heading mw-heading2"><h2 id="Correlated_votes:_weakening_the_independence_assumption">Correlated votes: weakening the independence assumption</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=3" title="Edit section: Correlated votes: weakening the independence assumption"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The opinions of different voters are often correlated, so Unconditional Independence may not hold. In this case, the Growing Reliability claim might fail. </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=4" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> be the probability of a juror voting for the correct alternative and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> be the (second-order) <i><a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">correlation coefficient</a></i> between any two correct votes. If all higher-order correlation coefficients in the <a href="/w/index.php?title=Bahadur_representation&action=edit&redlink=1" class="new" title="Bahadur representation (page does not exist)">Bahadur representation</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> of the <a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">joint probability distribution</a> of votes equal to zero, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p,c)\in {\mathcal {B}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p,c)\in {\mathcal {B}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c568de8ae4f968327e15178ab7a5c985f4792f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.606ex; height:2.843ex;" alt="{\displaystyle (p,c)\in {\mathcal {B}}_{n}}"></span> is an <a href="/w/index.php?title=Admissible_pair&action=edit&redlink=1" class="new" title="Admissible pair (page does not exist)">admissible pair</a>, then the probability of the jury collectively reaching the correct decision under simple majority is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n,p,c)=I_{p}\left({\frac {n+1}{2}},{\frac {n+1}{2}}\right)+0.5c(n-1)(0.5-p){\frac {\partial I_{p}({\frac {n+1}{2}},{\frac {n+1}{2}})}{\partial p}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>0.5</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>0.5</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n,p,c)=I_{p}\left({\frac {n+1}{2}},{\frac {n+1}{2}}\right)+0.5c(n-1)(0.5-p){\frac {\partial I_{p}({\frac {n+1}{2}},{\frac {n+1}{2}})}{\partial p}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb957654b9edc5beee70c556fcfe6eef53b8f98f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:70.073ex; height:7.176ex;" alt="{\displaystyle P(n,p,c)=I_{p}\left({\frac {n+1}{2}},{\frac {n+1}{2}}\right)+0.5c(n-1)(0.5-p){\frac {\partial I_{p}({\frac {n+1}{2}},{\frac {n+1}{2}})}{\partial p}},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3226e9ad60e659391806720213f9c5f6123a70f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.082ex; height:2.843ex;" alt="{\displaystyle I_{p}}"></span> is the <i><a href="/wiki/Beta_function" title="Beta function">regularized incomplete beta function</a></i>. </p><p><i>Example:</i> Take a jury of three jurors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n=3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>=</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n=3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5bf907d825d0024e917b2b45769e1727886afdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.465ex; height:2.843ex;" alt="{\displaystyle (n=3)}"></span>, with individual competence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0.55}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0.55</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0.55}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ea38e13cd10fb28c65e54efa463a9db40b98cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:8.492ex; height:2.509ex;" alt="{\displaystyle p=0.55}"></span> and second-order correlation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=0.4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>0.4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=0.4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d084e45074292b8a909b18dde341916b093a4057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.077ex; height:2.176ex;" alt="{\displaystyle c=0.4}"></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(3,0.55,0.4)=0.54505}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>0.55</mn> <mo>,</mo> <mn>0.4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.54505</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(3,0.55,0.4)=0.54505}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5ed59c8e7fffd2333b7ca3bc600481e2b343d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.611ex; height:2.843ex;" alt="{\displaystyle P(3,0.55,0.4)=0.54505}"></span>. The competence of the jury is lower than the competence of a single juror, which equals to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0.55}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0.55</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0.55}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7950904cb1df7e1d1f541bf82b51e5a2aaf1af7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.134ex; height:2.176ex;" alt="{\displaystyle 0.55}"></span>. Moreover, enlarging the jury by two jurors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n=5)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>=</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n=5)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e80435c961bf66675700f669a4ca28dafdd853c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.465ex; height:2.843ex;" alt="{\displaystyle (n=5)}"></span> decreases the jury competence even further, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(5,0.55,0.4)=0.5196194}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>5</mn> <mo>,</mo> <mn>0.55</mn> <mo>,</mo> <mn>0.4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.5196194</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(5,0.55,0.4)=0.5196194}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d17e31a585080fee1b1ee55b2f437a6c4d4f5d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.936ex; height:2.843ex;" alt="{\displaystyle P(5,0.55,0.4)=0.5196194}"></span>. Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0.55}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0.55</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0.55}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ea38e13cd10fb28c65e54efa463a9db40b98cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:8.492ex; height:2.509ex;" alt="{\displaystyle p=0.55}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=0.4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>0.4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=0.4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d084e45074292b8a909b18dde341916b093a4057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.077ex; height:2.176ex;" alt="{\displaystyle c=0.4}"></span> is an admissible pair of parameters. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb41e9a10a8fd7179b9170149a8d70949ba5d03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=5}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0.55}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0.55</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0.55}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ea38e13cd10fb28c65e54efa463a9db40b98cae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:8.492ex; height:2.509ex;" alt="{\displaystyle p=0.55}"></span>, the maximum admissible second-order correlation coefficient equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx 0.43}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> <mn>0.43</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx 0.43}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4bcc407d5f102963e0aa9f1080ac8b01c87dc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.588ex; height:2.176ex;" alt="{\displaystyle \approx 0.43}"></span>. </p><p>The above example shows that when the individual competence is low but the correlation is high: </p> <ul><li>The collective competence under simple majority may fall below that of a single juror;</li> <li>Enlarging the jury may decrease its collective competence.</li></ul> <p>The above result is due to Kaniovski and Zaigraev. They also discuss optimal jury design for homogenous juries with correlated votes.<sup id="cite_ref-:0_3-0" class="reference"><a href="#cite_note-:0-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>There are several jury theorems that weaken the Independence assumption in various ways. </p> <div class="mw-heading mw-heading3"><h3 id="Truth-sensitive_independence_and_competence">Truth-sensitive independence and competence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=5" title="Edit section: Truth-sensitive independence and competence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In binary decision problems, there is often one option that is easier to detect that the other one. For example, it may be easier to detect that a defendant is guilty (as there is clear evidence for guilt) than to detect that he is innocent. In this case, the probability that the opinion of a single voter is correct is represented by two different numbers: probability given that option #1 is correct, and probability given that option #2 is correct. This also implies that opinions of different voters are <a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">correlated</a>. This motivates the following relaxations of the above assumptions: </p> <ol><li><i>Conditional Independence</i>: for each of the two options, the voters' opinions given that this option is the true one are <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent random variables</a>.