CINXE.COM

Paul Kainen | Georgetown University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Paul Kainen | Georgetown University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Vd4YaDHoS7HWWdyDuHPjHTvPvVanBKR531jyFFaqJnJNJ5wT5/eNvbtR7A3lvzboMV0lnY4xag7TckpznnCVbA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="paul kainen" /> <meta name="description" content="Ph. D. in Topology from Cornell Univ., 7 years at Case Western Reserve U., 4 years at AT&amp;T Bell Labs, 5 years at The Analytic Sciences Corp, 11 years as a…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113458213,"monthly_visitor_count_in_millions":113,"user_count":277533555,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732797962000); window.Aedu.timeDifference = new Date().getTime() - 1732797962000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://georgetown.academia.edu/PaulKainen" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":69750,"name":"Mathematics and Statistics","url":"https://georgetown.academia.edu/Departments/Mathematics_and_Statistics/Documents","university":{"id":105,"name":"Georgetown University","url":"https://georgetown.academia.edu/"}},"position":"Adjunct","position_id":9,"is_analytics_public":false,"interests":[]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://georgetown.academia.edu/PaulKainen&quot;,&quot;location&quot;:&quot;/PaulKainen&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;georgetown.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/PaulKainen&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-84652146-5f88-48c0-b74d-afb5e8a80f55"></div> <div id="ProfileCheckPaperUpdate-react-component-84652146-5f88-48c0-b74d-afb5e8a80f55"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Paul Kainen</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://georgetown.academia.edu/">Georgetown University</a>, <a class="u-tcGrayDarker" href="https://georgetown.academia.edu/Departments/Mathematics_and_Statistics/Documents">Mathematics and Statistics</a>, <span class="u-tcGrayDarker">Adjunct</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Paul" data-follow-user-id="46765975" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="46765975"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">46</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">5</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><a href="/PaulKainen/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Ph. D. in Topology from Cornell Univ., 7 years at Case Western Reserve U., 4 years at AT&amp;T Bell Labs, 5 years at The Analytic Sciences Corp, 11 years as a consultant in math, photonics, artificial intelligence, and visual display, 21 years at Georgetown U.&nbsp; Specialties: neural nets, topological graph theory.&nbsp; Invented: weak adjoint functors, book and geometric thickness of graphs, robust and connected-sum cycle bases, approximate commutativity in groupoid diagrams, quasiorthogonal dimension (with R. Hecht-Nielsen and V. Kurkova), decomposition of 2-skeleta of complexes into surfaces (with R. Hammack). Expert also in therapeutic use of photobiomodulation, especially to treat oral mucositis, diabetic ulcers, and retinopathy.&nbsp; Erdos number 1.<br /><span class="u-fw700">Supervisors:&nbsp;</span>Peter Hilton (for Ph.D.), worked with T. L. Saaty, M. Mesarovic, K. Pribram<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Paul Kainen</h3></div><div class="js-work-strip profile--work_container" data-work-id="105856484"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105856484/Hungarian_Academy_of_Sciences"><img alt="Research paper thumbnail of Hungarian Academy of Sciences" class="work-thumbnail" src="https://attachments.academia-assets.com/105209360/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105856484/Hungarian_Academy_of_Sciences">Hungarian Academy of Sciences</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any full subgraph H of K every full embedding of H into G can be extended to a full embedding of K into G. We prove that for each positive integer k there exist finite k-superuniversal graphs, and e find upper and lo er bounds on the smallest such graphs. We also find various bounds on the number of edges as ell as the maximal and minimal valence of a k-superuniversal graph. We then generalize the notion of k-superuniversality to cover graphs ith colorings and prove similar and related theorems. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cdcda8e328ce3317105ccd3c9f3be817" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105209360,&quot;asset_id&quot;:105856484,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105209360/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105856484"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105856484"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105856484; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105856484]").text(description); $(".js-view-count[data-work-id=105856484]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105856484; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105856484']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 105856484, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cdcda8e328ce3317105ccd3c9f3be817" } } $('.js-work-strip[data-work-id=105856484]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105856484,"title":"Hungarian Academy of Sciences","translated_title":"","metadata":{"abstract":"Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any full subgraph H of K every full embedding of H into G can be extended to a full embedding of K into G. We prove that for each positive integer k there exist finite k-superuniversal graphs, and e find upper and lo er bounds on the smallest such graphs. We also find various bounds on the number of edges as ell as the maximal and minimal valence of a k-superuniversal graph. We then generalize the notion of k-superuniversality to cover graphs ith colorings and prove similar and related theorems. 1","publication_date":{"day":null,"month":null,"year":1977,"errors":{}}},"translated_abstract":"Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any full subgraph H of K every full embedding of H into G can be extended to a full embedding of K into G. We prove that for each positive integer k there exist finite k-superuniversal graphs, and e find upper and lo er bounds on the smallest such graphs. We also find various bounds on the number of edges as ell as the maximal and minimal valence of a k-superuniversal graph. We then generalize the notion of k-superuniversality to cover graphs ith colorings and prove similar and related theorems. 1","internal_url":"https://www.academia.edu/105856484/Hungarian_Academy_of_Sciences","translated_internal_url":"","created_at":"2023-08-22T11:55:35.093-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105209360,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105209360/thumbnails/1.jpg","file_name":"1978-20.pdf","download_url":"https://www.academia.edu/attachments/105209360/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hungarian_Academy_of_Sciences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105209360/1978-20-libre.pdf?1692733863=\u0026response-content-disposition=attachment%3B+filename%3DHungarian_Academy_of_Sciences.pdf\u0026Expires=1732801561\u0026Signature=F5DLq9hLMXDdqTTCbx9kVwDOC7J~ritWGyo1Nj-gopnSn0zl11GEu6goPXOl39LYFpqRhTeRCZVpFFiosYvtqIna4~vAdx4rxpumXLRCmTc~LaayIl1QumlCzZq9u53Tlt48P9OrKUKSf52mgAbTAGyF6AdScf69Vo0mcyhrZjiD9F3mypNoIlc9-9qf2Dqybs-ANVs01qu0LNazejE1~pGqn2qcp-SHpdZQU1CwIPmWWbLrWiAftkEv7rBP1CG-bOFohoCgYnJQlhNjrKmmYQHDsEvVKwdaKx7GODoqosr4mgDKzTwuKsh3-0eTMAfd1EzWnyg~INF-r4Va7ZDFzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hungarian_Academy_of_Sciences","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":105209360,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105209360/thumbnails/1.jpg","file_name":"1978-20.pdf","download_url":"https://www.academia.edu/attachments/105209360/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hungarian_Academy_of_Sciences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105209360/1978-20-libre.pdf?1692733863=\u0026response-content-disposition=attachment%3B+filename%3DHungarian_Academy_of_Sciences.pdf\u0026Expires=1732801561\u0026Signature=F5DLq9hLMXDdqTTCbx9kVwDOC7J~ritWGyo1Nj-gopnSn0zl11GEu6goPXOl39LYFpqRhTeRCZVpFFiosYvtqIna4~vAdx4rxpumXLRCmTc~LaayIl1QumlCzZq9u53Tlt48P9OrKUKSf52mgAbTAGyF6AdScf69Vo0mcyhrZjiD9F3mypNoIlc9-9qf2Dqybs-ANVs01qu0LNazejE1~pGqn2qcp-SHpdZQU1CwIPmWWbLrWiAftkEv7rBP1CG-bOFohoCgYnJQlhNjrKmmYQHDsEvVKwdaKx7GODoqosr4mgDKzTwuKsh3-0eTMAfd1EzWnyg~INF-r4Va7ZDFzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":33562444,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.8971\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609546/On_dispersability_of_some_products_of_cycles"><img alt="Research paper thumbnail of On dispersability of some products of cycles" class="work-thumbnail" src="https://attachments.academia-assets.com/84914261/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609546/On_dispersability_of_some_products_of_cycles">On dispersability of some products of cycles</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9560bec7a161f6693f85c638ff924126" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84914261,&quot;asset_id&quot;:77609546,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84914261/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609546]").text(description); $(".js-view-count[data-work-id=77609546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9560bec7a161f6693f85c638ff924126" } } $('.js-work-strip[data-work-id=77609546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609546,"title":"On dispersability of some products of cycles","translated_title":"","metadata":{"abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","publication_date":{"day":26,"month":8,"year":2021,"errors":{}}},"translated_abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","internal_url":"https://www.academia.edu/77609546/On_dispersability_of_some_products_of_cycles","translated_internal_url":"","created_at":"2022-04-25T17:46:23.327-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84914261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914261/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/84914261/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914261/2108.11839v1-libre.pdf?1650937972=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=fu9md13A2q9TxG4422LwViSFfqZOtGIBmMBSCUB22o8Mma-sYUEIvC1Cr0aSSXt5RmgfT-yB1QyqHh83pRIlKIzP8987YFAshuIBz-SUr8g~gZqJyZEb1DtP0zHgBA3JmP4rgoURqmBa-8i3-CpS5Ngr625W1wR2fVAm4IaIWkIYeuG7ZsR5ROroq1buDKQDILbvMKsEpdOsdNhemjlw5DRG5Bl5lvB-5P2ak1kzbQ0N4lLfKiUw5LLoY5ePEyM6yf6bU6uzZtADMrcKnqGKJ5W3YX61B0lPxBed~KnN3xgdytQjap7qN8tiIr75OBKDjrXQbbNAlZZ257fj9J-kNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_dispersability_of_some_products_of_cycles","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84914261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914261/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/84914261/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914261/2108.11839v1-libre.pdf?1650937972=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=fu9md13A2q9TxG4422LwViSFfqZOtGIBmMBSCUB22o8Mma-sYUEIvC1Cr0aSSXt5RmgfT-yB1QyqHh83pRIlKIzP8987YFAshuIBz-SUr8g~gZqJyZEb1DtP0zHgBA3JmP4rgoURqmBa-8i3-CpS5Ngr625W1wR2fVAm4IaIWkIYeuG7ZsR5ROroq1buDKQDILbvMKsEpdOsdNhemjlw5DRG5Bl5lvB-5P2ak1kzbQ0N4lLfKiUw5LLoY5ePEyM6yf6bU6uzZtADMrcKnqGKJ5W3YX61B0lPxBed~KnN3xgdytQjap7qN8tiIr75OBKDjrXQbbNAlZZ257fj9J-kNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":19907804,"url":"https://arxiv.org/pdf/2108.11839v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609545"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609545/On_Dispersability_of_Some_Circulant_Graphs"><img alt="Research paper thumbnail of On Dispersability of Some Circulant Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/84932551/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609545/On_Dispersability_of_Some_Circulant_Graphs">On Dispersability of Some Circulant Graphs</a></div><div class="wp-workCard_item"><span>SSRN Electronic