CINXE.COM
Search results for: hybrid models
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hybrid models</title> <meta name="description" content="Search results for: hybrid models"> <meta name="keywords" content="hybrid models"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hybrid models" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hybrid models"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8263</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hybrid models</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8263</span> Generic Hybrid Models for Two-Dimensional Ultrasonic Guided Wave Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Reghu">Manoj Reghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhu%20Rajagopal"> Prabhu Rajagopal</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Krishnamurthy"> C. V. Krishnamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Balasubramaniam"> Krishnan Balasubramaniam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thorough understanding of guided ultrasonic wave behavior in structures is essential for the application of existing Non Destructive Evaluation (NDE) technologies, as well as for the development of new methods. However, the analysis of guided wave phenomena is challenging because of their complex dispersive and multimodal nature. Although numerical solution procedures have proven to be very useful in this regard, the increasing complexity of features and defects to be considered, as well as the desire to improve the accuracy of inspection often imposes a large computational cost. Hybrid models that combine numerical solutions for wave scattering with faster alternative methods for wave propagation have long been considered as a solution to this problem. However usually such models require modification of the base code of the solution procedure. Here we aim to develop Generic Hybrid models that can be directly applied to any two different solution procedures. With this goal in mind, a Numerical Hybrid model and an Analytical-Numerical Hybrid model has been developed. The concept and implementation of these Hybrid models are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guided%20ultrasonic%20waves" title="guided ultrasonic waves">guided ultrasonic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method%20%28FEM%29" title=" Finite Element Method (FEM)"> Finite Element Method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20model" title=" Hybrid model"> Hybrid model</a> </p> <a href="https://publications.waset.org/abstracts/16058/generic-hybrid-models-for-two-dimensional-ultrasonic-guided-wave-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8262</span> Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Benga">E. Benga</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tengen"> T. Tengen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alugongo"> A. Alugongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodic%20inventory" title="periodic inventory">periodic inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20inventory" title=" continuous inventory"> continuous inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20inventory" title=" hybrid inventory"> hybrid inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20plant" title=" manufacturing plant"> manufacturing plant</a> </p> <a href="https://publications.waset.org/abstracts/64054/hybrid-inventory-model-optimization-under-uncertainties-a-case-study-in-a-manufacturing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8261</span> A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavan%20K.%20Rallabandi">Pavan K. Rallabandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20C.%20Patidar"> Kailash C. Patidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title="hybrid systems">hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20models" title=" hidden markov models"> hidden markov models</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20finite%20state%20automata" title=" deterministic finite state automata"> deterministic finite state automata</a> </p> <a href="https://publications.waset.org/abstracts/37759/a-hybrid-system-of-hidden-markov-models-and-recurrent-neural-networks-for-learning-deterministic-finite-state-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8260</span> The Impact of Hybrid Working Models on Employee Engagement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibylle%20Tellenbach">Sibylle Tellenbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Haddock-Millar"> Julie Haddock-Millar</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Bidault"> Francis Bidault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to understand the extent to which hybrid working models have influenced employee engagement in the Swiss financial sector. The context for this research is the transition out of the pandemic and the changes that have occurred between 2020 and 2023. Since the pandemic, many financial services companies have had to rethink their working model for office-based employees, as this group of employees has been able to experience a new way of working and, thus, greater freedom and flexibility. For a large number of companies, it was a huge change to shift from the traditional office-based to a new hybrid working model. A heightened focus on employee engagement has become a necessity in order to understand and respond to the challenges presented by the shift in a working model. This new way of working, partly office-based and partly virtual, has led to ambiguities about the impact on the engagement of hybrid teams. Therefore, the research question is: How hybrid working models have influenced employee engagement to what extent? The methodological approach is a narrative inquiry with four similar functional teams within four Swiss financial companies. Semi-structured interviews will be conducted with managers from middle management and their individual team members. The findings will demonstrate whether this shift in the working model influenced individual team members’ engagement and to what extent. The contribution of this research is two-fold. First, the research makes a theoretical contribution, presenting evidence of the impact of hybrid working on individual team members’ engagement in a specific sector and context, enhancing current knowledge on the challenges in working model