</li> <li><i>Conditional Competence</i>: for each of the two options, the probability that a single voter's opinion is correct given that this option is true is larger than 1/2.</li> <li><i>Conditional Uniformity</i>: for each of the two options, all voters have the same probability of being correct given that this option is true.</li></ol> <p>Growing Reliability and Crowd Infallibility continue to hold under these weaker assumptions.<sup id="cite_ref-:2_1-2" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>One criticism of Conditional Competence is that it depends on the way the decision question is formulated. For example, instead of asking whether the defendant is guilty or innocent, one can ask whether the defendant is guilty of exactly 10 charges (option A), or guilty of another number of charges (0..9 or more than 11). This changes the conditions, and hence, the conditional probability. Moreover, if the state is very specific, then the probability of voting correctly might be below 1/2, so Conditional Competence might not hold.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Effect_of_an_opinion_leader">Effect of an opinion leader</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=6" title="Edit section: Effect of an opinion leader"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another cause of correlation between voters is the existence of an <a href="/wiki/Opinion_leadership" title="Opinion leadership">opinion leader</a>. Suppose each voter makes an independent decision, but then each voter, with some fixed probability, changes his opinion to match that of the opinion leader. Jury theorems by Boland<sup id="cite_ref-:1_5-0" class="reference"><a href="#cite_note-:1-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> and Boland, Proschan and Tong<sup id="cite_ref-:4_6-0" class="reference"><a href="#cite_note-:4-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> shows that, if (and only if) the probability of following the opinion leader is less than 1-1/2<i>p</i> (where <i>p</i> is the competence level of all voters), then Crowd Infallibility holds. </p> <div class="mw-heading mw-heading3"><h3 id="Problem-sensitive_independence_and_competence">Problem-sensitive independence and competence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=7" title="Edit section: Problem-sensitive independence and competence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to the dependence on the true option, there are many other reasons for which voters' opinions may be correlated. For example: </p> <ul><li><a href="/wiki/Deliberation" title="Deliberation">Deliberation</a> among voters;</li> <li><a href="/wiki/Peer_pressure" title="Peer pressure">Peer pressure</a>;</li> <li>False evidence (e.g. a guilty defendant that excels at pretending to be innocent);</li> <li>External conditions (e.g. poor weather affecting their judgement).</li> <li>Any other common cause of votes</li></ul> <p>It is possible to weaken the Conditional Independence assumption, and conditionalize on <i>all</i> common causes of the votes (rather than just the state). In other words, the votes are now independent <i>conditioned on the specific decision problem</i>. However, in a specific problem, the Conditional Competence assumption may not be valid. For example, in a specific problem with false evidence, it is likely that most voters will have a wrong opinion. Thus, the two assumptions - conditional independence and conditional competence - are not justifiable simultaneously (under the same conditionalization).<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>A possible solution is to weaken Conditional Competence as follows. For each voter and each problem <i>x</i>, there is a probability <i>p</i>(<i>x</i>) that the voter's opinion is correct in this specific problem. Since <i>x</i> is a random variable, <i>p</i>(<i>x</i>) is a random variable too. Conditional Competence requires that <i>p</i>(<i>x</i>) > 1/2 with probability 1. The weakened assumption is: </p> <ul><li><i>Tendency to Competence</i>: for each voter, and for each <i>r</i>>0, the probability that <i>p</i>(<i>x</i>) = 1/2+<i>r</i> is at least as large as the probability that <i>p</i>(<i>x</i>) = 1/2-<i>r</i>.</li></ul> <p>A jury theorem by Dietrich and Spiekerman<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> says that Conditional Independence, Tendency to Competence, and Conditional Uniformity, together imply Growing Reliability. Note that Crowd Infallibility is not implied. In fact, the probability of correctness tends to a value which is below 1, if and only of Conditional Competence does not hold. </p> <div class="mw-heading mw-heading3"><h3 id="Bounded_correlation">Bounded correlation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=8" title="Edit section: Bounded correlation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A jury theorem by Pivato<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> shows that, if the average covariance between voters becomes small as the population becomes large, then Crowd Infallibility holds (for some voting rule). There are other jury theorems that take into account the degree to which votes may be correlated.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Other_solutions">Other solutions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=9" title="Edit section: Other solutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Other ways to cope with voter correlation include <a href="/wiki/Causal_network" class="mw-redirect" title="Causal network">causal networks</a>, dependence structures, and interchangeability.<sup id="cite_ref-:2_1-3" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: 2.2">: 2.2 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Diverse_capabilities:_weakening_the_uniformity_assumption">Diverse capabilities: weakening the uniformity assumption</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=10" title="Edit section: Diverse capabilities: weakening the uniformity assumption"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Different voters often have different competence levels, so the Uniformity assumption does not hold. In this case, both Growing Reliability and Crowd Infallibility may not hold. This may happen if new voters have much lower competence than existing voters, so that adding new voters decreases the group's probability of correctness. In some cases, the probability of correctness might converge to 1/2 (- a random decision) rather than to 1.<sup id="cite_ref-:3_12-0" class="reference"><a href="#cite_note-:3-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Stronger_competence_requirements">Stronger competence requirements</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=11" title="Edit section: Stronger competence requirements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uniformity can be dismissed if the Competence assumption is strengthened. There are several ways to strengthen it: </p> <ul><li>Strong Competence: for each voter <i>i</i>, the probability of correctness <i>p<sub>i</sub></i> is at least 1/2+<i>e</i>, where <i>e</i>>0 is fixed for all voters. In other words: the competence is bounded away from a fair coin toss. A jury theorem by Paroush<sup id="cite_ref-:3_12-1" class="reference"><a href="#cite_note-:3-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> shows that Strong Competence and Conditional Independence together imply Crowd Infallibility (but not Growing Reliability).</li> <li>Average Competence: the <i>average</i> of the individual competence levels of the voters (i.e. the average of their individual probabilities of deciding correctly) is slightly greater than half, or converges to a value above 1/2. Jury theorems by Grofman, Owen and Feld,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> and Berend and Paroush,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> show that Average Competence and Conditional Independence together imply Crowd Infallibility (but not Growing Reliability).</li></ul> <div class="mw-heading mw-heading3"><h3 id="Random_voter_selection">Random voter selection</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=12" title="Edit section: Random voter selection"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>instead of assuming that the voter identity is fixed, one can assume that there is a large pool of potential voters with different competence levels, and the actual voters are selected at random from this pool (as in <a href="/wiki/Sortition" title="Sortition">sortition</a>). </p><p>A jury theorem by Ben Yashar and Paroush<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> shows that, under certain conditions, the correctness probability of a jury, or of a subset of it chosen at random, is larger than the correctness probability of a single juror selected at random. A more general jury theorem by Berend and Sapir<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> proves that Growing Reliability holds in this setting: the correctness probability of a random committee increases with the committee size. The theorem holds, under certain conditions, even with correlated votes.