Journal</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db8e6a0b358b5cffe33d88fbe7049868" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84932551,&quot;asset_id&quot;:77609545,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84932551/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609545"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609545"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609545; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609545]").text(description); $(".js-view-count[data-work-id=77609545]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609545; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609545']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609545, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db8e6a0b358b5cffe33d88fbe7049868" } } $('.js-work-strip[data-work-id=77609545]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609545,"title":"On Dispersability of Some Circulant Graphs","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The matching book thickness mbt(G) of a graph G is the least number of pages in a book embedding such that each page is a matching; G is dispersable if mbt(G) = ∆(G), where ∆ is the maximum degree. A graph G is nearly dispersable if mbt(G) = 1 + ∆(G). Recently, Alam et al disproved the 40-year-old Bernhart-Kainen conjecture that all regular bipartite graphs are dispersable, motivating further work on dispersability. We show that most circulant graphs G with jump lengths not exceeding 3 are dispersable or nearly dispersable. Similar results are obtained for arbitrarily large jump lengths, obtained by rearranging repeated copies of a complete or bipartite complete graph.","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"SSRN Electronic Journal","grobid_abstract_attachment_id":84932551},"translated_abstract":null,"internal_url":"https://www.academia.edu/77609545/On_Dispersability_of_Some_Circulant_Graphs","translated_internal_url":"","created_at":"2022-04-25T17:46:22.270-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84932551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932551/thumbnails/1.jpg","file_name":"2109.10163v1.pdf","download_url":"https://www.academia.edu/attachments/84932551/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Dispersability_of_Some_Circulant_Grap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932551/2109.10163v1-libre.pdf?1650946262=\u0026response-content-disposition=attachment%3B+filename%3DOn_Dispersability_of_Some_Circulant_Grap.pdf\u0026Expires=1732801561\u0026Signature=BfNihctXyQlr1WIML9a7PKg-sC7clN6AsujJYdIDFKoBp~xlZpAK966bQ3Zd3TpN-Ba22cyk2aSJcWqS~1pZNZShAb4Bw2OmajKlUMAyUY8G82e19iE8~zLxJpJS13xHghrP8WYbSqiKQFZYrMpkA3pnZPPA2jr~IxC53sr98gm1cotN6ghV3itPrJXAzDRiZkMVsPa5hMAyCpcU6V5D6D4ZLUYICGwadGLxbWNF16haXTCDfImcD1PG2aghc7w5Scm7o1aKf1vxGiO3mik9CsFwaWmaE~Qh9IaM~5oy1-w55MGCaDxB~xaSbVy3JPMa1Yn9f4hw9GjaIgBJPmfvqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Dispersability_of_Some_Circulant_Graphs","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84932551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932551/thumbnails/1.jpg","file_name":"2109.10163v1.pdf","download_url":"https://www.academia.edu/attachments/84932551/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Dispersability_of_Some_Circulant_Grap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932551/2109.10163v1-libre.pdf?1650946262=\u0026response-content-disposition=attachment%3B+filename%3DOn_Dispersability_of_Some_Circulant_Grap.pdf\u0026Expires=1732801561\u0026Signature=BfNihctXyQlr1WIML9a7PKg-sC7clN6AsujJYdIDFKoBp~xlZpAK966bQ3Zd3TpN-Ba22cyk2aSJcWqS~1pZNZShAb4Bw2OmajKlUMAyUY8G82e19iE8~zLxJpJS13xHghrP8WYbSqiKQFZYrMpkA3pnZPPA2jr~IxC53sr98gm1cotN6ghV3itPrJXAzDRiZkMVsPa5hMAyCpcU6V5D6D4ZLUYICGwadGLxbWNF16haXTCDfImcD1PG2aghc7w5Scm7o1aKf1vxGiO3mik9CsFwaWmaE~Qh9IaM~5oy1-w55MGCaDxB~xaSbVy3JPMa1Yn9f4hw9GjaIgBJPmfvqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609543/Quadrilateral_embedding_of_G_Q_s_"><img alt="Research paper thumbnail of Quadrilateral embedding of G × Q s ∗" class="work-thumbnail" src="https://attachments.academia-assets.com/84914228/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609543/Quadrilateral_embedding_of_G_Q_s_">Quadrilateral embedding of G × Q s ∗</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×Qs has a quadrilateral embedding in some surface, where Qs is the hypercube graph. This answers a question of Pisanski.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a8c11d391083e9db882436795ea25c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84914228,&quot;asset_id&quot;:77609543,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84914228/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609543]").text(description); $(".js-view-count[data-work-id=77609543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a8c11d391083e9db882436795ea25c6" } } $('.js-work-strip[data-work-id=77609543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609543,"title":"Quadrilateral embedding of G × Q s ∗","translated_title":"","metadata":{"abstract":"It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×Qs has a quadrilateral embedding in some surface, where Qs is the hypercube graph. This answers a question of Pisanski.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×Qs has a quadrilateral embedding in some surface, where Qs is the hypercube graph. This answers a question of Pisanski.","internal_url":"https://www.academia.edu/77609543/Quadrilateral_embedding_of_G_Q_s_","translated_internal_url":"","created_at":"2022-04-25T17:46:21.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84914228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914228/thumbnails/1.jpg","file_name":"icg4.pdf","download_url":"https://www.academia.edu/attachments/84914228/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quadrilateral_embedding_of_G_Q_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914228/icg4-libre.pdf?1650937974=\u0026response-content-disposition=attachment%3B+filename%3DQuadrilateral_embedding_of_G_Q_s.pdf\u0026Expires=1732801561\u0026Signature=U8jro7Yfohjm1DWHucgVAp1343~A01uE1vH9evah4g8TS7ZCgQMVVWP-AykW8PwXqFqLaFL-8JQxHnhNIvsPrFWIfAChOjxoigudNADWfxLzyussUpVkhiGEjuVW3j0sGHaYTLiVYcQCFOfMPHG-XY1kgNVXTA9kdQgRPPY~iyd5jRtTbkkYTGG~mNUIrALmisw-lKct0HkGx9yrsZA9GnvJ4QkOSdUfD6QGPpntkPJAwwuQjj0cNUY7XYnx42y4g7qi~O784xSteyuQSlwyofTDZGr~ruHt9Q5gX7wKY7htp0NiGSeKLqG3SUFO1lgEEYbzYaomlX7WLvciQzyNEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Quadrilateral_embedding_of_G_Q_s_","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84914228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914228/thumbnails/1.jpg","file_name":"icg4.pdf","download_url":"https://www.academia.edu/attachments/84914228/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quadrilateral_embedding_of_G_Q_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914228/icg4-libre.pdf?1650937974=\u0026response-content-disposition=attachment%3B+filename%3DQuadrilateral_embedding_of_G_Q_s.pdf\u0026Expires=1732801561\u0026Signature=U8jro7Yfohjm1DWHucgVAp1343~A01uE1vH9evah4g8TS7ZCgQMVVWP-AykW8PwXqFqLaFL-8JQxHnhNIvsPrFWIfAChOjxoigudNADWfxLzyussUpVkhiGEjuVW3j0sGHaYTLiVYcQCFOfMPHG-XY1kgNVXTA9kdQgRPPY~iyd5jRtTbkkYTGG~mNUIrALmisw-lKct0HkGx9yrsZA9GnvJ4QkOSdUfD6QGPpntkPJAwwuQjj0cNUY7XYnx42y4g7qi~O784xSteyuQSlwyofTDZGr~ruHt9Q5gX7wKY7htp0NiGSeKLqG3SUFO1lgEEYbzYaomlX7WLvciQzyNEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84914223,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914223/thumbnails/1.jpg","file_name":"icg4.pdf","download_url":"https://www.academia.edu/attachments/84914223/download_file","bulk_download_file_name":"Quadrilateral_embedding_of_G_Q_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914223/icg4-libre.pdf?1650937974=\u0026response-content-disposition=attachment%3B+filename%3DQuadrilateral_embedding_of_G_Q_s.pdf\u0026Expires=1732801561\u0026Signature=TdR5WSiSVenv6cGF7mgk3YfOp~3wQzGMbHZiAuFpohj9WtokoiAgqkwlSkZjAr4bXQ2A7JXMJ7davtswB1d1pOXhI4oDZvgItLAp8N2KpQ8PTovwr1kvR2775zRxw4PYSkQxI4FiB3Gnh4fByVUhJofqD1F0GBpZMNtKcS0LplDZyRDIammnp3pI2fdWmO0nKYcOif2PsvOODQKQLJbxAyf19qjcwmqJ89qSgMBLDSqcZKZmYIPZv~ez5N7uztUG6IL-dzAFF8EPiZylCWwuWHK4DBn5-3Em8uSCifhaaLo6SP0gEHpjAur~3UHWOzwtEzirUiSwLqm9ag1bLYW3pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":19907802,"url":"http://faculty.georgetown.edu/kainen/icg4.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609492/Book_embeddings_of_graphs_and_a_theorem_of_Whitney"><img alt="Research paper thumbnail of Book embeddings of graphs and a theorem of Whitney" class="work-thumbnail" src="https://attachments.academia-assets.com/84932499/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609492/Book_embeddings_of_graphs_and_a_theorem_of_Whitney">Book embeddings of graphs and a theorem of Whitney</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is shown that the number of pages required for a book embedding of a graph is the maximum of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is shown that the number of pages required for a book embedding of a graph is the maximum of the numbers needed for any of the maximal nonseparable subgraphs and that a plane graph in which every triangle bounds a face has a two-page book embedding. The latter extends a theorem of H. Whitney and gives two-page book embeddings for X-trees and square grids.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b0acc827278656f72da728da2e8a7465" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84932499,&quot;asset_id&quot;:77609492,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84932499/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609492]").text(description); $(".js-view-count[data-work-id=77609492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609492, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b0acc827278656f72da728da2e8a7465" } } $('.js-work-strip[data-work-id=77609492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609492,"title":"Book embeddings of graphs and a theorem of Whitney","translated_title":"","metadata":{"abstract":"It is shown that the number of pages required for a book embedding of a graph is the maximum of the numbers needed for any of the maximal nonseparable subgraphs and that a plane graph in which every triangle bounds a face has a two-page book embedding. The latter extends a theorem of H. Whitney and gives two-page book embeddings for X-trees and square grids.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":"It is shown that the number of pages required for a book embedding of a graph is the maximum of the numbers needed for any of the maximal nonseparable subgraphs and that a plane graph in which every triangle bounds a face has a two-page book embedding. The latter extends a theorem of H. Whitney and gives two-page book embeddings for X-trees and square grids.","internal_url":"https://www.academia.edu/77609492/Book_embeddings_of_graphs_and_a_theorem_of_Whitney","translated_internal_url":"","created_at":"2022-04-25T17:45:46.