transition. Second, this research will make a practice-based contribution, recommending ways to enhance the engagement of hybrid teams in a specific context. These recommendations may be applied in wider sectors and teams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=employee%20engagement" title="employee engagement">employee engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20teams" title=" hybrid teams"> hybrid teams</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20working%20models" title=" hybrid working models"> hybrid working models</a>, <a href="https://publications.waset.org/abstracts/search?q=Swiss%20financial%20sector" title=" Swiss financial sector"> Swiss financial sector</a>, <a href="https://publications.waset.org/abstracts/search?q=team%20engagement" title=" team engagement"> team engagement</a> </p> <a href="https://publications.waset.org/abstracts/160951/the-impact-of-hybrid-working-models-on-employee-engagement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8259</span> Effect of Hybrid Learning in Higher Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Meydanlioglu">A. Meydanlioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Arikan"> F. Arikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, thanks to the development of information and communication technologies, the computer and internet have been used widely in higher education. Internet-based education is impacting traditional higher education as online components increasingly become integrated into face-to-face (FTF) courses. The goal of combined internet-based and traditional education is to take full advantage of the benefits of each platform in order to provide an educational opportunity that can promote student learning better than can either platform alone. Research results show that the use of hybrid learning is more effective than online or FTF models in higher education. Due to the potential benefits, an increasing number of institutions are interested in developing hybrid courses, programs, and degrees. Future research should evaluate the effectiveness of hybrid learning. This paper is designed to determine the impact of hybrid learning on higher education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-learning" title="e-learning">e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20learning" title=" hybrid learning"> hybrid learning</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20education" title=" online education"> online education</a> </p> <a href="https://publications.waset.org/abstracts/8561/effect-of-hybrid-learning-in-higher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">909</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8258</span> The Potential of 48V HEV in Real Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Schudeleit">Mark Schudeleit</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Sieg"> Christian Sieg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferit%20K%C3%BC%C3%A7%C3%BCkay"> Ferit Küçükay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20use" title="customer use">customer use</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensioning" title=" dimensioning"> dimensioning</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicles" title=" hybrid electric vehicles"> hybrid electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20simulation" title=" vehicle simulation"> vehicle simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=48V%20hybrid%20system" title=" 48V hybrid system"> 48V hybrid system</a> </p> <a href="https://publications.waset.org/abstracts/37159/the-potential-of-48v-hev-in-real-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8257</span> Hybrid Project Management Model Based on Lean and Agile Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima-Zahra%20Eddoug">Fatima-Zahra Eddoug</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Benhra"> Jamal Benhra</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajaa%20Benabbou"> Rajaa Benabbou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several project management models exist in the literature and the most used ones are the hybrids for their multiple advantages. Our objective in this paper is to analyze the existing models, which are based on the Lean and Agile approaches and to propose a novel framework with the convenient tools that will allow efficient management of a general project. To create the desired framework, we were based essentially on 7 existing models. Only the Scrum tool among the agile tools was identified by several authors to be appropriate for project management. In contrast, multiple lean tools were proposed in different phases of the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agility" title="agility">agility</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20project%20management" title=" hybrid project management"> hybrid project management</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=scrum" title=" scrum"> scrum</a> </p> <a href="https://publications.waset.org/abstracts/148425/hybrid-project-management-model-based-on-lean-and-agile-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8256</span> Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivedha%20Rajaram">Nivedha Rajaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20quantum%20solver" title=" hybrid quantum solver"> hybrid quantum solver</a>, <a href="https://publications.waset.org/abstracts/search?q=DWave%20annealing" title=" DWave annealing"> DWave annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20knowledge%20graph" title=" network knowledge graph"> network knowledge graph</a> </p> <a href="https://publications.waset.org/abstracts/150932/network-connectivity-knowledge-graph-using-dwave-quantum-hybrid-solvers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8255</span> Simulation of Wind Solar Hybrid Power Generation for Pumping Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Taghavi">Masoud Taghavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Salehi"> Gholamreza Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Lohrasbi%20Nichkoohi"> Ali Lohrasbi Nichkoohi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the growing use of renewable energies in different fields of application of this technology in the field of water supply has been less attention. Photovoltaic and wind hybrid system is that new topics in