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>A jury theorem by Owen, Grofman and Feld<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> analyzes a setting where the competence level is random. They show what distribution of individual competence maximizes or minimizes the probability of correctness. </p> <div class="mw-heading mw-heading3"><h3 id="Weighted_majority_rule">Weighted majority rule</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=13" title="Edit section: Weighted majority rule"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the competence levels of the voters are known, the simple majority rule may not be the best decision rule. There are various works on identifying the <i>optimal decision rule</i> - the rule maximizing the group correctness probability. Nitzan and Paroush<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> show that, under Unconditional Independence, the optimal decision rule is a <i>weighted</i> majority rule, where the weight of each voter with correctness probability <i>p<sub>i</sub></i> is log(<i>p<sub>i</sub></i>/(1-<i>p<sub>i</sub></i>)), and an alternative is selected if the sum of weights of its supporters is above some threshold. Grofman and Shapley<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> analyze the effect of interdependencies between voters on the optimal decision rule. Ben-Yashar and Nitzan<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> prove a more general result. </p><p>Dietrich<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> generalizes this result to a setting that does not require prior probabilities of the 'correctness' of the two alternative. The only required assumption is Epistemic Monotonicity, which says that, if under certain profile alternative <i>x</i> is selected, and the profile changes such that <i>x</i> becomes more probable, then x is still selected. Dietrich shows that Epistemic Monotonicity implies that the optimal decision rule is weighted majority with a threshold. In the same paper, he generalizes the optimal decision rule to a setting that does not require the input to be a vote for one of the alternatives. It can be, for example, a subjective degree of belief. Moreover, competence parameters do not need to be known. For example, if the inputs are subjective beliefs <i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>, then the optimal decision rule sums log(<i>x<sub>i</sub></i>/(1-<i>x<sub>i</sub></i>)) and checks whether the sum is above some threshold. Epistemic Monotonicity is not sufficient for computing the threshold itself; the threshold can be computed by assuming <a href="/wiki/Expected_utility_hypothesis" title="Expected utility hypothesis">expected-utility maximization</a> and prior probabilities. </p><p>A general problem with the weighted majority rules is that they require to know the competence levels of the different voters, which is usually hard to compute in an objective way. Baharad, Goldberger, <a href="/wiki/Moshe_Koppel" title="Moshe Koppel">Koppel</a> and Nitzan<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> present an algorithm that solves this problem using <a href="/wiki/Statistical_learning_theory" title="Statistical learning theory">statistical machine learning</a>. It requires as input only a list of past votes; it does not need to know whether these votes were correct or not. If the list is sufficiently large, then its probability of correctness converges to 1 even if the individual voters' competence levels are close to 1/2. </p> <div class="mw-heading mw-heading2"><h2 id="More_than_two_options">More than two options</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=14" title="Edit section: More than two options"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Often, decision problems involve three or more options. This critical limitation was in fact recognized by Condorcet (see <a href="/wiki/Condorcet%27s_paradox" class="mw-redirect" title="Condorcet's paradox">Condorcet's paradox</a>), and in general it is very difficult to reconcile individual decisions between three or more outcomes (see <a href="/wiki/Arrow%27s_theorem" class="mw-redirect" title="Arrow's theorem">Arrow's theorem</a>). </p><p>This limitation may also be overcome by means of a sequence of votes on pairs of alternatives, as is commonly realized via the legislative amendment process. (However, as per Arrow's theorem, this creates a "path dependence" on the exact sequence of pairs of alternatives; e.g., which amendment is proposed first can make a difference in what amendment is ultimately passed, or if the law—with or without amendments—is passed at all.) </p><p>With three or more options, Conditional Competence can be generalized as follows: </p> <ul><li>Multioption Conditional Competence: for any two options <i>x</i> and <i>y</i>, if <i>x</i> is correct and <i>y</i> is not, then any voter is more likely to vote for <i>x</i> than for <i>y</i>.</li></ul> <p>A jury theorem by List and Goodin shows that Multioption Conditional Competence and Conditional Independence together imply Crowd Infallibility.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Dietrich and Spiekermann conjecture that they imply Growing Reliability too.<sup id="cite_ref-:2_1-4" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Another related jury theorem is by Everaere, Konieczny and Marquis.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>When there are more than two options, there are various <a href="/wiki/Electoral_system" title="Electoral system">voting rules</a> that can be used instead of simple majority. The statistic and utilitarian properties of such rules are analyzed e.g. by Pivato.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Indirect_majority_systems">Indirect majority systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=15" title="Edit section: Indirect majority systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Condorcet's theorem considers a <i>direct majority system</i>, in which all votes are counted directly towards the final outcome. Many countries use an <i>indirect majority system</i>, in which the voters are divided into groups. The voters in each group decide on an outcome by an internal majority vote; then, the groups decide on the final outcome by a majority vote among them. For example,<sup id="cite_ref-:1_5-1" class="reference"><a href="#cite_note-:1-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> suppose there are 15 voters. In a direct majority system, a decision is accepted whenever at least 8 votes support it. Suppose now that the voters are grouped into 3 groups of size 5 each. A decision is accepted whenever at least 2 groups support it, and in each group, a decision is accepted whenever at least 3 voters support it. Therefore, a decision may be accepted even if only 6 voters support it. </p><p>Boland, Proschan and Tong<sup id="cite_ref-:4_6-1" class="reference"><a href="#cite_note-:4-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> prove that, when the voters are independent and p>1/2, a direct majority system - as in Condorcet's theorem - always has a higher chance of accepting the correct decision than any indirect majority system. </p><p>Berg and Paroush<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> consider multi-tier voting hierarchies, which may have several levels with different decision-making rules in each level. They study the optimal voting structure, and compares the competence against the benefit of time-saving and other expenses. </p><p>Goodin and Spiekermann<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> compute the amount by which a small group of experts should be better than the average voters, in order for them to accept better decisions. </p> <div class="mw-heading mw-heading2"><h2 id="Strategic_voting">Strategic voting</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=16" title="Edit section: Strategic voting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is well-known that, when there are three or more alternatives, and voters have different preferences, they may engage in <a href="/wiki/Tactical_voting" class="mw-redirect" title="Tactical voting">strategic voting</a>, for example, vote for the second-best option in order to prevent the worst option from being elected. Surprisingly, strategic voting might occur even with two alternatives and when all voters have the same preference, which is to reveal the truth. For example, suppose the question is whether a defendant is guilty or innocent, and suppose a certain juror thinks the true answer is "guilty". However, he also knows that his vote is effective only if the other votes are tied. But, if other votes are tied, it means that the probability that the defendant is guilty is close to 1/2. Taking this into account, our juror might decide that this probability is not sufficient for deciding "guilty", and thus will vote "innocent". But if all other voters do the same, the wrong answer is derived. In game-theoretic terms, truthful voting might not be a <a href="/wiki/Nash_equilibrium" title="Nash equilibrium">Nash equilibrium</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> This problem has been termed <i>the swing voter's curse</i>,<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> as it is analogous to the <a href="/wiki/Winner%27s_curse" title="Winner's curse">winner's curse</a> in auction theory. </p><p>A jury theorem by Peleg and Zamir<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> shows sufficient and necessary conditions for the existence of a <a href="/wiki/Bayesian_Nash_equilibrium" class="mw-redirect" title="Bayesian Nash equilibrium">Bayesian-Nash equilibrium</a> that satisfies Condorcet's jury theorem. Bozbay, Dietrich and Peters<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> show voting rules that lead to efficient aggregation of the voters' private information even with strategic voting. </p><p>In practice, this problem may not be very severe, since most voters care not only about the final outcome, but also about voting correctly by their conscience. Moreover, most voters are not sophisticated enough to vote strategically.