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84932499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932499/thumbnails/1.jpg","file_name":"pbip3.pdf","download_url":"https://www.academia.edu/attachments/84932499/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Book_embeddings_of_graphs_and_a_theorem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932499/pbip3-libre.pdf?1650946261=\u0026response-content-disposition=attachment%3B+filename%3DBook_embeddings_of_graphs_and_a_theorem.pdf\u0026Expires=1732801561\u0026Signature=G5ivXeIFYTCFeN3VYDNbUN0aOUSqQJLiuRZsqrCemfZnNMqnzjFewKzWX3QUd6eOSSbGzKIHpgK5Mdkh9f9Lo2ZFPNVxivVkjjI15WTDl3BZWUWpPrq7U-mJyJ-ZZMn6ZeyDu6s6o3Lfcrcdj9n63xZWefGHAAenTwdDjg1w9j2-ANNZxkMGguxAIfoLl1zj8SHRxTiy4SXUlxYADpMdhdEJxPnWxMz3OpSUraWCsDj~W7fB22OF1Vfwt5nZttWCbJaH23Hcga03xkcShRSyIKcv9uzYeOQYZ53ReY5oMRoJX5bxPO69OeTSr6Tk95ZcIGJoVldNSZX8MuXAjLqjIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Book_embeddings_of_graphs_and_a_theorem_of_Whitney","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84932499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932499/thumbnails/1.jpg","file_name":"pbip3.pdf","download_url":"https://www.academia.edu/attachments/84932499/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Book_embeddings_of_graphs_and_a_theorem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932499/pbip3-libre.pdf?1650946261=\u0026response-content-disposition=attachment%3B+filename%3DBook_embeddings_of_graphs_and_a_theorem.pdf\u0026Expires=1732801561\u0026Signature=G5ivXeIFYTCFeN3VYDNbUN0aOUSqQJLiuRZsqrCemfZnNMqnzjFewKzWX3QUd6eOSSbGzKIHpgK5Mdkh9f9Lo2ZFPNVxivVkjjI15WTDl3BZWUWpPrq7U-mJyJ-ZZMn6ZeyDu6s6o3Lfcrcdj9n63xZWefGHAAenTwdDjg1w9j2-ANNZxkMGguxAIfoLl1zj8SHRxTiy4SXUlxYADpMdhdEJxPnWxMz3OpSUraWCsDj~W7fB22OF1Vfwt5nZttWCbJaH23Hcga03xkcShRSyIKcv9uzYeOQYZ53ReY5oMRoJX5bxPO69OeTSr6Tk95ZcIGJoVldNSZX8MuXAjLqjIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":19907782,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.7420\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70970474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70970474/Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier"><img alt="Research paper thumbnail of Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70970474/Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier">Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that heavily used networks admit simple heuristic approximations with excellent quantitative accuracy. We describe a number of different examples in which having many parameters actually facilitates computation and we suggest connections with geometric phenomena in high-dimensional spaces. It seems that in several interesting and quite general situations, dimensionality may be a blessing in disguise provided that some suitable form of computing is used which can deal with it. 1. Introduction This is a particularly appropriate time to consider the problem of systems having a very large number of parameters. Reasons include: neural networks, genetic algorithms, expert systems, fuzzy logic and cellular automata. Moreover, the current level of sensor technology can flood us with data like water from a firehose. Already, there are terrabytes of data that have been collected by NASA and others whi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70970474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70970474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70970474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70970474]").text(description); $(".js-view-count[data-work-id=70970474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70970474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70970474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70970474, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70970474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70970474,"title":"Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier","translated_title":"","metadata":{"abstract":"Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that heavily used networks admit simple heuristic approximations with excellent quantitative accuracy. We describe a number of different examples in which having many parameters actually facilitates computation and we suggest connections with geometric phenomena in high-dimensional spaces. It seems that in several interesting and quite general situations, dimensionality may be a blessing in disguise provided that some suitable form of computing is used which can deal with it. 1. Introduction This is a particularly appropriate time to consider the problem of systems having a very large number of parameters. Reasons include: neural networks, genetic algorithms, expert systems, fuzzy logic and cellular automata. Moreover, the current level of sensor technology can flood us with data like water from a firehose. Already, there are terrabytes of data that have been collected by NASA and others whi...","publication_date":{"day":null,"month":null,"year":1996,"errors":{}}},"translated_abstract":"Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that heavily used networks admit simple heuristic approximations with excellent quantitative accuracy. We describe a number of different examples in which having many parameters actually facilitates computation and we suggest connections with geometric phenomena in high-dimensional spaces. It seems that in several interesting and quite general situations, dimensionality may be a blessing in disguise provided that some suitable form of computing is used which can deal with it. 1. Introduction This is a particularly appropriate time to consider the problem of systems having a very large number of parameters. Reasons include: neural networks, genetic algorithms, expert systems, fuzzy logic and cellular automata. Moreover, the current level of sensor technology can flood us with data like water from a firehose. Already, there are terrabytes of data that have been collected by NASA and others whi...","internal_url":"https://www.academia.edu/70970474/Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier","translated_internal_url":"","created_at":"2022-02-08T18:47:54.528-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":17472423,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4244\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70970470"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70970470/An_octonion_model_for_physics"><img alt="Research paper thumbnail of An octonion model for physics" class="work-thumbnail" src="https://attachments.academia-assets.com/80502661/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70970470/An_octonion_model_for_physics">An octonion model for physics</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric form of associativity is the common thread.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b1ddee3ec796642ab1530fa2ac8e6c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80502661,&quot;asset_id&quot;:70970470,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80502661/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70970470"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70970470"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70970470; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70970470]").text(description); $(".js-view-count[data-work-id=70970470]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70970470; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70970470']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70970470, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b1ddee3ec796642ab1530fa2ac8e6c2" } } $('.js-work-strip[data-work-id=70970470]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70970470,"title":"An octonion model for physics","translated_title":"","metadata":{"abstract":"The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric form of associativity is the common thread.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":"The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric form of associativity is the common thread.","internal_url":"https://www.academia.edu/70970470/An_octonion_model_for_physics","translated_internal_url":"","created_at":"2022-02-08T18:47:54.304-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80502661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502661/thumbnails/1.jpg","file_name":"octophys.pdf","download_url":"https://www.academia.edu/attachments/80502661/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_octonion_model_for_physics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502661/octophys-libre.pdf?1644375610=\u0026response-content-disposition=attachment%3B+filename%3DAn_octonion_model_for_physics.pdf\u0026Expires=1732801561\u0026Signature=gLL-~CEKept4WoxpcL-pJSvqgsyIx1uLEUR2X6eLUyBZKGKymj5-AV4AUJszjqrt6MYrE~QJJUQoTjsarx9z7GiT6nx9a672KDSaUtRvkLl6ANQzoJzcDtWs5BSITWZYTALNLH9l3V4vX2IOaIpK0vSlAqW19a~cA08v-Z5NGg~VjHM5v8nQjTVMgqNh9tM3OxJ~JwQtHnAdazXbj4WghDX8jbMVE15cOliVsfv8JB3wlijlQnbXmn8CXnj2yw0aMtcrbYXHiAIt22eP3SWTXRjVIpDOh4RUZSuPBqD~g-5TfZEzJXqIWipeyVuMZFyZUMqG9WLcEE1G~yEOkgqoJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_octonion_model_for_physics","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":80502661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502661/thumbnails/1.jpg","file_name":"octophys.pdf","download_url":"https://www.academia.edu/attachments/80502661/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_octonion_model_for_physics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502661/octophys-libre.pdf?1644375610=\u0026response-content-disposition=attachment%3B+filename%3DAn_octonion_model_for_physics.pdf\u0026Expires=1732801561\u0026Signature=gLL-~CEKept4WoxpcL-pJSvqgsyIx1uLEUR2X6eLUyBZKGKymj5-AV4AUJszjqrt6MYrE~QJJUQoTjsarx9z7GiT6nx9a672KDSaUtRvkLl6ANQzoJzcDtWs5BSITWZYTALNLH9l3V4vX2IOaIpK0vSlAqW19a~cA08v-Z5NGg~VjHM5v8nQjTVMgqNh9tM3OxJ~JwQtHnAdazXbj4WghDX8jbMVE15cOliVsfv8JB3wlijlQnbXmn8CXnj2yw0aMtcrbYXHiAIt22eP3SWTXRjVIpDOh4RUZSuPBqD~g-5TfZEzJXqIWipeyVuMZFyZUMqG9WLcEE1G~yEOkgqoJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80502662,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502662/thumbnails/1.jpg","file_name":"octophys.pdf","download_url":"https://www.academia.edu/attachments/80502662/download_file","bulk_download_file_name":"An_octonion_model_for_physics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502662/octophys-libre.pdf?1644375613=\u0026response-content-disposition=attachment%3B+filename%3DAn_octonion_model_for_physics.pdf\u0026Expires=1732801561\u0026Signature=RZ6zrtvGHIrZmcddPhnXK7OxGmp571MuWzvQk4O4C2Pqxqr4AthxWqJrhxekUnE2tSFP5GW~cFw2xKWjPaMmzTTk8Y0-Rphf3w5kgzV-u--hKe8QC2UwE1lpouxgy5ra5OBx4yKzCRphjhmVMMHZQEGedndFFH~0vqn7bKehOUhvdopUuwz5X1cflq5NglraptZG4d9-U7mjFOehwNMwfCjpvqqZnnMdEM5AcsFuDPmQM-pDxfWi08mWuVBG9wub2M9RNGTR7ykKUpv62Y-UGcmLrVyDDa-6ze0vnwWI4o~nVNjSzN-uLoDeVnwU-btPZnOipmmLYFaqRSHgP7iymQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":77562,"name":"Geometric Algebra","url":"https://www.academia.edu/Documents/in/Geometric_Algebra"},{"id":79394,"name":"Gravity","url":"https://www.academia.edu/Documents/in/Gravity"}],"urls":[{"id":17472422,"url":"http://www9.georgetown.edu/faculty/kainen/octophys.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70970443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70970443/approximation_by_Heaviside_perceptron_networks_Neural_Networks_13"><img alt="Research paper thumbnail of approximation by Heaviside perceptron networks, Neural Networks 13" class="work-thumbnail" src="https://attachments.academia-assets.com/80502648/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70970443/approximation_by_Heaviside_perceptron_networks_Neural_Networks_13">approximation by Heaviside perceptron networks, Neural Networks 13</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions computable by Heaviside perceptron networks with n hidden units; however for p ∈ (1, ∞) such best approximation is not unique and cannot be continuous. Keywords. One-hidden-layer networks, Heaviside perceptrons, best approximation, metric projection, continuous selection, approximatively compact. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="062b5f30caa61d1af73524c75870f11f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80502648,&quot;asset_id&quot;:70970443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80502648/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70970443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70970443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70970443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70970443]").text(description); $(".js-view-count[data-work-id=70970443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70970443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70970443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70970443, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "062b5f30caa61d1af73524c75870f11f" } } $('.js-work-strip[data-work-id=70970443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70970443,"title":"approximation by Heaviside perceptron networks, Neural Networks 13","translated_title":"","metadata":{"abstract":"In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions computable by Heaviside perceptron networks with n hidden units; however for p ∈ (1, ∞) such best approximation is not unique and cannot be continuous. Keywords. One-hidden-layer networks, Heaviside perceptrons, best approximation, metric projection, continuous selection, approximatively compact. 1","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions computable by Heaviside perceptron networks with n hidden units; however for p ∈ (1, ∞) such best approximation is not unique and cannot be continuous. Keywords. One-hidden-layer networks, Heaviside perceptrons, best approximation, metric projection, continuous selection, approximatively compact. 