renewable energy, including photovoltaic arrays, wind turbines, a set of batteries as a storage system and a diesel generator as a backup system is. In this investigation, first climate data including average wind speed and solar radiation at any time during the year, data collection and analysis are performed in the energy. The wind turbines in four models, photovoltaic panels at the 6 position of relative power, batteries and diesel generator capacity in seven states in the two models are combined hours of operation with renewables, diesel generator and battery bank check and a hybrid system of solar power generation-wind, which is optimized conditions, are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20and%20solar%20energy" title=" wind and solar energy"> wind and solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cloning%20station" title=" cloning station"> cloning station</a> </p> <a href="https://publications.waset.org/abstracts/11625/simulation-of-wind-solar-hybrid-power-generation-for-pumping-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8254</span> Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Alrekabi">Salam Alrekabi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Cundy"> A. B. Cundy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Haloob%20Al-Majidi"> Mohammed Haloob Al-Majidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20hybrid%20reinforced%20cementitious%20composites" title="multiscale hybrid reinforced cementitious composites">multiscale hybrid reinforced cementitious composites</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofibers" title=" carbon nanofibers"> carbon nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength%20prediction" title=" mechanical strength prediction"> mechanical strength prediction</a> </p> <a href="https://publications.waset.org/abstracts/84842/prediction-of-mechanical-strength-of-multiscale-hybrid-reinforced-cementitious-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8253</span> Developing NAND Flash-Memory SSD-Based File System Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaechun%20No">Jaechun No</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSD" title="SSD">SSD</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20section" title=" data section"> data section</a>, <a href="https://publications.waset.org/abstracts/search?q=I%2FO%20optimizations" title=" I/O optimizations"> I/O optimizations</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a> </p> <a href="https://publications.waset.org/abstracts/32385/developing-nand-flash-memory-ssd-based-file-system-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8252</span> The Properties of Na2CO3 and Ti Hybrid Modified LM 6 Alloy Using Ladle Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Ervina%20Efzan">M. N. Ervina Efzan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Kong"> H. J. Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Kok"> C. K. Kok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with a study on the influences of hybrid modifier on LM 6 added through ladle metallurgy. In this study, LM 6 served as the reference alloy while Na2CO3 and Ti powders were used as the hybrid modifier. The effects of hybrid modifier on the micro structural enhancement of LM 6 were investigated using optical microscope (OM) and Scanning Electron Microscope (SEM). The results showed fragmented Si-rich needles and strength enhanced petal/ globular-like structures without obvious formation of soft primary α-Al and β-Fe-rich inter metallic compound (IMC) after the hybrid modification. Hardness test was conducted to examine the mechanical improvement of hybrid modified LM 6. 10% of hardness improvement was recorded in the hybrid modified LM 6 through ladle metallurgy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Si" title="Al-Si">Al-Si</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20modifier" title=" hybrid modifier"> hybrid modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=ladle%20metallurgy" title=" ladle metallurgy"> ladle metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/10819/the-properties-of-na2co3-and-ti-hybrid-modified-lm-6-alloy-using-ladle-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8251</span> Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Salah">Khaled Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20annealing" title=" simulated annealing"> simulated annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20reduction" title=" model reduction"> model reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a> </p> <a href="https://publications.waset.org/abstracts/97897/model-order-reduction-using-hybrid-genetic-algorithm-and-simulated-annealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8250</span> Cloud Computing: Major Issues and Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Adhirai%20Subramaniyam">S. Adhirai Subramaniyam</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramjit%20Singh"> Paramjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents major issues in cloud computing. The paper describes different cloud computing deployment models and cloud service models available in the field of cloud computing. The paper then concentrates on various issues in the field. The issues such as cloud compatibility, compliance of the cloud, standardizing cloud technology, monitoring while on the cloud and cloud security are described. The paper suggests solutions for these issues and concludes that hybrid cloud infrastructure is a real boon for organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud" title="cloud">cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20cloud%20computing" title=" mobile cloud computing"> mobile cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20cloud" title=" private cloud"> private cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20cloud" title=" public cloud"> public cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cloud" title=" hybrid cloud"> hybrid cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=SAAS" title=" SAAS"> SAAS</a>, <a href="https://publications.waset.org/abstracts/search?q=PAAS" title=" PAAS"> PAAS</a>, <a href="https://publications.waset.org/abstracts/search?q=IAAS" title=" IAAS"> IAAS</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20security" title=" cloud security"> cloud security</a> </p> <a