<sup id="cite_ref-:2_1-5" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Location: 4.7">: 4.7 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Subjective_opinions">Subjective opinions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=17" title="Edit section: Subjective opinions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The notion of "correctness" may not be meaningful when making policy decisions, which are based on values or preferences, rather than just on facts. </p><p>Some defenders of the theorem hold that it is applicable when voting is aimed at determining which policy best promotes the public good, rather than at merely expressing individual preferences. On this reading, what the theorem says is that although each member of the electorate may only have a vague perception of which of two policies is better, majority voting has an amplifying effect. The "group competence level", as represented by the probability that the majority chooses the better alternative, increases towards 1 as the size of the electorate grows assuming that each voter is more often right than wrong. </p><p>Several papers show that, under reasonable conditions, large groups are better trackers of the majority preference.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 323">: 323 </span></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applicability">Applicability</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=18" title="Edit section: Applicability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Condorcet%27s_jury_theorem#Applicability_to_democratic_processes" title="Condorcet's jury theorem">Condorcet's jury theorem § Applicability to democratic processes</a></div> <p>The applicability of jury theorems, in particular, Condorcet's Jury Theorem (CJT) to democratic processes is debated, as it can prove majority rule to be a perfect mechanism or a disaster depending on individual competence. Recent studies show that, in a non-homogeneous case, the theorem's thesis does not hold almost surely (unless weighted majority rule is used with stochastic weights that are correlated with epistemic rationality but such that every voter has a minimal weight of one).<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=19" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers</a>: a mathematical generalization of jury theorems.</li> <li>Evolution in collective decision making.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup></li> <li>Realizing Epistemic Democracy: a criticism on the assumptions of jury theorems.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup></li> <li>The Epistemology of Democracy: a comparison of jury theorems to two other epistemic models of democracy: <a href="/wiki/Experimentalism" title="Experimentalism">experimentalism</a> and <a href="/w/index.php?title=Diversity_trumps_ability&action=edit&redlink=1" class="new" title="Diversity trumps ability (page does not exist)">Diversity trumps ability</a>.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Jury_theorem&action=edit&section=20" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-:2-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:2_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:2_1-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/jury-theorems/">"Jury Theorems"</a> entry by Franz Dietrich & Kai Spiekermann in the <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>, November 17, 2021</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBahadur1961" class="citation journal cs1">Bahadur, R.R. (1961). "A representation of the joint distribution of responses to n dichotomous items". <i>H. Solomon (Ed.), Studies in Item Analysis and Prediction</i>: 158–168.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=H.+Solomon+%28Ed.%29%2C+Studies+in+Item+Analysis+and+Prediction&rft.atitle=A+representation+of+the+joint+distribution+of+responses+to+n+dichotomous+items&rft.pages=158-168&rft.date=1961&rft.aulast=Bahadur&rft.aufirst=R.R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-:0-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaniovskiAlexander2011" class="citation journal cs1">Kaniovski, Serguei; Alexander, Zaigraev (2011). <a rel="nofollow" class="external text" href="http://serguei.kaniovski.wifo.ac.at/fileadmin/files_kaniovski/pdf/condorcet_robust.pdf">"Optimal Jury Design for Homogeneous Juries with Correlated Votes"</a> <span class="cs1-format">(PDF)</span>. <i>Theory and Decision</i>. <b>71</b> (4): 439–459. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.225.5613">10.1.1.225.5613</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11238-009-9170-2">10.1007/s11238-009-9170-2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9189720">9189720</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theory+and+Decision&rft.atitle=Optimal+Jury+Design+for+Homogeneous+Juries+with+Correlated+Votes&rft.volume=71&rft.issue=4&rft.pages=439-459&rft.date=2011&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.225.5613%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9189720%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs11238-009-9170-2&rft.aulast=Kaniovski&rft.aufirst=Serguei&rft.au=Alexander%2C+Zaigraev&rft_id=http%3A%2F%2Fserguei.kaniovski.wifo.ac.at%2Ffileadmin%2Ffiles_kaniovski%2Fpdf%2Fcondorcet_robust.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEstlund2009" class="citation book cs1">Estlund, David (2009-08-03). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YlHGF166Kd4C&dq=estlund+2008+framework&pg=PP1"><i>Democratic Authority: A Philosophical Framework</i></a>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4008-3154-8" title="Special:BookSources/978-1-4008-3154-8"><bdi>978-1-4008-3154-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Democratic+Authority%3A+A+Philosophical+Framework&rft.pub=Princeton+University+Press&rft.date=2009-08-03&rft.isbn=978-1-4008-3154-8&rft.aulast=Estlund&rft.aufirst=David&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYlHGF166Kd4C%26dq%3Destlund%2B2008%2Bframework%26pg%3DPP1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-:1-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoland1989" class="citation journal cs1">Boland, Philip J. (1989). "Majority Systems and the Condorcet Jury Theorem". <i>Journal of the Royal Statistical Society, Series D (The Statistician)</i>. <b>38</b> (3): 181–189. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2348873">10.2307/2348873</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1467-9884">1467-9884</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2348873">2348873</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Royal+Statistical+Society%2C+Series+D+%28The+Statistician%29&rft.atitle=Majority+Systems+and+the+Condorcet+Jury+Theorem&rft.volume=38&rft.issue=3&rft.pages=181-189&rft.date=1989&rft.issn=1467-9884&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2348873%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2348873&rft.aulast=Boland&rft.aufirst=Philip+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-:4-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBolandProschanTong1989" class="citation journal cs1">Boland, Philip J.; Proschan, Frank; Tong, Y. L. (March 1989). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/journals/journal-of-applied-probability/article/modelling-dependence-in-simple-and-indirect-majority-systems/070D6335BDDDDC7AF4D70BC9B21B0B7B">"Modelling dependence in simple and indirect majority systems"</a>. <i>Journal of Applied Probability</i>. <b>26</b> (1): 81–88. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3214318">10.2307/3214318</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-9002">0021-9002</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3214318">3214318</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123605673">123605673</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Applied+Probability&rft.atitle=Modelling+dependence+in+simple+and+indirect+majority+systems&rft.volume=26&rft.issue=1&rft.pages=81-88&rft.date=1989-03&rft.issn=0021-9002&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123605673%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3214318%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3214318&rft.aulast=Boland&rft.aufirst=Philip+J.&rft.au=Proschan%2C+Frank&rft.au=Tong%2C+Y.+L.&rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fjournals%2Fjournal-of-applied-probability%2Farticle%2Fmodelling-dependence-in-simple-and-indirect-majority-systems%2F070D6335BDDDDC7AF4D70BC9B21B0B7B&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDietrich2008" class="citation journal cs1">Dietrich, Franz (2008). <a rel="nofollow" class="external text" href="https://muse.jhu.edu/article/240352">"The Premises of Condorcet's Jury Theorem Are Not Simultaneously Justified"</a>. <i>Episteme: A Journal of Social Epistemology</i>. <b>5</b> (1): 56–73. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1353%2Fepi.0.0023">10.1353/epi.0.0023</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1750-0117">1750-0117</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9214091">9214091</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Episteme%3A+A+Journal+of+Social+Epistemology&rft.atitle=The+Premises+of+Condorcet%27s+Jury+Theorem+Are+Not+Simultaneously+Justified&rft.volume=5&rft.issue=1&rft.pages=56-73&rft.date=2008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9214091%23id-name%3DS2CID&rft.issn=1750-0117&rft_id=info%3Adoi%2F10.1353%2Fepi.0.0023&rft.aulast=Dietrich&rft.aufirst=Franz&rft_id=https%3A%2F%2Fmuse.jhu.edu%2Farticle%2F240352&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDietrichSpiekermann2013" class="citation journal cs1">Dietrich, Franz; Spiekermann, Kai (2013-03-01). <a rel="nofollow" class="external text" href="http://journals.cambridge.org/action/displayJournal?jid=EAP">"Epistemic democracy with defensible premises"</a>. <i>Economics and Philosophy</i>. <b>29</b> (1): 87–120. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0266267113000096">10.1017/S0266267113000096</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0266-2671">0266-2671</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55692104">55692104</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Economics+and+Philosophy&rft.atitle=Epistemic+democracy+with+defensible+premises&rft.volume=29&rft.issue=1&rft.pages=87-120&rft.date=2013-03-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55692104%23id-name%3DS2CID&rft.issn=0266-2671&rft_id=info%3Adoi%2F10.1017%2FS0266267113000096&rft.aulast=Dietrich&rft.aufirst=Franz&rft.au=Spiekermann%2C+Kai&rft_id=http%3A%2F%2Fjournals.cambridge.org%2Faction%2FdisplayJournal%3Fjid%3DEAP&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPivato2017" class="citation journal cs1">Pivato, Marcus (2017-10-01). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/abs/pii/S0304406816301094">"Epistemic democracy with correlated voters"</a>. <i>Journal of Mathematical Economics</i>. <b>72</b>: 51–69. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jmateco.2017.06.001">10.1016/j.jmateco.2017.06.001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0304-4068">0304-4068</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Mathematical+Economics&rft.atitle=Epistemic+democracy+with+correlated+voters&rft.volume=72&rft.pages=51-69&rft.date=2017-10-01&rft_id=info%3Adoi%2F10.1016%2Fj.jmateco.2017.06.001&rft.issn=0304-4068&rft.aulast=Pivato&rft.aufirst=Marcus&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fabs%2Fpii%2FS0304406816301094&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJames_Hawthorne" class="citation web cs1">James Hawthorne. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160323044630/http://faculty-staff.ou.edu/H/James.A.Hawthorne-1/Hawthorne--Jury-Theorems.pdf">"Voting In Search of the Public Good: the Probabilistic Logic of Majority Judgments"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://faculty-staff.ou.edu/H/James.A.Hawthorne-1/Hawthorne--Jury-Theorems.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-23<span class="reference-accessdate">. Retrieved <span class="nowrap">2009-04-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Voting+In+Search+of+the+Public+Good%3A+the+Probabilistic+Logic+of+Majority+Judgments&rft.au=James+Hawthorne&rft_id=http%3A%2F%2Ffaculty-staff.ou.edu%2FH%2FJames.A.Hawthorne-1%2FHawthorne--Jury-Theorems.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">see for example: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrishna_K._Ladha1992" class="citation journal cs1">Krishna K. Ladha (August 1992). "The Condorcet Jury Theorem, Free Speech, and Correlated Votes". <i>American Journal of Political Science</i>. <b>36</b> (3): 617–634. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2111584">10.2307/2111584</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2111584">2111584</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Political+Science&rft.atitle=The+Condorcet+Jury+Theorem%2C+Free+Speech%2C+and+Correlated+Votes&rft.volume=36&rft.issue=3&rft.pages=617-634&rft.date=1992-08&rft_id=info%3Adoi%2F10.2307%2F2111584&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2111584%23id-name%3DJSTOR&rft.au=Krishna+K.+Ladha&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-:3-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParoush1998" class="citation journal cs1">Paroush, Jacob (1998). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106237">"Stay away from fair coins: A Condorcet jury theorem"</a>. <i>Social Choice and Welfare</i>. <b>15</b> (1): 15–20. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs003550050088">10.1007/s003550050088</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0176-1714">0176-1714</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106237">41106237</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:153646874">153646874</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=Stay+away+from+fair+coins%3A+A+Condorcet+jury+theorem&rft.volume=15&rft.issue=1&rft.pages=15-20&rft.date=1998&rft.issn=0176-1714&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A153646874%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106237%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs003550050088&rft.aulast=Paroush&rft.aufirst=Jacob&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106237&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernard_GrofmanGuillermo_OwenScott_L._Feld1983" class="citation journal cs1">Bernard Grofman; Guillermo Owen; Scott L. Feld (1983). <a rel="nofollow" class="external text" href="http://www.socsci.uci.edu/~bgrofman/69%20Grofman-Owen-Feld-13%20theorems%20in%20search%20of%20truth.pdf">"Thirteen theorems in search of the truth"</a> <span class="cs1-format">(PDF)</span>. <i>Theory and Decision</i>. <b>15</b> (3): 261–78. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00125672">10.1007/BF00125672</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:50576036">50576036</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theory+and+Decision&rft.atitle=Thirteen+theorems+in+search+of+the+truth.&rft.volume=15&rft.issue=3&rft.pages=261-78&rft.date=1983&rft_id=info%3Adoi%2F10.1007%2FBF00125672&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A50576036%23id-name%3DS2CID&rft.au=Bernard+Grofman&rft.au=Guillermo+Owen&rft.au=Scott+L.+Feld&rft_id=http%3A%2F%2Fwww.socsci.uci.edu%2F~bgrofman%2F69%2520Grofman-Owen-Feld-13%2520theorems%2520in%2520search%2520of%2520truth.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerendParoush1998" class="citation journal cs1">Berend, Daniel; Paroush, Jacob (1998). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106274">"When is Condorcet's Jury Theorem valid?"</a>. <i>Social Choice and Welfare</i>. <b>15</b> (4): 481–488. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs003550050118">10.1007/s003550050118</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0176-1714">0176-1714</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106274">41106274</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120012958">120012958</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=When+is+Condorcet%27s+Jury+Theorem+valid%3F&rft.volume=15&rft.issue=4&rft.pages=481-488&rft.date=1998&rft.issn=0176-1714&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120012958%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106274%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs003550050118&rft.aulast=Berend&rft.aufirst=Daniel&rft.au=Paroush%2C+Jacob&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106274&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-YasharParoush2000" class="citation journal cs1">Ben-Yashar, Ruth; Paroush, Jacob (2000-03-01). "A nonasymptotic Condorcet jury theorem". <i>Social Choice and Welfare</i>. <b>17</b> (2): 189–199. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs003550050014">10.1007/s003550050014</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1432-217X">1432-217X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:32072741">32072741</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=A+nonasymptotic+Condorcet+jury+theorem&rft.volume=17&rft.issue=2&rft.pages=189-199&rft.date=2000-03-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A32072741%23id-name%3DS2CID&rft.issn=1432-217X&rft_id=info%3Adoi%2F10.1007%2Fs003550050014&rft.aulast=Ben-Yashar&rft.aufirst=Ruth&rft.au=Paroush%2C+Jacob&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerendSapir2005" class="citation journal cs1">Berend, Daniel; Sapir, Luba (2005). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106652">"Monotonicity in Condorcet Jury Theorem"</a>. <i>Social Choice and Welfare</i>. <b>24</b> (1): 83–92. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00355-003-0293-z">10.1007/s00355-003-0293-z</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0176-1714">0176-1714</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106652">41106652</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5617331">5617331</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=Monotonicity+in+Condorcet+Jury+Theorem&rft.volume=24&rft.issue=1&rft.pages=83-92&rft.date=2005&rft.issn=0176-1714&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5617331%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106652%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs00355-003-0293-z&rft.aulast=Berend&rft.aufirst=Daniel&rft.au=Sapir%2C+Luba&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106652&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerendSapir2007" class="citation journal cs1">Berend, Daniel; Sapir, Luba (2007). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106830">"Monotonicity in Condorcet's Jury Theorem with dependent voters"</a>. <i>Social Choice and Welfare</i>. <b>28</b> (3): 507–528. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00355-006-0179-y">10.1007/s00355-006-0179-y</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0176-1714">0176-1714</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106830">41106830</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:41180424">41180424</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=Monotonicity+in+Condorcet%27s+Jury+Theorem+with+dependent+voters&rft.volume=28&rft.issue=3&rft.pages=507-528&rft.date=2007&rft.issn=0176-1714&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A41180424%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106830%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs00355-006-0179-y&rft.aulast=Berend&rft.aufirst=Daniel&rft.au=Sapir%2C+Luba&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106830&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOwenGrofmanFeld1989" class="citation journal cs1">Owen, Guillermo; Grofman, Bernard; Feld, Scott L. (1989-02-01). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/0165-4896(89)90012-7">"Proving a distribution-free generalization of the Condorcet Jury Theorem"</a>. <i>Mathematical Social Sciences</i>. <b>17</b> (1): 1–16. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0165-4896%2889%2990012-7">10.1016/0165-4896(89)90012-7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0165-4896">0165-4896</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematical+Social+Sciences&rft.atitle=Proving+a+distribution-free+generalization+of+the+Condorcet+Jury+Theorem&rft.volume=17&rft.issue=1&rft.pages=1-16&rft.date=1989-02-01&rft_id=info%3Adoi%2F10.1016%2F0165-4896%2889%2990012-7&rft.issn=0165-4896&rft.aulast=Owen&rft.aufirst=Guillermo&rft.au=Grofman%2C+Bernard&rft.au=Feld%2C+Scott+L.&rft_id=http%3A%2F%2Fdx.doi.org%2F10.1016%2F0165-4896%2889%2990012-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNitzanParoush1982" class="citation journal cs1">Nitzan, Shmuel; Paroush, Jacob (1982). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2526438">"Optimal Decision Rules in Uncertain Dichotomous Choice Situations"</a>. <i>International Economic Review</i>. <b>23</b> (2): 289–297. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2526438">10.2307/2526438</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0020-6598">0020-6598</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2526438">2526438</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Economic+Review&rft.atitle=Optimal+Decision+Rules+in+Uncertain+Dichotomous+Choice+Situations&rft.volume=23&rft.issue=2&rft.pages=289-297&rft.date=1982&rft.issn=0020-6598&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2526438%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2526438&rft.aulast=Nitzan&rft.aufirst=Shmuel&rft.au=Paroush%2C+Jacob&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2526438&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShapleyGrofman1984" class="citation journal cs1">Shapley, Lloyd; Grofman, Bernard (1984-01-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/BF00118940">"Optimizing group judgmental accuracy in the presence of interdependencies"</a>. <i>Public Choice</i>. <b>43</b> (3): 329–343. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00118940">10.1007/BF00118940</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1573-7101">1573-7101</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14858639">14858639</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Public+Choice&rft.atitle=Optimizing+group+judgmental+accuracy+in+the+presence+of+interdependencies&rft.volume=43&rft.issue=3&rft.pages=329-343&rft.date=1984-01-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14858639%23id-name%3DS2CID&rft.issn=1573-7101&rft_id=info%3Adoi%2F10.1007%2FBF00118940&rft.aulast=Shapley&rft.aufirst=Lloyd&rft.au=Grofman%2C+Bernard&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2FBF00118940&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-YasharNitzan1997" class="citation journal cs1">Ben-Yashar, Ruth C.; Nitzan, Shmuel I. (1997). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2527413">"The Optimal Decision Rule for Fixed-Size Committees in Dichotomous Choice Situations: The General Result"</a>. <i>International Economic Review</i>. <b>38</b> (1): 175–186. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2527413">10.2307/2527413</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0020-6598">0020-6598</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2527413">2527413</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Economic+Review&rft.atitle=The+Optimal+Decision+Rule+for+Fixed-Size+Committees+in+Dichotomous+Choice+Situations%3A+The+General+Result&rft.volume=38&rft.issue=1&rft.pages=175-186&rft.date=1997&rft.issn=0020-6598&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2527413%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2527413&rft.aulast=Ben-Yashar&rft.aufirst=Ruth+C.&rft.au=Nitzan%2C+Shmuel+I.&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2527413&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDietrich2006" class="citation journal cs1">Dietrich, Franz (2006). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106734">"General representation of epistemically optimal procedures"</a>. <i>Social Choice and Welfare</i>. <b>26</b> (2): 263–283. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00355-006-0094-2">10.1007/s00355-006-0094-2</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0176-1714">0176-1714</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41106734">41106734</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12716206">12716206</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=General+representation+of+epistemically+optimal+procedures&rft.volume=26&rft.issue=2&rft.pages=263-283&rft.date=2006&rft.issn=0176-1714&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12716206%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106734%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs00355-006-0094-2&rft.aulast=Dietrich&rft.aufirst=Franz&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41106734&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaharadGoldbergerKoppelNitzan2012" class="citation journal cs1">Baharad, Eyal; Goldberger, Jacob; Koppel, Moshe; Nitzan, Shmuel (2012-01-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/s11238-010-9240-5">"Beyond Condorcet: optimal aggregation rules using voting records"</a>. <i>Theory and Decision</i>. <b>72</b> (1): 113–130. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11238-010-9240-5">10.1007/s11238-010-9240-5</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10419%2F46518">10419/46518</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1573-7187">1573-7187</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189822673">189822673</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theory+and+Decision&rft.atitle=Beyond+Condorcet%3A+optimal+aggregation+rules+using+voting+records&rft.volume=72&rft.issue=1&rft.pages=113-130&rft.date=2012-01-01&rft_id=info%3Ahdl%2F10419%2F46518&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189822673%23id-name%3DS2CID&rft.issn=1573-7187&rft_id=info%3Adoi%2F10.1007%2Fs11238-010-9240-5&rft.aulast=Baharad&rft.aufirst=Eyal&rft.au=Goldberger%2C+Jacob&rft.au=Koppel%2C+Moshe&rft.au=Nitzan%2C+Shmuel&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2Fs11238-010-9240-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristian_List_and_Robert_Goodin2001" class="citation journal cs1">Christian List and Robert Goodin (September 2001). <a rel="nofollow" class="external text" href="http://personal.lse.ac.uk/LIST/PDF-files/listgoodin.pdf">"Epistemic democracy : generalizing the Condorcet Jury Theorem"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Political Philosophy</i>. <b>9</b> (3): 277–306. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.9476">10.1.1.105.9476</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2F1467-9760.00128">10.1111/1467-9760.00128</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Political+Philosophy&rft.atitle=Epistemic+democracy+%3A+generalizing+the+Condorcet+Jury+Theorem&rft.volume=9&rft.issue=3&rft.pages=277-306&rft.date=2001-09&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.105.9476%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.1111%2F1467-9760.00128&rft.au=Christian+List+and+Robert+Goodin&rft_id=http%3A%2F%2Fpersonal.lse.ac.uk%2FLIST%2FPDF-files%2Flistgoodin.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPatricia_Everaere,_Sébastien_Konieczny_and_Pierre_Marquis2010" class="citation journal cs1">Patricia Everaere, Sébastien Konieczny and Pierre Marquis (August 2010). <a rel="nofollow" class="external text" href="http://www.cril.univ-artois.fr/~marquis/everaere-konieczny-marquis-ecai10.pdf">"The Epistemic View of Belief Merging: Can We Track the Truth?"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the 19th European Conference on Artificial Intelligence (ECAI'10)</i>. <b>215</b> (ECAI 2010): 621–626. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.298.3965">10.1.1.298.3965</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3233%2F978-1-60750-606-5-621">10.3233/978-1-60750-606-5-621</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+19th+European+Conference+on+Artificial+Intelligence+%28ECAI%2710%29&rft.atitle=The+Epistemic+View+of+Belief+Merging%3A+Can+We+Track+the+Truth%3F&rft.volume=215&rft.issue=ECAI+2010&rft.pages=621-626&rft.date=2010-08&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.298.3965%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.3233%2F978-1-60750-606-5-621&rft.au=Patricia+Everaere%2C+S%C3%A9bastien+Konieczny+and+Pierre+Marquis&rft_id=http%3A%2F%2Fwww.cril.univ-artois.fr%2F~marquis%2Feveraere-konieczny-marquis-ecai10.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPivato2013" class="citation journal cs1">Pivato, Marcus (2013). <a rel="nofollow" class="external text" href="https://econpapers.repec.org/article/sprsochwe/v_3a40_3ay_3a2013_3ai_3a2_3ap_3a581-630.htm">"Voting rules as statistical estimators"</a>. <i>Social Choice and Welfare</i>. <b>40</b> (2): 581–630. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00355-011-0619-1">10.1007/s00355-011-0619-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1432-217X">1432-217X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22310477">22310477</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=Voting+rules+as+statistical+estimators&rft.volume=40&rft.issue=2&rft.pages=581-630&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22310477%23id-name%3DS2CID&rft.issn=1432-217X&rft_id=info%3Adoi%2F10.1007%2Fs00355-011-0619-1&rft.aulast=Pivato&rft.aufirst=Marcus&rft_id=https%3A%2F%2Feconpapers.repec.org%2Farticle%2Fsprsochwe%2Fv_3a40_3ay_3a2013_3ai_3a2_3ap_3a581-630.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPivato2016" class="citation journal cs1">Pivato, Marcus (2016-08-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/s00355-016-0971-2">"Asymptotic utilitarianism in scoring rules"</a>. <i>Social Choice and Welfare</i>. <b>47</b> (2): 431–458. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00355-016-0971-2">10.1007/s00355-016-0971-2</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1432-217X">1432-217X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34482765">34482765</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=Asymptotic+utilitarianism+in+scoring+rules&rft.volume=47&rft.issue=2&rft.pages=431-458&rft.date=2016-08-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34482765%23id-name%3DS2CID&rft.issn=1432-217X&rft_id=info%3Adoi%2F10.1007%2Fs00355-016-0971-2&rft.aulast=Pivato&rft.aufirst=Marcus&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2Fs00355-016-0971-2&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBergParoush1998" class="citation journal cs1">Berg, Sven; Paroush, Jacob (1998-05-01). <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/article/pii/S0165489697000474">"Collective decision making in hierarchies"</a>. <i>Mathematical Social Sciences</i>. <b>35</b> (3): 233–244. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0165-4896%2897%2900047-4">10.1016/S0165-4896(97)00047-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0165-4896">0165-4896</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematical+Social+Sciences&rft.atitle=Collective+decision+making+in+hierarchies&rft.volume=35&rft.issue=3&rft.pages=233-244&rft.date=1998-05-01&rft_id=info%3Adoi%2F10.1016%2FS0165-4896%2897%2900047-4&rft.issn=0165-4896&rft.aulast=Berg&rft.aufirst=Sven&rft.au=Paroush%2C+Jacob&rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0165489697000474&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodinSpiekermann2012" class="citation journal cs1">Goodin, Robert E.; Spiekermann, Kai (2012-11-01). <a rel="nofollow" class="external text" href="http://journals.cambridge.org/action/displayJournal?jid=EPR">"Epistemic aspects of representative government"</a>. <i>European Political Science Review</i>. <b>4</b> (3): 303–325. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS1755773911000245">10.1017/S1755773911000245</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1755-7739">1755-7739</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:85556702">85556702</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Political+Science+Review&rft.atitle=Epistemic+aspects+of+representative+government&rft.volume=4&rft.issue=3&rft.pages=303-325&rft.date=2012-11-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A85556702%23id-name%3DS2CID&rft.issn=1755-7739&rft_id=info%3Adoi%2F10.1017%2FS1755773911000245&rft.aulast=Goodin&rft.aufirst=Robert+E.&rft.au=Spiekermann%2C+Kai&rft_id=http%3A%2F%2Fjournals.cambridge.org%2Faction%2FdisplayJournal%3Fjid%3DEPR&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAusten-SmithBanks1996" class="citation journal cs1">Austen-Smith, David; Banks, Jeffrey S. (1996). <a rel="nofollow" class="external text" href="https://authors.library.caltech.edu/67312/1/2082796.pdf">"Information aggregation, rationality, and the Condorcet Jury Theorem"</a> <span class="cs1-format">(PDF)</span>. <i>American Political Science Review</i>. <b>90</b> (1): 34–45. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2082796">10.2307/2082796</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2082796">2082796</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8495814">8495814</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Political+Science+Review&rft.atitle=Information+aggregation%2C+rationality%2C+and+the+Condorcet+Jury+Theorem&rft.volume=90&rft.issue=1&rft.pages=34-45&rft.date=1996&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8495814%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2082796%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2082796&rft.aulast=Austen-Smith&rft.aufirst=David&rft.au=Banks%2C+Jeffrey+S.&rft_id=https%3A%2F%2Fauthors.library.caltech.edu%2F67312%2F1%2F2082796.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeddersenPesendorfer1996" class="citation journal cs1">Feddersen, Timothy J.; Pesendorfer, Wolfgang (1996). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2118204">"The Swing Voter's Curse"</a>. <i>The American Economic Review</i>. <b>86</b> (3): 408–424. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-8282">0002-8282</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2118204">2118204</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Economic+Review&rft.atitle=The+Swing+Voter%27s+Curse&rft.volume=86&rft.issue=3&rft.pages=408-424&rft.date=1996&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2118204%23id-name%3DJSTOR&rft.issn=0002-8282&rft.aulast=Feddersen&rft.aufirst=Timothy+J.&rft.au=Pesendorfer%2C+Wolfgang&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2118204&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPelegZamir2012" class="citation journal cs1">Peleg, Bezalel; Zamir, Shmuel (2012). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41485510">"Extending the Condorcet Jury Theorem to a general dependent jury"</a>. <i>Social Choice and Welfare</i>. <b>39</b> (1): 91–125. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00355-011-0546-1">10.1007/s00355-011-0546-1</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0176-1714">0176-1714</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/41485510">41485510</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5685386">5685386</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Social+Choice+and+Welfare&rft.atitle=Extending+the+Condorcet+Jury+Theorem+to+a+general+dependent+jury&rft.volume=39&rft.issue=1&rft.pages=91-125&rft.date=2012&rft.issn=0176-1714&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5685386%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41485510%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1007%2Fs00355-011-0546-1&rft.aulast=Peleg&rft.aufirst=Bezalel&rft.au=Zamir%2C+Shmuel&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F41485510&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBozbayDietrichPeters2014" class="citation journal cs1">Bozbay, İrem; Dietrich, Franz; Peters, Hans (2014-09-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.geb.2014.02.007">"Judgment aggregation in search for the truth"</a>. <i>Games and Economic Behavior</i>. <b>87</b>: 571–590. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.geb.2014.02.007">10.1016/j.geb.2014.02.007</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0899-8256">0899-8256</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Games+and+Economic+Behavior&rft.atitle=Judgment+aggregation+in+search+for+the+truth&rft.volume=87&rft.pages=571-590&rft.date=2014-09-01&rft_id=info%3Adoi%2F10.1016%2Fj.geb.2014.02.007&rft.issn=0899-8256&rft.aulast=Bozbay&rft.aufirst=%C4%B0rem&rft.au=Dietrich%2C+Franz&rft.au=Peters%2C+Hans&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.geb.2014.02.007&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldman2002" class="citation journal cs1">Goldman, Alvin (2002). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/GOLKIA-3">"Knowledge in a Social World"</a>. <i>Philosophy and Phenomenological Research</i>. <b>64</b> (1): 185–190. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1933-1592.2002.tb00151.x">10.1111/j.1933-1592.2002.tb00151.x</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Philosophy+and+Phenomenological+Research&rft.atitle=Knowledge+in+a+Social+World&rft.volume=64&rft.issue=1&rft.pages=185-190&rft.date=2002&rft_id=info%3Adoi%2F10.1111%2Fj.1933-1592.2002.tb00151.x&rft.aulast=Goldman&rft.aufirst=Alvin&rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FGOLKIA-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodinSpiekermann2015" class="citation journal cs1">Goodin, Robert E.; Spiekermann, Kai (December 2015). <a rel="nofollow" class="external text" href="http://journals.cambridge.org/action/displayJournal?jid=EPI">"Epistemic solidarity as a political strategy"</a>. <i>Episteme</i>. <b>12</b> (4): 439–457. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fepi.2015.29">10.1017/epi.2015.29</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1742-3600">1742-3600</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:142927949">142927949</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Episteme&rft.atitle=Epistemic+solidarity+as+a+political+strategy&rft.volume=12&rft.issue=4&rft.pages=439-457&rft.date=2015-12&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A142927949%23id-name%3DS2CID&rft.issn=1742-3600&rft_id=info%3Adoi%2F10.1017%2Fepi.2015.29&rft.aulast=Goodin&rft.aufirst=Robert+E.&rft.au=Spiekermann%2C+Kai&rft_id=http%3A%2F%2Fjournals.cambridge.org%2Faction%2FdisplayJournal%3Fjid%3DEPI&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFListSpiekermann2016" class="citation cs2">List, Christian; Spiekermann, Kai (2016), <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118609378.ch10">"The Condorcet Jury Theorem and Voter-Specific Truth"</a>, <i>Goldman and His Critics</i>, John Wiley & Sons, Ltd, pp. 219–233, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9781118609378.ch10">10.1002/9781118609378.ch10</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-118-60937-8" title="Special:BookSources/978-1-118-60937-8"><bdi>978-1-118-60937-8</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2021-05-27</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Goldman+and+His+Critics&rft.atitle=The+Condorcet+Jury+Theorem+and+Voter-Specific+Truth&rft.pages=219-233&rft.date=2016&rft_id=info%3Adoi%2F10.1002%2F9781118609378.ch10&rft.isbn=978-1-118-60937-8&rft.aulast=List&rft.aufirst=Christian&rft.au=Spiekermann%2C+Kai&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Fabs%2F10.1002%2F9781118609378.ch10&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRomaniega_Sancho2022" class="citation journal cs1">Romaniega Sancho, Álvaro (2022-09-01). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0165489622000543">"On the probability of the Condorcet Jury Theorem or the Miracle of Aggregation"</a>. <i>Mathematical Social Sciences</i>. <b>119</b>: 41–55. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2108.00733">2108.00733</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mathsocsci.2022.06.002">10.1016/j.mathsocsci.2022.06.002</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0165-4896">0165-4896</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:249921504">249921504</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematical+Social+Sciences&rft.atitle=On+the+probability+of+the+Condorcet+Jury+Theorem+or+the+Miracle+of+Aggregation&rft.volume=119&rft.pages=41-55&rft.date=2022-09-01&rft_id=info%3Aarxiv%2F2108.00733&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A249921504%23id-name%3DS2CID&rft.issn=0165-4896&rft_id=info%3Adoi%2F10.1016%2Fj.mathsocsci.2022.06.002&rft.aulast=Romaniega+Sancho&rft.aufirst=%C3%81lvaro&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0165489622000543&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1">"Evolution in collective decision making". <i>Understanding Collective Decision Making</i>: 167–192. 2017. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4337%2F9781783473151.00011">10.4337/9781783473151.00011</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781783473151" title="Special:BookSources/9781783473151"><bdi>9781783473151</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Understanding+Collective+Decision+Making&rft.atitle=Evolution+in+collective+decision+making&rft.pages=167-192&rft.date=2017&rft_id=info%3Adoi%2F10.4337%2F9781783473151.00011&rft.isbn=9781783473151&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPivato2019" class="citation cs2">Pivato, Marcus (2019), Laslier, Jean-François; Moulin, Hervé; Sanver, M. Remzi; Zwicker, William S. (eds.), <a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-030-18050-8_16">"Realizing Epistemic Democracy"</a>, <i>The Future of Economic Design: The Continuing Development of a Field as Envisioned by Its Researchers</i>, Studies in Economic Design, Cham: Springer International Publishing, pp. 103–112, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-18050-8_16">10.1007/978-3-030-18050-8_16</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-030-18050-8" title="Special:BookSources/978-3-030-18050-8"><bdi>978-3-030-18050-8</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:211399419">211399419</a><span class="reference-accessdate">, retrieved <span class="nowrap">2021-05-27</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Future+of+Economic+Design%3A+The+Continuing+Development+of+a+Field+as+Envisioned+by+Its+Researchers&rft.atitle=Realizing+Epistemic+Democracy&rft.pages=103-112&rft.date=2019&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A211399419%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2F978-3-030-18050-8_16&rft.isbn=978-3-030-18050-8&rft.aulast=Pivato&rft.aufirst=Marcus&rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F978-3-030-18050-8_16&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnderson2006" class="citation journal cs1">Anderson, Elizabeth (2006). <a rel="nofollow" class="external text" href="https://muse.jhu.edu/article/209431">"The Epistemology of Democracy"</a>. <i>Episteme: A Journal of Social Epistemology</i>. <b>3</b> (1): 8–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1353%2Fepi.0.0000">10.1353/epi.0.0000</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1750-0117">1750-0117</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Episteme%3A+A+Journal+of+Social+Epistemology&rft.atitle=The+Epistemology+of+Democracy&rft.volume=3&rft.issue=1&rft.pages=8-22&rft.date=2006&rft_id=info%3Adoi%2F10.1353%2Fepi.0.0000&rft.issn=1750-0117&rft.aulast=Anderson&rft.aufirst=Elizabeth&rft_id=https%3A%2F%2Fmuse.jhu.edu%2Farticle%2F209431&rfr_id=info%3Asid%2Fen.wikipedia.org%3AJury+theorem" class="Z3988"></span></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐56pzm Cached time: 20241122155029 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.424 seconds Real time usage: 0.559 seconds Preprocessor visited node count: 3299/1000000 Post‐expand include size: 98103/2097152 bytes Template argument size: 892/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 157481/5000000 bytes Lua time usage: 0.249/10.000 seconds Lua memory usage: 6010510/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 425.667 1 -total 68.32% 290.804 1 Template:Reflist 52.66% 224.172 35 Template:Cite_journal 15.07% 64.155 1 Template:Short_description 8.61% 36.648 2 Template:Pagetype 6.93% 29.499 3 Template:Rp 5.74% 24.454 3 Template:R/superscript 4.56% 19.418 2 Template:Main 3.41% 14.529 4 Template:Main_other 2.91% 12.390 1 Template:SDcat --> <!-- Saved in parser cache with key enwiki:pcache:idhash:67752523-0!canonical and timestamp 20241122155029 and revision id 1241401954. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Jury_theorem&oldid=1241401954">https://en.wikipedia.org/w/index.php?title=Jury_theorem&oldid=1241401954</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Probability_theorems" title="Category:Probability theorems">Probability theorems</a></li><li><a href="/wiki/Category:Voting_theory" title="Category:Voting theory">Voting theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_Stanford_Encyclopedia_of_Philosophy_links" title="Category:Articles with Stanford Encyclopedia of Philosophy links">Articles with Stanford Encyclopedia of Philosophy links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 August 2024, at 23:21<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Jury_theorem&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-xprvx","wgBackendResponseTime":127,"wgPageParseReport":{"limitreport":{"cputime":"0.424","walltime":"0.559","ppvisitednodes":{"value":3299,"limit":1000000},"postexpandincludesize":{"value":98103,"limit":2097152},"templateargumentsize":{"value":892,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":157481,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 425.667 1 -total"," 68.32% 290.804 1 Template:Reflist"," 52.66% 224.172 35 Template:Cite_journal"," 15.07% 64.155 1 Template:Short_description"," 8.61% 36.648 2 Template:Pagetype"," 6.93% 29.499 3 Template:Rp"," 5.74% 24.454 3 Template:R/superscript"," 4.56% 19.418 2 Template:Main"," 3.41% 14.529 4 Template:Main_other"," 2.91% 12.390 1 Template:SDcat"]},"scribunto":{"limitreport-timeusage":{"value":"0.249","limit":"10.000"},"limitreport-memusage":{"value":6010510,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-56pzm","timestamp":"20241122155029","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Jury theorem","url":"https:\/\/en.wikipedia.org\/wiki\/Jury_theorem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q107177007","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q107177007","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2021-05-24T17:14:54Z","dateModified":"2024-08-20T23:21:40Z","headline":"Mathematical theory of majority voting"}</script> </body> </html>