1","internal_url":"https://www.academia.edu/70970443/approximation_by_Heaviside_perceptron_networks_Neural_Networks_13","translated_internal_url":"","created_at":"2022-02-08T18:47:29.052-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80502648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502648/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80502648/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"approximation_by_Heaviside_perceptron_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502648/download-libre.pdf?1644375612=\u0026response-content-disposition=attachment%3B+filename%3Dapproximation_by_Heaviside_perceptron_ne.pdf\u0026Expires=1732801561\u0026Signature=Hxg0S8sNIH9r1Gq5Tdl5z~2aMFrhX3ZdjFy5mLPSu1isU4hcAbHWjrN~Who9g9x79T1h4fTjL47B9fAohXdQND~e3~vKtzncZAk7JgdOsZTk8G8lKm4eoeKK2uPs2LVLdxZAB~Wcqq4PL3Lhr8-jbYJINw3U1Tg4ZGcivSPoZL2RqG9RYE9mGWrc61TL6ldqT~6MJlW~dccR-O4yMdzqKK0WKKlzap6SxsmE8sVtM7V3UMHH-VMXK0NnoaVoQxj9dgJrBM2H9N-jBkL9DDrklgF-uJCqLvZowYJLzSCO-K3I1sQPtDtdL~52zDxem5Y~R1C97tobCt-yYaUih32TXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"approximation_by_Heaviside_perceptron_networks_Neural_Networks_13","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":80502648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502648/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80502648/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"approximation_by_Heaviside_perceptron_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502648/download-libre.pdf?1644375612=\u0026response-content-disposition=attachment%3B+filename%3Dapproximation_by_Heaviside_perceptron_ne.pdf\u0026Expires=1732801561\u0026Signature=Hxg0S8sNIH9r1Gq5Tdl5z~2aMFrhX3ZdjFy5mLPSu1isU4hcAbHWjrN~Who9g9x79T1h4fTjL47B9fAohXdQND~e3~vKtzncZAk7JgdOsZTk8G8lKm4eoeKK2uPs2LVLdxZAB~Wcqq4PL3Lhr8-jbYJINw3U1Tg4ZGcivSPoZL2RqG9RYE9mGWrc61TL6ldqT~6MJlW~dccR-O4yMdzqKK0WKKlzap6SxsmE8sVtM7V3UMHH-VMXK0NnoaVoQxj9dgJrBM2H9N-jBkL9DDrklgF-uJCqLvZowYJLzSCO-K3I1sQPtDtdL~52zDxem5Y~R1C97tobCt-yYaUih32TXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80502647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502647/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80502647/download_file","bulk_download_file_name":"approximation_by_Heaviside_perceptron_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502647/download-libre.pdf?1644375612=\u0026response-content-disposition=attachment%3B+filename%3Dapproximation_by_Heaviside_perceptron_ne.pdf\u0026Expires=1732801561\u0026Signature=RwD06rCsXyqwhdLYhCow3PNJitFcmOmmo2U1sDgFhrE9gQq8EOi~Sk1HjaR2KRvlrXxn4hSLlBDRWlyOQVbSTwJvfW8T1zHPoSKBCUfe9gRqQpBpLjJoZ4MEm8Dfe59rQeyUecqvaJFc1D6HHSJxh~7oYQ8uJCDRXK8Kxc0CdJPhTgEYn1uGHCbgE1HdIRgTfgz8HXH-rnCMGn8ZQZRCNixowMW3G6hIVy4CS1NWuiX5vGmcShb6uPhHl-MWbriN3Bj53IuZoBaSRhE6mxatDWHltnDTHwEdDEdBzUCpIrHH2Yinnft7AfK7X8C2rQyxD4GZ66P9QiAI5e-wTeGvHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":17472415,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.4760\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089433"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089433/On_dispersability_of_some_products_of_cycles"><img alt="Research paper thumbnail of On dispersability of some products of cycles" class="work-thumbnail" src="https://attachments.academia-assets.com/76829440/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089433/On_dispersability_of_some_products_of_cycles">On dispersability of some products of cycles</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0b0744df58035d27c4972a39750b7d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829440,&quot;asset_id&quot;:65089433,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829440/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089433"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089433"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089433; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089433]").text(description); $(".js-view-count[data-work-id=65089433]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089433; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089433']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089433, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0b0744df58035d27c4972a39750b7d0" } } $('.js-work-strip[data-work-id=65089433]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089433,"title":"On dispersability of some products of cycles","translated_title":"","metadata":{"abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","internal_url":"https://www.academia.edu/65089433/On_dispersability_of_some_products_of_cycles","translated_internal_url":"","created_at":"2021-12-19T04:22:20.203-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829440/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/76829440/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829440/2108.11839v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=KTVwmxlRsrgPqX7ACGXlOQYKvNYN9KHeEfjkYv2NzgNPWEJhKFSgZWDYLeXg89eG0gwC8udB~L60bx~glK24Yzy12SDeeV-vk2dJ-XPA~60cL5FZc~xrCPoqwbfVcT4jhGbyahgzNOLnULBVwqfnvh5YKr2GFEmWKcu0JFDFgzdFYgbQRC8l5SR7hNdS8F59TsIUjA5fDwOPJCsCtJeRceYHoMMoxbxUM~YVv3eksiXCr7TZ3MNsRjThgTl-RivUvKkJ3xtO9bpD7r82KdOy-~r7PvvigzMdL4KLZtnyiq6cblSnqjruxEhHnnAU~9j6KmMBqAmgLkJvAwbq-AApHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_dispersability_of_some_products_of_cycles","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829440/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/76829440/download_file?st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829440/2108.11839v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=KTVwmxlRsrgPqX7ACGXlOQYKvNYN9KHeEfjkYv2NzgNPWEJhKFSgZWDYLeXg89eG0gwC8udB~L60bx~glK24Yzy12SDeeV-vk2dJ-XPA~60cL5FZc~xrCPoqwbfVcT4jhGbyahgzNOLnULBVwqfnvh5YKr2GFEmWKcu0JFDFgzdFYgbQRC8l5SR7hNdS8F59TsIUjA5fDwOPJCsCtJeRceYHoMMoxbxUM~YVv3eksiXCr7TZ3MNsRjThgTl-RivUvKkJ3xtO9bpD7r82KdOy-~r7PvvigzMdL4KLZtnyiq6cblSnqjruxEhHnnAU~9j6KmMBqAmgLkJvAwbq-AApHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829441/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/76829441/download_file","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829441/2108.11839v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=D2EekPXMVWqEerJStjn0nMhW8I-jVtbt-Utay0Q59vAU8tYvBKDg8xOhbEVCAQZ4sLSS1pHiRXjAba1TiZnPxzOLIBse5n1i~ooJ1AzGaPWJZWIrrUSy8rSlWRyHXsHOJv9CZI49~hxmf7km04j8en0MhYxhbw0~OuFemOCnpv4zCGpZ9xDyyz1zYziQCD6nuNTfyvxIPklYt2tFNLhZUFT2AbCjP8-vG5tBzoGf3nwNp3ZiD1apQIR9YA0xeZXGf29~mqQjuAPTxGyFhVyw5ferY3WnXf3JW2vHyU2YcdjQImT6ywxGrYS3tjuoZMunZpEULMO4WyEa5eo9t48~6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":15399765,"url":"https://arxiv.org/pdf/2108.11839v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089432"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089432/A_New_View_of_Hypercube_Genus"><img alt="Research paper thumbnail of A New View of Hypercube Genus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089432/A_New_View_of_Hypercube_Genus">A New View of Hypercube Genus</a></div><div class="wp-workCard_item"><span>The American Mathematical Monthly</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-dimensional hypercube graph can be embedded. We give a new proof of the formula by building this surface as a union of certain faces in the hypercube’s 2-skeleton. For odd dimension n, the entire 2-skeleton decomposes into copies of the surface, and the intersection of any two copies is the hypercube graph.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089432"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089432"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089432; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089432]").text(description); $(".js-view-count[data-work-id=65089432]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089432; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089432']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089432, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65089432]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089432,"title":"A New View of Hypercube Genus","translated_title":"","metadata":{"abstract":"Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-dimensional hypercube graph can be embedded. We give a new proof of the formula by building this surface as a union of certain faces in the hypercube’s 2-skeleton. For odd dimension n, the entire 2-skeleton decomposes into copies of the surface, and the intersection of any two copies is the hypercube graph.","publisher":"Am. Math. Mon.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"The American Mathematical Monthly"},"translated_abstract":"Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-dimensional hypercube graph can be embedded. We give a new proof of the formula by building this surface as a union of certain faces in the hypercube’s 2-skeleton. For odd dimension n, the entire 2-skeleton decomposes into copies of the surface, and the intersection of any two copies is the hypercube graph.","internal_url":"https://www.academia.edu/65089432/A_New_View_of_Hypercube_Genus","translated_internal_url":"","created_at":"2021-12-19T04:22:20.023-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_New_View_of_Hypercube_Genus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":15399764,"url":"https://doi.org/10.1080/00029890.2020.1867472"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089431"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089431/Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8"><img alt="Research paper thumbnail of Robust cycle bases do not exist for K n , n if n ≥ 8" class="work-thumbnail" src="https://attachments.academia-assets.com/76829438/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089431/Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8">Robust cycle bases do not exist for K n , n if n ≥ 8</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 +...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 + C2 + · · · + Ck of basis elements such that (i) (C1 + C2 + · · · + Cl−1) ∩ Cl is a nontrivial path for each 2 ≤ l &amp;lt; k. Hence, (ii) each partial sum C1 + C2 + · · ·+ Cl is a cycle for 1 ≤ l ≤ k. While complete graphs and 2-connected plane graphs have robust cycle bases, it is shown that regular complete bipartite graphs Kn,n do not have any robust cycle basis if n ≥ 8. © 2017 Elsevier B.V. All rights reserved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="31284f254150fa7739b08313aa2bca16" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829438,&quot;asset_id&quot;:65089431,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829438/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089431"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089431"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089431; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089431]").text(description); $(".js-view-count[data-work-id=65089431]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089431; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089431']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089431, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "31284f254150fa7739b08313aa2bca16" } } $('.js-work-strip[data-work-id=65089431]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089431,"title":"Robust cycle bases do not exist for K n , n if n ≥ 8","translated_title":"","metadata":{"abstract":"A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 + C2 + · · · + Ck of basis elements such that (i) (C1 + C2 + · · · + Cl−1) ∩ Cl is a nontrivial path for each 2 ≤ l \u0026lt; k. Hence, (ii) each partial sum C1 + C2 + · · ·+ Cl is a cycle for 1 ≤ l ≤ k. While complete graphs and 2-connected plane graphs have robust cycle bases, it is shown that regular complete bipartite graphs Kn,n do not have any robust cycle basis if n ≥ 8. © 2017 Elsevier B.V. All rights reserved.