href="https://publications.waset.org/abstracts/67736/cloud-computing-major-issues-and-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8249</span> The State Model of Corporate Governance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asaiel%20Alohaly">Asaiel Alohaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical framework for corporate governance is needed to bridge the gap between the corporate governance of private companies and State-owned Enterprises (SOEs). The two dominant models, being shareholder and stakeholder, do not always address the specific requirements and challenges posed by ‘hybrid’ companies; namely, previously national bodies that have been privatised bffu t where the government retains significant control or holds a majority of shareholders. Thus, an exploratory theoretical study is needed to identify how ‘hybrid’ companies should be defined and why the state model should be acknowledged since it is the less conspicuous model in comparison with the shareholder and stakeholder models. This research focuses on ‘the state model of corporate governance to understand the complex ownership, control pattern, goals, and corporate governance of these hybrid companies. The significance of this research lies in the fact that there is a limited available publication on the state model. The outcomes of this research are as follows. It became evident that the state model exists in the ecosystem. However, corporate governance theories have not extensively covered this model. Though, there is a lot being said about it by OECD and the World Bank. In response to this gap between theories and industry practice, this research argues for the state model, which proceeds from an understanding of the institutionally embedded character of hybrid companies where the government is either a majority of the total shares or a controlling shareholder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20governance" title="corporate governance">corporate governance</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=shareholders" title=" shareholders"> shareholders</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20model" title=" state model"> state model</a> </p> <a href="https://publications.waset.org/abstracts/152507/the-state-model-of-corporate-governance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8248</span> Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sfiso%20Radebe">Sfiso Radebe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20modelling" title="convex modelling">convex modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-composite" title=" metal-composite"> metal-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a> </p> <a href="https://publications.waset.org/abstracts/76900/optimum-design-of-hybrid-metal-composite-mechanical-power-transmission-system-under-uncertainty-by-convex-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8247</span> Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kamrul%20Islam">A. K. M. Kamrul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Bouchachia"> Abdelhamid Bouchachia</a>, <a href="https://publications.waset.org/abstracts/search?q=Suang%20Cang"> Suang Cang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongnian%20Yu"> Hongnian Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20time%20series%20%28fts%29" title="fuzzy time series (fts)">fuzzy time series (fts)</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithm" title=" clustering algorithm"> clustering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20model" title=" hybrid forecasting model"> hybrid forecasting model</a> </p> <a href="https://publications.waset.org/abstracts/51515/fuzzy-time-series-forecasting-based-on-fuzzy-logical-relationships-pso-technique-and-automatic-clustering-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8246</span> A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kheirollahpour">Maryam Kheirollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Danaee"> Mahmoud Danaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Faisal%20Merican"> Amir Faisal Merican</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Ahmad%20Shariff"> Asma Ahmad Shariff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20model" title="hybrid model">hybrid model</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=eating%20behavior%20patterns" title=" eating behavior patterns"> eating behavior patterns</a> </p> <a href="https://publications.waset.org/abstracts/107892/a-hybrid-model-of-structural-equation-modelling-artificial-neural-networks-prediction-of-influential-factors-on-eating-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8245</span> A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi">Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang"> Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang"> Xavier Lorang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys" title=" Ansys"> Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20defects" title=" geometric defects"> geometric defects</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20finite%20element%20model" title=" hybrid finite element model"> hybrid finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a> </p> <a href="https://publications.waset.org/abstracts/130258/a-numerical-hybrid-finite-element-model-for-lattice-structures-using-3dbeam-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8244</span> Hybrid Model: An Integration of Machine Learning with Traditional Scorecards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golnush%20Masghati-Amoli">Golnush Masghati-Amoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Chin"> Paul Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20algorithms" title="machine learning algorithms">machine learning algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=scorecard" title=" scorecard"> scorecard</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20banking" title=" commercial banking"> commercial banking</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20risk" title=" consumer risk"> consumer risk</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20engineering" title=" feature engineering "> feature engineering </a> </p> <a href="https://publications.waset.org/abstracts/105480/hybrid-model-an-integration-of-machine-learning-with-traditional-scorecards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8243</span> An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeugert%20Kujtila">Jeugert