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 + C2 + · · · + Ck of basis elements such that (i) (C1 + C2 + · · · + Cl−1) ∩ Cl is a nontrivial path for each 2 ≤ l \u0026lt; k. Hence, (ii) each partial sum C1 + C2 + · · ·+ Cl is a cycle for 1 ≤ l ≤ k. While complete graphs and 2-connected plane graphs have robust cycle bases, it is shown that regular complete bipartite graphs Kn,n do not have any robust cycle basis if n ≥ 8. © 2017 Elsevier B.V. All rights reserved.","internal_url":"https://www.academia.edu/65089431/Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8","translated_internal_url":"","created_at":"2021-12-19T04:22:19.831-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829438/thumbnails/1.jpg","file_name":"DA7394.pdf","download_url":"https://www.academia.edu/attachments/76829438/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_cycle_bases_do_not_exist_for_K_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829438/DA7394-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DRobust_cycle_bases_do_not_exist_for_K_n.pdf\u0026Expires=1732801561\u0026Signature=a3YRgp7IZVAOGsQoq3Ts~QnOkDCD1d1pA81Lp0ZQX0iXfnhE1GTbeTtyYXaegUPsux6Kc~f93tL3gQ86IaASLhXRWJ2~os4tdmcInzweRrU4Weh3KaqB7C-8~LZCNxCTcAsBO015Q4BCPUYPr4X5ls7HvX0yMlHdkw4f7lDnTjPa~v~lmI0KPEUsdOsAzaIMnYdxFhkCVTz-0lZM0qHCRduxWrpxW7-pxw2M64smGqEZIQeSyCV3DhAfmUEb902jIlchMX-fwLzUFPEyAWGPeZKRRsWuXLeO8Wye~eluYQcwROJ5s7ESEHYNEvs4bX02oxtxzJ~-IQJD4O7ZpVUfow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829438/thumbnails/1.jpg","file_name":"DA7394.pdf","download_url":"https://www.academia.edu/attachments/76829438/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_cycle_bases_do_not_exist_for_K_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829438/DA7394-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DRobust_cycle_bases_do_not_exist_for_K_n.pdf\u0026Expires=1732801561\u0026Signature=a3YRgp7IZVAOGsQoq3Ts~QnOkDCD1d1pA81Lp0ZQX0iXfnhE1GTbeTtyYXaegUPsux6Kc~f93tL3gQ86IaASLhXRWJ2~os4tdmcInzweRrU4Weh3KaqB7C-8~LZCNxCTcAsBO015Q4BCPUYPr4X5ls7HvX0yMlHdkw4f7lDnTjPa~v~lmI0KPEUsdOsAzaIMnYdxFhkCVTz-0lZM0qHCRduxWrpxW7-pxw2M64smGqEZIQeSyCV3DhAfmUEb902jIlchMX-fwLzUFPEyAWGPeZKRRsWuXLeO8Wye~eluYQcwROJ5s7ESEHYNEvs4bX02oxtxzJ~-IQJD4O7ZpVUfow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829439/thumbnails/1.jpg","file_name":"DA7394.pdf","download_url":"https://www.academia.edu/attachments/76829439/download_file","bulk_download_file_name":"Robust_cycle_bases_do_not_exist_for_K_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829439/DA7394-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DRobust_cycle_bases_do_not_exist_for_K_n.pdf\u0026Expires=1732801561\u0026Signature=Nl7p0i8pKVwHiQFrGRUuGxoisUxooQ49HwUYHQX5kMqfRCxFushZq9aATN3CcV-hGooTtbLv07dHyGP-aoF7dN4z5cjAcs7CfB~4fEPDMqRHZuaQ8etFbX20cDbDxbu3uYJomO4bDL8A-hoOt7piynSm8~QpsPw9EPU07IK-3Vgqfvp~qGJPkuxdM~s54Gzr4LfrJPvvfZZ61bmFdrNg7MiDpC35AbyuHpELAMmBs7DpgyvRnP-yJEDqjlnO3v5smR-wtx~yW6RD04vAF-dDBYS-t-348OY~C35ZJVDCKA13-2nvLlGNtoC0q5hY97AvxABgiqzS-BFI~sLE-Tfp~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1172727,"name":"Discrete Applied Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Applied_Mathematics"}],"urls":[{"id":15399763,"url":"https://www.people.vcu.edu/~rhammack/reprints/DA7394.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089430"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089430/Factorization_of_Platonic_Polytopes_into_canonical_spheres"><img alt="Research paper thumbnail of Factorization of Platonic Polytopes into canonical spheres" class="work-thumbnail" src="https://attachments.academia-assets.com/76829437/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089430/Factorization_of_Platonic_Polytopes_into_canonical_spheres">Factorization of Platonic Polytopes into canonical spheres</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2671d6574269fcee900a5ff12b32c05d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829437,&quot;asset_id&quot;:65089430,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829437/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089430"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089430"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089430; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089430]").text(description); $(".js-view-count[data-work-id=65089430]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089430; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089430']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089430, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2671d6574269fcee900a5ff12b32c05d" } } $('.js-work-strip[data-work-id=65089430]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089430,"title":"Factorization of Platonic Polytopes into canonical spheres","translated_title":"","metadata":{"abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","internal_url":"https://www.academia.edu/65089430/Factorization_of_Platonic_Polytopes_into_canonical_spheres","translated_internal_url":"","created_at":"2021-12-19T04:22:19.641-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829437/thumbnails/1.jpg","file_name":"2108.07867v1.pdf","download_url":"https://www.academia.edu/attachments/76829437/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Factorization_of_Platonic_Polytopes_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829437/2108.07867v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DFactorization_of_Platonic_Polytopes_into.pdf\u0026Expires=1732801562\u0026Signature=UoxkF21BE87WaaGOBcWVPUapU4ZVuU33HUgMwZmB8OdgFvEMNjpb0D3COQ3IC~tlX7k-4j3yp2tVVAZZvV3cPV2s7-XR~l4dPFmVEP2X-mQVlU8crvZ7to6gbIZXs9FPyu4Z2rEucdzUti9dz-2nF-QDmqt0~~uTeSRQhwLlhkx9rbI746Mz-6LJzzH-dMUrRdrhyVWyKGET8KzCzQKl-w0gpPnfKkowr3AUYB7hFIS7ArlBrJS-RD6ALlMEq1O-snF3nNJcpoxlZvh9IZsBEvcG~vb9UwpDkvKTpQ8GyalGFMNSZzIYLcilLTrMiih6mCsezmoqBfFVKmn~8s1suw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Factorization_of_Platonic_Polytopes_into_canonical_spheres","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829437/thumbnails/1.jpg","file_name":"2108.07867v1.pdf","download_url":"https://www.academia.edu/attachments/76829437/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Factorization_of_Platonic_Polytopes_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829437/2108.07867v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DFactorization_of_Platonic_Polytopes_into.pdf\u0026Expires=1732801562\u0026Signature=UoxkF21BE87WaaGOBcWVPUapU4ZVuU33HUgMwZmB8OdgFvEMNjpb0D3COQ3IC~tlX7k-4j3yp2tVVAZZvV3cPV2s7-XR~l4dPFmVEP2X-mQVlU8crvZ7to6gbIZXs9FPyu4Z2rEucdzUti9dz-2nF-QDmqt0~~uTeSRQhwLlhkx9rbI746Mz-6LJzzH-dMUrRdrhyVWyKGET8KzCzQKl-w0gpPnfKkowr3AUYB7hFIS7ArlBrJS-RD6ALlMEq1O-snF3nNJcpoxlZvh9IZsBEvcG~vb9UwpDkvKTpQ8GyalGFMNSZzIYLcilLTrMiih6mCsezmoqBfFVKmn~8s1suw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399762,"url":"https://arxiv.org/pdf/2108.07867v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089429"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089429/Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets"><img alt="Research paper thumbnail of Chapter 5 Approximating Multivariable Functions by Feedforward Neural Nets" class="work-thumbnail" src="https://attachments.academia-assets.com/76829435/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089429/Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets">Chapter 5 Approximating Multivariable Functions by Feedforward Neural Nets</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Theoretical results on approximation of multivariable functions by feedforward neural networks ar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Theoretical results on approximation of multivariable functions by feedforward neural networks are surveyed. Some proofs of universal approximation capabilities of networks with perceptrons and radial units are sketched. Major tools for estimation of rates of decrease of approximation errors with increasing model complexity are proven. Properties of best approximation are discussed. Recent results on dependence of model complexity on input dimension are presented and some cases when multivariable functions can be tractably approximated are described.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9151c4f112922654187422b29c7c2492" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829435,&quot;asset_id&quot;:65089429,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829435/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089429"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089429"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089429; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089429]").text(description); $(".js-view-count[data-work-id=65089429]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089429; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089429']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089429, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9151c4f112922654187422b29c7c2492" } } $('.js-work-strip[data-work-id=65089429]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089429,"title":"Chapter 5 Approximating Multivariable Functions by Feedforward Neural Nets","translated_title":"","metadata":{"abstract":"Theoretical results on approximation of multivariable functions by feedforward neural networks are surveyed. Some proofs of universal approximation capabilities of networks with perceptrons and radial units are sketched. Major tools for estimation of rates of decrease of approximation errors with increasing model complexity are proven. Properties of best approximation are discussed. Recent results on dependence of model complexity on input dimension are presented and some cases when multivariable functions can be tractably approximated are described.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"Theoretical results on approximation of multivariable functions by feedforward neural networks are surveyed. Some proofs of universal approximation capabilities of networks with perceptrons and radial units are sketched. Major tools for estimation of rates of decrease of approximation errors with increasing model complexity are proven. Properties of best approximation are discussed. Recent results on dependence of model complexity on input dimension are presented and some cases when multivariable functions can be tractably approximated are described.","internal_url":"https://www.academia.edu/65089429/Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets","translated_internal_url":"","created_at":"2021-12-19T04:22:19.478-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829435/thumbnails/1.jpg","file_name":"app.pdf","download_url":"https://www.academia.edu/attachments/76829435/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chapter_5_Approximating_Multivariable_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829435/app-libre.pdf?1639921868=\u0026response-content-disposition=attachment%3B+filename%3DChapter_5_Approximating_Multivariable_Fu.pdf\u0026Expires=1732801562\u0026Signature=PF2Jy5Uw0Hi~j5aDsUri39s3S5HGP8FCw8VH9yNWoFu9LCSELFcyOPEvOHLuU-fGav08oedLNpJMMvxvFGQ3ZtLDY0i5VYGrLJ3WYCodvjSKno5iSsT3Zc0x3DzDIK-azPKqap7Lp7-Woc0ngNxbC3C8dL95CEByA5v994pxMTzyouCKOBTJAxLQfUu8bKe0M05De4dvWKjM~9YOcu6jC6d2ywxQuDdVXU5S6LeMwmNtIO81YJIL8VVwGVISfDPESfWCD8d4D~OJpdqZCCsFjtjl66D3110LfGBBbWLEyX1QxAJ0BI4Z3kX8N9D3DXu~juSybW1XfAJDsrgpZgL02w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets","translated_slug":"","page_count":39,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829435/thumbnails/1.jpg","file_name":"app.pdf","download_url":"https://www.academia.edu/attachments/76829435/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chapter_5_Approximating_Multivariable_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829435/app-libre.pdf?1639921868=\u0026response-content-disposition=attachment%3B+filename%3DChapter_5_Approximating_Multivariable_Fu.pdf\u0026Expires=1732801562\u0026Signature=PF2Jy5Uw0Hi~j5aDsUri39s3S5HGP8FCw8VH9yNWoFu9LCSELFcyOPEvOHLuU-fGav08oedLNpJMMvxvFGQ3ZtLDY0i5VYGrLJ3WYCodvjSKno5iSsT3Zc0x3DzDIK-azPKqap7Lp7-Woc0ngNxbC3C8dL95CEByA5v994pxMTzyouCKOBTJAxLQfUu8bKe0M05De4dvWKjM~9YOcu6jC6d2ywxQuDdVXU5S6LeMwmNtIO81YJIL8VVwGVISfDPESfWCD8d4D~OJpdqZCCsFjtjl66D3110LfGBBbWLEyX1QxAJ0BI4Z3kX8N9D3DXu~juSybW1XfAJDsrgpZgL02w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829436,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829436/thumbnails/1.jpg","file_name":"app.pdf","download_url":"https://www.academia.edu/attachments/76829436/download_file","bulk_download_file_name":"Chapter_5_Approximating_Multivariable_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829436/app-libre.pdf?1639921869=\u0026response-content-disposition=attachment%3B+filename%3DChapter_5_Approximating_Multivariable_Fu.pdf\u0026Expires=1732801562\u0026Signature=Bto0vn--dJHu-bem2NORxSQavdtQwGoabSf78FscO2yf~~ejHIZydXFLr2fwYG5ouyF5Gzq2nuDuaCjOX44aTcnXlyyZu3nE-I4DJG9ZPuGUNUaeToonUkok7B-uF0-hzi8NW2UWpdp83akOvs~aWjE~38TFzpQukfYSdXpM3yBBn~aik09zSBAD1t1EmZ4gEcQBdJGnUVsrbPe1JPt7flWq6q2xWAwB2nIKNks0actJtVXxXJCF-mEH-EE6Y0TOqTyZ2dIJDSQQRzZlitBrad7bBUWNPB-3h0RnK7DhVosu6KEdCfJjdA5iuqlJWaIHLcum2BSKeGMHwKT-hFd2Yg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399761,"url":"http://www.cs.cas.cz/~vera/publications/books/app.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089428/Isolated_squares_in_hypercubes_and_robustness_of_commutativity"><img alt="Research paper thumbnail of Isolated squares in hypercubes and robustness of commutativity" class="work-thumbnail" src="https://attachments.academia-assets.com/76829433/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089428/Isolated_squares_in_hypercubes_and_robustness_of_commutativity">Isolated squares in hypercubes and robustness of commutativity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">On montre que, dans toute collection non vide d&amp;#39;au plus d-2 carres d&amp;#39;un hypercube Q d de ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">On montre que, dans toute collection non vide d&amp;#39;au plus d-2 carres d&amp;#39;un hypercube Q d de dimension d il existe un 3-cube sous-graphe de Q d qui contient exactement un de ces carres. Par suite, un diagramme d&amp;#39;isomorphismes sur le schema de l&amp;#39;hypercube d-dimensionnel ayant strictement moins de d-1 carres non commutaitfs a toutes ses faces commutatives. Des consequences statistiques sont donnees pour verifier la commutativite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c0fe0e0f7e7821519947d3bd885c82a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829433,&quot;asset_id&quot;:65089428,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829433/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089428]").text(description); $(".js-view-count[data-work-id=65089428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089428, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c0fe0e0f7e7821519947d3bd885c82a" } } $('.js-work-strip[data-work-id=65089428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089428,"title":"Isolated squares in hypercubes and robustness of commutativity","translated_title":"","metadata":{"abstract":"On montre que, dans toute collection non vide d\u0026#39;au plus d-2 carres d\u0026#39;un hypercube Q d de dimension d il existe un 3-cube sous-graphe de Q d qui contient exactement un de ces carres. Par suite, un diagramme d\u0026#39;isomorphismes sur le schema de l\u0026#39;hypercube d-dimensionnel ayant strictement moins de d-1 carres non commutaitfs a toutes ses faces commutatives. Des consequences statistiques sont donnees pour verifier la commutativite.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"On montre que, dans toute collection non vide d\u0026#39;au plus d-2 carres d\u0026#39;un hypercube Q d de dimension d il existe un 3-cube sous-graphe de Q d qui contient exactement un de ces carres. Par suite, un diagramme d\u0026#39;isomorphismes sur le schema de l\u0026#39;hypercube d-dimensionnel ayant strictement moins de d-1 carres non commutaitfs a toutes ses faces commutatives. Des consequences statistiques sont donnees pour verifier la commutativite.","internal_url":"https://www.academia.edu/65089428/Isolated_squares_in_hypercubes_and_robustness_of_commutativity","translated_internal_url":"","created_at":"2021-12-19T04:22:19.307-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829433/thumbnails/1.jpg","file_name":"blockprt.pdf","download_url":"https://www.academia.edu/attachments/76829433/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isolated_squares_in_hypercubes_and_robus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829433/blockprt-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DIsolated_squares_in_hypercubes_and_robus.pdf\u0026Expires=1732801562\u0026Signature=gvtaK5g8Fqoi4IHlGWokBiTmj98caynkd1GgJ17TTS1c~uD3RWwYnesunYQYX4vHttroJsL4-wHdLgn36ax3-3iHg39G2QbP4gZ~cS6dZTXrpk7q37Loqsx-~0uqSBY5ibSGyrPAyvbosnE4GSV6Cfz9O~pK5CdM2vnnjNAmcCDebymDHCLtFwsTJvfgrnms7XGLJbqiKAk4GqcrVBnbWYuJqyER5-yuKg58Zt0QIUFOdROP~AO3SdM~ztcsSTs6~EdJ2lENPyjXT1T4OmoD-VbVUYDFTwC~yH16iAuciVjilRjjjWZD-fUvvj9pmsK0gVB8jn81VaaOEyTfuCCnNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Isolated_squares_in_hypercubes_and_robustness_of_commutativity","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829433/thumbnails/1.jpg","file_name":"blockprt.pdf","download_url":"https://www.academia.edu/attachments/76829433/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isolated_squares_in_hypercubes_and_robus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829433/blockprt-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DIsolated_squares_in_hypercubes_and_robus.pdf\u0026Expires=1732801562\u0026Signature=gvtaK5g8Fqoi4IHlGWokBiTmj98caynkd1GgJ17TTS1c~uD3RWwYnesunYQYX4vHttroJsL4-wHdLgn36ax3-3iHg39G2QbP4gZ~cS6dZTXrpk7q37Loqsx-~0uqSBY5ibSGyrPAyvbosnE4GSV6Cfz9O~pK5CdM2vnnjNAmcCDebymDHCLtFwsTJvfgrnms7XGLJbqiKAk4GqcrVBnbWYuJqyER5-yuKg58Zt0QIUFOdROP~AO3SdM~ztcsSTs6~EdJ2lENPyjXT1T4OmoD-VbVUYDFTwC~yH16iAuciVjilRjjjWZD-fUvvj9pmsK0gVB8jn81VaaOEyTfuCCnNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829434/thumbnails/1.jpg","file_name":"blockprt.pdf","download_url":"https://www.academia.edu/attachments/76829434/download_file","bulk_download_file_name":"Isolated_squares_in_hypercubes_and_robus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829434/blockprt-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DIsolated_squares_in_hypercubes_and_robus.pdf\u0026Expires=1732801562\u0026Signature=eMhE52kKbRYNNWAL464nLpVNQd9AN9Rw3-CGKi1FDcmXAD1Ak8WhCNe~82APekWBosesrW2Ac5CiwwulDk8kP6WeA8WWqoE3V-XEIBVJqmy8P7YBtf3kzwVzO1FZd3ipCuG2odjO3tq02sAxw-7H6ZurYAhmxyEyhjjwdNeRmJAoAcg-5av-cvn27FjJoBBRtt0X3yiBt0oZ29L7~k7tYPEhCcuMhoonq4D97Qo36cptlVUPeSs4xLJGpuQdY5f74IXEGP-Jg7Tul320JlsETbN0t2VP~-8UoA7vmnJ2qTvwe63g76YvDpbQW5nDgXW5x4bqErMj3MsL0~tTZOkj0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399760,"url":"http://www9.georgetown.edu/faculty/kainen/blockprt.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089427/A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1"><img alt="Research paper thumbnail of A ug 2 02 1 FACTORIZATION OF PLATONIC POLYTOPES INTO CANONICAL SPHERES 1" class="work-thumbnail" src="https://attachments.academia-assets.com/76829432/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089427/A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1">A ug 2 02 1 FACTORIZATION OF PLATONIC POLYTOPES INTO CANONICAL SPHERES 1</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a6d26df6067e62e70c96ce4c73dd4c98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829432,&quot;asset_id&quot;:65089427,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829432/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089427]").text(description); $(".js-view-count[data-work-id=65089427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089427, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a6d26df6067e62e70c96ce4c73dd4c98" } } $('.js-work-strip[data-work-id=65089427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089427,"title":"A ug 2 02 1 FACTORIZATION OF PLATONIC POLYTOPES INTO CANONICAL SPHERES 1","translated_title":"","metadata":{"abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","internal_url":"https://www.academia.edu/65089427/A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1","translated_internal_url":"","created_at":"2021-12-19T04:22:19.138-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829432/thumbnails/1.jpg","file_name":"2108.pdf","download_url":"https://www.academia.edu/attachments/76829432/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829432/2108-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DA_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf\u0026Expires=1732801562\u0026Signature=WEFEiC6tG9g5r1eJiE7gRBLs11WzSlE4t2torQJ~cb~SmebxGVcYEdDXwwJOmqRbY9LkS6cJqZnpxM7gvX~52gk6hNfR2YeytGR~W3Vu6FzpB24NArbT6wMAL4qUlG~RZ4MwdL3I21VBcfJvlJqhb4sgXGQJ4hbERBD2s-CYaHitcJbC2EyMwK9-BdXurTz2i5dQGRoUxrJiYew-tT9XnErnZuP3LYlZ5EDyoyptxW9kIqVGipReK8sSJ72-q~-A~VbyPXEGcbZIjI4iUfk8mbdQT0LHBTgbie6jCPzD6z0IuITR5RZyPHl3vZNylnxaI151DJTydbF2i0kT9gWfmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829432/thumbnails/1.jpg","file_name":"2108.pdf","download_url":"https://www.academia.edu/attachments/76829432/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829432/2108-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DA_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf\u0026Expires=1732801562\u0026Signature=WEFEiC6tG9g5r1eJiE7gRBLs11WzSlE4t2torQJ~cb~SmebxGVcYEdDXwwJOmqRbY9LkS6cJqZnpxM7gvX~52gk6hNfR2YeytGR~W3Vu6FzpB24NArbT6wMAL4qUlG~RZ4MwdL3I21VBcfJvlJqhb4sgXGQJ4hbERBD2s-CYaHitcJbC2EyMwK9-BdXurTz2i5dQGRoUxrJiYew-tT9XnErnZuP3LYlZ5EDyoyptxW9kIqVGipReK8sSJ72-q~-A~VbyPXEGcbZIjI4iUfk8mbdQT0LHBTgbie6jCPzD6z0IuITR5RZyPHl3vZNylnxaI151DJTydbF2i0kT9gWfmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829431/thumbnails/1.jpg","file_name":"2108.pdf","download_url":"https://www.academia.edu/attachments/76829431/download_file","bulk_download_file_name":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829431/2108-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DA_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf\u0026Expires=1732801562\u0026Signature=g9D5aeF2hga5zr1457Jmk7hmRDFnM28w9sFvZEM9zLDNdBf96HQcozIwZncjx-vO4Ms5mMz4kvkQxYXpzVLNYhHCD6dew7A5oZXr8CIKuL7PL0R~DV9ON5oDBDxe8pBxb60ewH1oeI6oFwqaOnphdDgLG9b-fQEjPEMaibgAq3MIrx0YPr8x62A9ZEquihUeI6l3lgJ23E9d~pLPLleAHLSjoMoiIb3O7IX6IujHzQNYKAV-evPK8cpzxDSvLcz6NnHXKyLglALbmifZVMUy1DaYKYrzQp0JqwvUXeQ-ZTOE-Wn0n3gB5E8x9M7~~A6MFfU3SmYXMHtQQyzhGibJdg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399759,"url":"https://arxiv-export-lb.library.cornell.edu/pdf/2108.07867"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089426"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089426/Lunaport_Math_Mechanics_and_Transport"><img alt="Research paper thumbnail of Lunaport: Math, Mechanics &amp; Transport" class="work-thumbnail" src="https://attachments.academia-assets.com/76829461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089426/Lunaport_Math_Mechanics_and_Transport">Lunaport: Math, Mechanics &amp; Transport</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Issues for transport facilities on the lunar surface related to science, engineering, architectur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Issues for transport facilities on the lunar surface related to science, engineering, architecture, and human-factors are discussed. Logistic decisions made in the next decade may be crucial to financial success. In addition to outlining some of the problems and their relations with math and computation, the paper provides useful resources for decision-makers, scientists, and engineers. Key Phrases: Large-scale transport facilities in low-gravity, failsafes, solar power, ergonomics, facility planning, material science, non-rocket propulsion, efficient terminal layout, mathematics, heuristics, neural networks.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b6cbfeb6b9f4a6ce0e9ad10ed20f029c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829461,&quot;asset_id&quot;:65089426,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829461/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089426"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089426"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089426; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089426]").text(description); $(".js-view-count[data-work-id=65089426]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089426; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089426']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089426, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b6cbfeb6b9f4a6ce0e9ad10ed20f029c" } } $('.js-work-strip[data-work-id=65089426]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089426,"title":"Lunaport: Math, Mechanics \u0026 Transport","translated_title":"","metadata":{"abstract":"Issues for transport facilities on the lunar surface related to science, engineering, architecture, and human-factors are discussed. Logistic decisions made in the next decade may be crucial to financial success. In addition to outlining some of the problems and their relations with math and computation, the paper provides useful resources for decision-makers, scientists, and engineers. Key Phrases: Large-scale transport facilities in low-gravity, failsafes, solar power, ergonomics, facility planning, material science, non-rocket propulsion, efficient terminal layout, mathematics, heuristics, neural networks.","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Issues for transport facilities on the lunar surface related to science, engineering, architecture, and human-factors are discussed. Logistic decisions made in the next decade may be crucial to financial success. In addition to outlining some of the problems and their relations with math and computation, the paper provides useful resources for decision-makers, scientists, and engineers. Key Phrases: Large-scale transport facilities in low-gravity, failsafes, solar power, ergonomics, facility planning, material science, non-rocket propulsion, efficient terminal layout, mathematics, heuristics, neural networks.","internal_url":"https://www.academia.edu/65089426/Lunaport_Math_Mechanics_and_Transport","translated_internal_url":"","created_at":"2021-12-19T04:22:18.966-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829461/thumbnails/1.jpg","file_name":"2107.14423v2.pdf","download_url":"https://www.academia.edu/attachments/76829461/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lunaport_Math_Mechanics_and_Transport.