Kujtila</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristi%20Hoxhalli"> Kristi Hoxhalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Dalipi"> Ramazan Dalipi</a>, <a href="https://publications.waset.org/abstracts/search?q=Erjon%20Cota"> Erjon Cota</a>, <a href="https://publications.waset.org/abstracts/search?q=Ardit%20Murati"> Ardit Murati</a>, <a href="https://publications.waset.org/abstracts/search?q=Erind%20Bedalli"> Erind Bedalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20clustering" title="fuzzy clustering">fuzzy clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means%20algorithm%20%28FCM%29" title=" fuzzy c-means algorithm (FCM)"> fuzzy c-means algorithm (FCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustafson-Kessel%20algorithm" title=" Gustafson-Kessel algorithm"> Gustafson-Kessel algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20clustering%20model" title=" hybrid clustering model"> hybrid clustering model</a> </p> <a href="https://publications.waset.org/abstracts/67863/an-experimental-study-on-some-conventional-and-hybrid-models-of-fuzzy-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8242</span> Hybrid SVM/DBN Model for Arabic Isolated Words Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elyes%20Zarrouk">Elyes Zarrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Benayed"> Yassine Benayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiez%20Gargouri"> Faiez Gargouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new hybrid model for isolated Arabic words recognition. To do this, we apply Support Vectors Machine (SVM) as an estimator of posterior probabilities within the Dynamic Bayesian networks (DBN). This paper deals a comparative study between DBN and SVM/DBN systems for multi-dialect isolated Arabic words. Performance using SVM/DBN is found to exceed that of DBNs trained on an identical task, giving higher recognition accuracy for four different Arabic dialects. In fact, the average of recognition rates for the four dialects with SVM/DBN was 87.67% while 83.01% with DBN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20Bayesian%20networks" title="dynamic Bayesian networks">dynamic Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20models" title=" hybrid models"> hybrid models</a>, <a href="https://publications.waset.org/abstracts/search?q=supports%20vectors%20machine" title=" supports vectors machine"> supports vectors machine</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20isolated%20words" title=" Arabic isolated words"> Arabic isolated words</a> </p> <a href="https://publications.waset.org/abstracts/22878/hybrid-svmdbn-model-for-arabic-isolated-words-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8241</span> Investigation of Cylindrical Multi-Layer Hybrid Plasmonic Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateeksha%20Sharma">Prateeksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Dinesh%20Kumar"> V. Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of cylindrical multilayer hybrid plasmonic waveguides have been investigated in detail considering their structural and material aspects. Characteristics of hybrid metal insulator metal (HMIM) and hybrid insulator metal insulator (HIMI) waveguides have been compared on the basis of propagation length and confinement factor. Necessity of this study is to understand newer kind of waveguides that overcome the limitations of conventional waveguides. Investigation reveals that sub wavelength confinement can be obtained in two low dielectric spacer layers. This study provides gateway for many applications such as nano lasers, interconnects, bio sensors and optical trapping etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulator%20metal%20insulator" title="hybrid insulator metal insulator">hybrid insulator metal insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metal%20insulator%20metal" title=" hybrid metal insulator metal"> hybrid metal insulator metal</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20laser" title=" nano laser"> nano laser</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a> </p> <a href="https://publications.waset.org/abstracts/33732/investigation-of-cylindrical-multi-layer-hybrid-plasmonic-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8240</span> Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teh%20Raihana%20Nazirah%20Roslan">Teh Raihana Nazirah Roslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Zulaiha%20Ibrahim"> Siti Zulaiha Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Karim"> Sharmila Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cox-Ingersoll-Ross%20model" title="Cox-Ingersoll-Ross model">Cox-Ingersoll-Ross model</a>, <a href="https://publications.waset.org/abstracts/search?q=equity%20warrants" title=" equity warrants"> equity warrants</a>, <a href="https://publications.waset.org/abstracts/search?q=Heston%20model" title=" Heston model"> Heston model</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20models" title=" hybrid models"> hybrid models</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a> </p> <a href="https://publications.waset.org/abstracts/124157/hybrid-equity-warrants-pricing-formulation-under-stochastic-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8239</span> Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mourad">M. Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahmoud"> K. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO<sub>2</sub> emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrification%20strategy" title="electrification strategy">electrification strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicle" title=" hybrid electric vehicle"> hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20cycle" title=" driving cycle"> driving cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a> </p> <a href="https://publications.waset.org/abstracts/50278/electrification-strategy-of-hybrid-electric-vehicle-as-a-solution-to-decrease-co2-emission-in-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8238</span> Hybrid Concrete Construction (HCC) for Sustainable Infrastructure Development in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bello%20Ibrahim">Muhammad Bello Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Auwal%20Zakari"> M. Auwal Zakari</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20Usman"> Aliyu Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid concrete construction (HCC) combines all the benefits of pre-casting with the advantages of cast in-situ construction. Merging the two, as a hybrid structure, results in even greater construction speed, value, and the overall economy. Its variety of uses has gained popularity in the United States and in Europe due to its distinctive benefits. However, the increase of its application in some countries (including Nigeria) has been relatively slow. Several researches have shown that hybrid construction offers an ultra-high performance concrete that offers superior strength, durability and aesthetics with design flexibility and within sustainability credentials, based on the available and economically visible technologies. This paper examines and documents the criterion that will help inform the process of deciding whether or not to adopt hybrid concrete construction (HCC) technology rather than more traditional alternatives. It also the present situation of design, construction and research on hybrid structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20concrete%20construction" title="hybrid concrete construction">hybrid concrete construction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20infrastructure%20development" title=" sustainable infrastructure development"> sustainable infrastructure development</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20flexibility" title=" design flexibility"> design flexibility</a> </p> <a href="https://publications.waset.org/abstracts/23660/hybrid-concrete-construction-hcc-for-sustainable-infrastructure-development-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8237</span> A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophia%20Shi">Sophia Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acute%20kidney%20injury" title="Acute kidney injury">Acute kidney injury</a>, <a href="https://publications.waset.org/abstracts/search?q=Convolutional%20neural%20network" title=" Convolutional neural network"> Convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20deep%20learning" title=" Hybrid deep learning"> Hybrid deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Patient%20record%20data" title=" Patient record data"> Patient record data</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/abstracts/search?q=Ultrasound%20kidney%20images" title=" Ultrasound kidney images"> Ultrasound kidney images</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG" title=" VGG"> VGG</a> </p> <a href="https://publications.waset.org/abstracts/137226/a-novel-hybrid-deep-learning-architecture-for-predicting-acute-kidney-injury-using-patient-record-data-and-ultrasound-kidney-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8236</span> Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiming%20Zhang">Qiming Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Youda%20Ye"> Youda Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinxue%20Jiang"> Qinxue Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aero-heating%20prediction" title="aero-heating prediction">aero-heating prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20meshes" title=" hybrid meshes"> hybrid meshes</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20schemes" title=" hybrid schemes"> hybrid schemes</a> </p> <a href="https://publications.waset.org/abstracts/120061/research-on-the-aero-heating-prediction-based-on-hybrid-meshes-and-hybrid-schemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8235</span> Pullout Capacity of Hybrid Anchor Piles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Krishna">P. Hari Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ramana%20Murty"> V. Ramana Murty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different types of foundations are subjected to pullout or tensile loads depending on the soil in which they are embedded or due to the structural loads coming on them. In those circumstances, anchors were generally used to resist these loads. This paper presents the field pullout studies on hybrid anchor piles embedded in different types of soils. The pullout capacity and resistance of the hybrid granular anchor piles installed in the native expansive soil which is available in the campus are compared with similar hybrid concrete anchor piles which were installed in similar field conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20concrete%20anchor%20piles" title=" hybrid concrete anchor piles"> hybrid concrete anchor piles</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20granular%20anchor%20piles" title=" hybrid granular anchor piles"> hybrid granular anchor piles</a>, <a href="https://publications.waset.org/abstracts/search?q=pullout%20tests" title=" pullout tests"> pullout tests</a> </p> <a href="https://publications.waset.org/abstracts/13185/pullout-capacity-of-hybrid-anchor-piles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8234</span> Hybrid Stainless Steel Girder for Bridge Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Yabuki">Tetsuya Yabuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Arizumi"> Yasunori Arizumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuhiro%20Shimozato"> Tetsuhiro Shimozato</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20Guezouli"> Samy Guezouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Matsusita"> Hiroaki Matsusita</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Tai"> Masayuki Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title="smart structure">smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20stainless%20steel%20members" title=" hybrid stainless steel members"> hybrid stainless steel members</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20strength" title=" ultimate strength"> ultimate strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bridge" title=" steel bridge"> steel bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a> </p> <a href="https://publications.waset.org/abstracts/51375/hybrid-stainless-steel-girder-for-bridge-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=275">275</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=276">276</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20models&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>