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829461/2107.14423v2-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DLunaport_Math_Mechanics_and_Transport.pdf\u0026Expires=1732801562\u0026Signature=MlWaoYf0XgaSFYA3LF7lE0tB3T6AH3QuDc75RRtCwq7i4OSt3MYjQQza2cigE1WbwWQTap6qa~ilEPbEBXiIsA9Q-6vEsI06fJnAM69nTh5~vM9mN9HJd05XyYCU-mpsQ6Mc~-dLo6SZL4U15IgOLEp-dHz0LiXt-tLPW8ZNOYvwC3UXxaIOmA5IZ3MRWV4HNnMb9Fi-ZrDudVkOzJXSlWFMTBFdnPJqhUDaRdLJk75WHSQSw0NOdNfH8J6kivk47unK4qR8IQfmmIto4WpAb8bI2Pn6SmNbB3niBgfOdR-KhmSLIBf61jGB5b5LOrKvne9iiy8du8yhE0cRHt9zmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lunaport_Math_Mechanics_and_Transport","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829461/thumbnails/1.jpg","file_name":"2107.14423v2.pdf","download_url":"https://www.academia.edu/attachments/76829461/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lunaport_Math_Mechanics_and_Transport.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829461/2107.14423v2-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DLunaport_Math_Mechanics_and_Transport.pdf\u0026Expires=1732801562\u0026Signature=MlWaoYf0XgaSFYA3LF7lE0tB3T6AH3QuDc75RRtCwq7i4OSt3MYjQQza2cigE1WbwWQTap6qa~ilEPbEBXiIsA9Q-6vEsI06fJnAM69nTh5~vM9mN9HJd05XyYCU-mpsQ6Mc~-dLo6SZL4U15IgOLEp-dHz0LiXt-tLPW8ZNOYvwC3UXxaIOmA5IZ3MRWV4HNnMb9Fi-ZrDudVkOzJXSlWFMTBFdnPJqhUDaRdLJk75WHSQSw0NOdNfH8J6kivk47unK4qR8IQfmmIto4WpAb8bI2Pn6SmNbB3niBgfOdR-KhmSLIBf61jGB5b5LOrKvne9iiy8du8yhE0cRHt9zmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399758,"url":"https://arxiv.org/abs/2107.14423"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089425/Cubic_planar_bipartite_graphs_are_dispersable"><img alt="Research paper thumbnail of Cubic planar bipartite graphs are dispersable" class="work-thumbnail" src="https://attachments.academia-assets.com/76829430/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089425/Cubic_planar_bipartite_graphs_are_dispersable">Cubic planar bipartite graphs are dispersable</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 and the number of pages is the maximum degree. Bernhart and Kainen conjectured every k-regular bipartite graph is dispersable. Forty years later, Alam, Bekos, Gronemann, Kaufmann, and Pupyrev have disproved this conjecture, identifying nonplanar 3and 4-regular bipartite graphs that are not dispersable. They also proved all cubic planar bipartite 3-connected graphs are dispersable and conjectured that the connectivity condition could be relaxed. We prove that every cubic planar bipartite multigraph is dispersable. Key Phrases: book thickness; dispersable book embeddings; matching book thickness; subhamiltonian vertex order; cubic bipartite planar multigraphs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8ed610d0dee6c60bc74a532047ac9a6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829430,&quot;asset_id&quot;:65089425,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829430/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089425]").text(description); $(".js-view-count[data-work-id=65089425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089425, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8ed610d0dee6c60bc74a532047ac9a6d" } } $('.js-work-strip[data-work-id=65089425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089425,"title":"Cubic planar bipartite graphs are dispersable","translated_title":"","metadata":{"abstract":"A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 and the number of pages is the maximum degree. Bernhart and Kainen conjectured every k-regular bipartite graph is dispersable. Forty years later, Alam, Bekos, Gronemann, Kaufmann, and Pupyrev have disproved this conjecture, identifying nonplanar 3and 4-regular bipartite graphs that are not dispersable. They also proved all cubic planar bipartite 3-connected graphs are dispersable and conjectured that the connectivity condition could be relaxed. We prove that every cubic planar bipartite multigraph is dispersable. Key Phrases: book thickness; dispersable book embeddings; matching book thickness; subhamiltonian vertex order; cubic bipartite planar multigraphs.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 and the number of pages is the maximum degree. Bernhart and Kainen conjectured every k-regular bipartite graph is dispersable. Forty years later, Alam, Bekos, Gronemann, Kaufmann, and Pupyrev have disproved this conjecture, identifying nonplanar 3and 4-regular bipartite graphs that are not dispersable. They also proved all cubic planar bipartite 3-connected graphs are dispersable and conjectured that the connectivity condition could be relaxed. We prove that every cubic planar bipartite multigraph is dispersable. Key Phrases: book thickness; dispersable book embeddings; matching book thickness; subhamiltonian vertex order; cubic bipartite planar multigraphs.","internal_url":"https://www.academia.edu/65089425/Cubic_planar_bipartite_graphs_are_dispersable","translated_internal_url":"","created_at":"2021-12-19T04:22:18.749-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829430/thumbnails/1.jpg","file_name":"2107.04728v1.pdf","download_url":"https://www.academia.edu/attachments/76829430/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cubic_planar_bipartite_graphs_are_disper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829430/2107.04728v1-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DCubic_planar_bipartite_graphs_are_disper.pdf\u0026Expires=1732801562\u0026Signature=PZveK6b8lNth8xXRwuiqWHWYyjuAfGSdP0NPRq3DQ3NdQrD9DfmH5p9-gCImt40Nz2qnZuVG6O40Cug2foZ~Ygy2oeZeFsXxfRVTO-Jl48NXbMbbNECK870~LYztPWJyK0iDW0sNCFS8aT5d0ZivRighaKCCA4n~jkxZDPjFUPOCVpM53ju1U2~03HHboinjCOtE65cASAzkQy-n3Tjjhc0OnU6dcGroJdQ~B6hqq2V68OylvpT7YM2ciK9ZrjpwbQkOJilkEfmVMPyTBar9~s4Eg50cg05Kf4WY5mwbgpF1rb0rBkARhVSHdvKcQnWf9sRmFOA4JlDmzMmLCvE~aw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cubic_planar_bipartite_graphs_are_dispersable","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829430/thumbnails/1.jpg","file_name":"2107.04728v1.pdf","download_url":"https://www.academia.edu/attachments/76829430/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cubic_planar_bipartite_graphs_are_disper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829430/2107.04728v1-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DCubic_planar_bipartite_graphs_are_disper.pdf\u0026Expires=1732801562\u0026Signature=PZveK6b8lNth8xXRwuiqWHWYyjuAfGSdP0NPRq3DQ3NdQrD9DfmH5p9-gCImt40Nz2qnZuVG6O40Cug2foZ~Ygy2oeZeFsXxfRVTO-Jl48NXbMbbNECK870~LYztPWJyK0iDW0sNCFS8aT5d0ZivRighaKCCA4n~jkxZDPjFUPOCVpM53ju1U2~03HHboinjCOtE65cASAzkQy-n3Tjjhc0OnU6dcGroJdQ~B6hqq2V68OylvpT7YM2ciK9ZrjpwbQkOJilkEfmVMPyTBar9~s4Eg50cg05Kf4WY5mwbgpF1rb0rBkARhVSHdvKcQnWf9sRmFOA4JlDmzMmLCvE~aw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829429,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829429/thumbnails/1.jpg","file_name":"2107.04728v1.pdf","download_url":"https://www.academia.edu/attachments/76829429/download_file","bulk_download_file_name":"Cubic_planar_bipartite_graphs_are_disper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829429/2107.04728v1-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DCubic_planar_bipartite_graphs_are_disper.pdf\u0026Expires=1732801562\u0026Signature=ColtC9nxV2DP85-j7xkwkySmRQfpGwm8JnuJB7F7UxHiBZnZ~9bsDoUjVSa~1ZgNTH8xJ7u1OAjOBjkMwB3qaIoyEoM0q2d4Xaq35zERh4LsOzFuCXysqoYaLIqJL5xPih3l67WDGLW48SxKZQsUHvK0P4vOy0S-7sPCpL~Qvk2ZdZPQNoMdJulPSvyASzfHuBLLCeIdjmBkebKlt9SQ~vE7gQhXyKg4sfuOj8J1dY2WiEchRwg1-nDmcAprjkeVFXfENjlrrRCV96UYYZvPbcjvs046NBpfJUspwmk7uEc5S84RBRaJesparwL2yLR~NAgAw024Yr6cbHWwKX8Ueg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":15399757,"url":"https://arxiv.org/pdf/2107.04728v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089424"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089424/On_2_skeleta_of_hypercubes"><img alt="Research paper thumbnail of On 2-skeleta of hypercubes" class="work-thumbnail" src="https://attachments.academia-assets.com/76829460/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089424/On_2_skeleta_of_hypercubes">On 2-skeleta of hypercubes</a></div><div class="wp-workCard_item"><span>The Art of Discrete and Applied Mathematics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="10d619d4cd521e7c58d024b0c4a6b628" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829460,&quot;asset_id&quot;:65089424,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829460/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089424"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089424"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089424; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089424]").text(description); $(".js-view-count[data-work-id=65089424]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089424; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089424']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089424, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "10d619d4cd521e7c58d024b0c4a6b628" } } $('.js-work-strip[data-work-id=65089424]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089424,"title":"On 2-skeleta of hypercubes","translated_title":"","metadata":{"publisher":"University of Primorska Press","grobid_abstract":"It is shown that the 2-skeleton of the odd-d-dimensional hypercube can be decomposed into s d spheres and τ d tori, where s d = (d − 1)2 d−4 and τ d is asymptotically in the range (64/9)2 d−7 to (d − 1)(d − 3)2 d−7 .","publication_name":"The Art of Discrete and Applied Mathematics","grobid_abstract_attachment_id":76829460},"translated_abstract":null,"internal_url":"https://www.academia.edu/65089424/On_2_skeleta_of_hypercubes","translated_internal_url":"","created_at":"2021-12-19T04:22:18.583-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829460,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829460/thumbnails/1.jpg","file_name":"1151.pdf","download_url":"https://www.academia.edu/attachments/76829460/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_2_skeleta_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829460/1151-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DOn_2_skeleta_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=FHWa7Ich2FhZJf7YTJ0gLxP1-MWUa7XOFZDU03kniSZPXGU1c28007goe6j8ia88ga9znz9kLo8b2kW1HcPzPMUQYI7fxFXJz54zJS~HJ-PGKEuBFjRdFCicLLmuf5OWXQBoqW2Qa~GLXRfzWbGfiWleFyMumVhfdj3Mf~qVZbEA3PUMfzKGExoeR-JbUMMRpwayVfR3~lR0SU2zpenoVpxxKUxr7easmDGbCNy-L8bWAYQz6WUCmwqIkK54SC0de1TaCWm~eKavOGk5SVhLpAIPZ8hIXnSsAjOBORFhchVgKatKyJBwiAbHZPXqSVMV4Jjt7h2FGfbl4~MxMTfgIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_2_skeleta_of_hypercubes","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829460,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829460/thumbnails/1.jpg","file_name":"1151.pdf","download_url":"https://www.academia.edu/attachments/76829460/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_2_skeleta_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829460/1151-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DOn_2_skeleta_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=FHWa7Ich2FhZJf7YTJ0gLxP1-MWUa7XOFZDU03kniSZPXGU1c28007goe6j8ia88ga9znz9kLo8b2kW1HcPzPMUQYI7fxFXJz54zJS~HJ-PGKEuBFjRdFCicLLmuf5OWXQBoqW2Qa~GLXRfzWbGfiWleFyMumVhfdj3Mf~qVZbEA3PUMfzKGExoeR-JbUMMRpwayVfR3~lR0SU2zpenoVpxxKUxr7easmDGbCNy-L8bWAYQz6WUCmwqIkK54SC0de1TaCWm~eKavOGk5SVhLpAIPZ8hIXnSsAjOBORFhchVgKatKyJBwiAbHZPXqSVMV4Jjt7h2FGfbl4~MxMTfgIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089361"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089361/Sphere_decompositions_of_hypercubes"><img alt="Research paper thumbnail of Sphere decompositions of hypercubes" class="work-thumbnail" src="https://attachments.academia-assets.com/76829420/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089361/Sphere_decompositions_of_hypercubes">Sphere decompositions of hypercubes</a></div><div class="wp-workCard_item"><span>The Art of Discrete and Applied Mathematics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc4a99738b23653efa8f45ed1d06fbac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829420,&quot;asset_id&quot;:65089361,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829420/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089361"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089361"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089361; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089361]").text(description); $(".js-view-count[data-work-id=65089361]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089361; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089361']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089361, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc4a99738b23653efa8f45ed1d06fbac" } } $('.js-work-strip[data-work-id=65089361]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089361,"title":"Sphere decompositions of hypercubes","translated_title":"","metadata":{"publisher":"University of Primorska Press","grobid_abstract":"For d ≡ 1 or 3 (mod 6), the 2-skeleton of the d-dimensional hypercube is decomposed into the union of pairwise face-disjoint isomorphic 2-complexes, each a topological sphere. If d = 5 n , then such a decomposition can be achieved, but with non-isomorphic spheres.","publication_name":"The Art of Discrete and Applied Mathematics","grobid_abstract_attachment_id":76829420},"translated_abstract":null,"internal_url":"https://www.academia.edu/65089361/Sphere_decompositions_of_hypercubes","translated_internal_url":"","created_at":"2021-12-19T04:21:03.765-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829420,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829420/thumbnails/1.jpg","file_name":"1172.pdf","download_url":"https://www.academia.edu/attachments/76829420/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sphere_decompositions_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829420/1172-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DSphere_decompositions_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=MEZ-oBnHL-A9BvvsEcRJjeOgslQCQQJqsYNgsbnnrtECyCpA935S3Gdsk4-YyeoyEIeXPIdE-6uOE3xvgd0VJmBXn8qz96jEJs-m2zd~urMKMSMydviLS-aZYJSiv5mUsREpJrgE4zhfIU5UrIFldN6oIeToQEKt8UM33NZUBTSalCswCoq6z~vRKCwSCyMtT3lKTcohHgk-npc2JpCKPZVdtyxGSRwM9CNEQ0MGHj-X6H8aB~4T2ofLXcTueMtpm54TVp2TVWuPBvop3EQAwxcDuTHUQcCW07St3iFpOzj3kBMXHc7WDsoP-Px9BWrl08BghHSbAwPbjQVR0RJVXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sphere_decompositions_of_hypercubes","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829420,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829420/thumbnails/1.jpg","file_name":"1172.pdf","download_url":"https://www.academia.edu/attachments/76829420/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sphere_decompositions_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829420/1172-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DSphere_decompositions_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=MEZ-oBnHL-A9BvvsEcRJjeOgslQCQQJqsYNgsbnnrtECyCpA935S3Gdsk4-YyeoyEIeXPIdE-6uOE3xvgd0VJmBXn8qz96jEJs-m2zd~urMKMSMydviLS-aZYJSiv5mUsREpJrgE4zhfIU5UrIFldN6oIeToQEKt8UM33NZUBTSalCswCoq6z~vRKCwSCyMtT3lKTcohHgk-npc2JpCKPZVdtyxGSRwM9CNEQ0MGHj-X6H8aB~4T2ofLXcTueMtpm54TVp2TVWuPBvop3EQAwxcDuTHUQcCW07St3iFpOzj3kBMXHc7WDsoP-Px9BWrl08BghHSbAwPbjQVR0RJVXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="57257435"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/57257435/Quasiorthogonal_Dimension"><img alt="Research paper thumbnail of Quasiorthogonal Dimension" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/57257435/Quasiorthogonal_Dimension">Quasiorthogonal Dimension</a></div><div class="wp-workCard_item"><span>Studies in Computational Intelligence</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="57257435"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="57257435"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 57257435; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=57257435]").text(description); $(".js-view-count[data-work-id=57257435]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 57257435; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='57257435']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 57257435, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=57257435]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":57257435,"title":"Quasiorthogonal Dimension","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_name":"Studies in Computational Intelligence"},"translated_abstract":null,"internal_url":"https://www.academia.edu/57257435/Quasiorthogonal_Dimension","translated_internal_url":"","created_at":"2021-10-11T14:21:21.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quasiorthogonal_Dimension","translated_slug":"","page_count":null,"language":"cy","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[],"research_interests":[],"urls":[{"id":12804553,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-31041-7_35"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5012158" id="papers"><div class="js-work-strip profile--work_container" data-work-id="105856484"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/105856484/Hungarian_Academy_of_Sciences"><img alt="Research paper thumbnail of Hungarian Academy of Sciences" class="work-thumbnail" src="https://attachments.academia-assets.com/105209360/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/105856484/Hungarian_Academy_of_Sciences">Hungarian Academy of Sciences</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any f...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any full subgraph H of K every full embedding of H into G can be extended to a full embedding of K into G. We prove that for each positive integer k there exist finite k-superuniversal graphs, and e find upper and lo er bounds on the smallest such graphs. We also find various bounds on the number of edges as ell as the maximal and minimal valence of a k-superuniversal graph. We then generalize the notion of k-superuniversality to cover graphs ith colorings and prove similar and related theorems. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cdcda8e328ce3317105ccd3c9f3be817" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:105209360,&quot;asset_id&quot;:105856484,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/105209360/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="105856484"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="105856484"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 105856484; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=105856484]").text(description); $(".js-view-count[data-work-id=105856484]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 105856484; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='105856484']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 105856484, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cdcda8e328ce3317105ccd3c9f3be817" } } $('.js-work-strip[data-work-id=105856484]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":105856484,"title":"Hungarian Academy of Sciences","translated_title":"","metadata":{"abstract":"Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any full subgraph H of K every full embedding of H into G can be extended to a full embedding of K into G. We prove that for each positive integer k there exist finite k-superuniversal graphs, and e find upper and lo er bounds on the smallest such graphs. We also find various bounds on the number of edges as ell as the maximal and minimal valence of a k-superuniversal graph. We then generalize the notion of k-superuniversality to cover graphs ith colorings and prove similar and related theorems. 1","publication_date":{"day":null,"month":null,"year":1977,"errors":{}}},"translated_abstract":"Define a simple graph G to be k-superuniversal iff for any k-element simple graph K and for any full subgraph H of K every full embedding of H into G can be extended to a full embedding of K into G. We prove that for each positive integer k there exist finite k-superuniversal graphs, and e find upper and lo er bounds on the smallest such graphs. We also find various bounds on the number of edges as ell as the maximal and minimal valence of a k-superuniversal graph. We then generalize the notion of k-superuniversality to cover graphs ith colorings and prove similar and related theorems. 1","internal_url":"https://www.academia.edu/105856484/Hungarian_Academy_of_Sciences","translated_internal_url":"","created_at":"2023-08-22T11:55:35.093-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":105209360,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105209360/thumbnails/1.jpg","file_name":"1978-20.pdf","download_url":"https://www.academia.edu/attachments/105209360/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hungarian_Academy_of_Sciences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105209360/1978-20-libre.pdf?1692733863=\u0026response-content-disposition=attachment%3B+filename%3DHungarian_Academy_of_Sciences.pdf\u0026Expires=1732801561\u0026Signature=F5DLq9hLMXDdqTTCbx9kVwDOC7J~ritWGyo1Nj-gopnSn0zl11GEu6goPXOl39LYFpqRhTeRCZVpFFiosYvtqIna4~vAdx4rxpumXLRCmTc~LaayIl1QumlCzZq9u53Tlt48P9OrKUKSf52mgAbTAGyF6AdScf69Vo0mcyhrZjiD9F3mypNoIlc9-9qf2Dqybs-ANVs01qu0LNazejE1~pGqn2qcp-SHpdZQU1CwIPmWWbLrWiAftkEv7rBP1CG-bOFohoCgYnJQlhNjrKmmYQHDsEvVKwdaKx7GODoqosr4mgDKzTwuKsh3-0eTMAfd1EzWnyg~INF-r4Va7ZDFzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hungarian_Academy_of_Sciences","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":105209360,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/105209360/thumbnails/1.jpg","file_name":"1978-20.pdf","download_url":"https://www.academia.edu/attachments/105209360/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hungarian_Academy_of_Sciences.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/105209360/1978-20-libre.pdf?1692733863=\u0026response-content-disposition=attachment%3B+filename%3DHungarian_Academy_of_Sciences.pdf\u0026Expires=1732801561\u0026Signature=F5DLq9hLMXDdqTTCbx9kVwDOC7J~ritWGyo1Nj-gopnSn0zl11GEu6goPXOl39LYFpqRhTeRCZVpFFiosYvtqIna4~vAdx4rxpumXLRCmTc~LaayIl1QumlCzZq9u53Tlt48P9OrKUKSf52mgAbTAGyF6AdScf69Vo0mcyhrZjiD9F3mypNoIlc9-9qf2Dqybs-ANVs01qu0LNazejE1~pGqn2qcp-SHpdZQU1CwIPmWWbLrWiAftkEv7rBP1CG-bOFohoCgYnJQlhNjrKmmYQHDsEvVKwdaKx7GODoqosr4mgDKzTwuKsh3-0eTMAfd1EzWnyg~INF-r4Va7ZDFzQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":33562444,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.8971\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609546/On_dispersability_of_some_products_of_cycles"><img alt="Research paper thumbnail of On dispersability of some products of cycles" class="work-thumbnail" src="https://attachments.academia-assets.com/84914261/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609546/On_dispersability_of_some_products_of_cycles">On dispersability of some products of cycles</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9560bec7a161f6693f85c638ff924126" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84914261,&quot;asset_id&quot;:77609546,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84914261/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609546]").text(description); $(".js-view-count[data-work-id=77609546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9560bec7a161f6693f85c638ff924126" } } $('.js-work-strip[data-work-id=77609546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609546,"title":"On dispersability of some products of cycles","translated_title":"","metadata":{"abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","publication_date":{"day":26,"month":8,"year":2021,"errors":{}}},"translated_abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","internal_url":"https://www.academia.edu/77609546/On_dispersability_of_some_products_of_cycles","translated_internal_url":"","created_at":"2022-04-25T17:46:23.327-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84914261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914261/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/84914261/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914261/2108.11839v1-libre.pdf?1650937972=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=fu9md13A2q9TxG4422LwViSFfqZOtGIBmMBSCUB22o8Mma-sYUEIvC1Cr0aSSXt5RmgfT-yB1QyqHh83pRIlKIzP8987YFAshuIBz-SUr8g~gZqJyZEb1DtP0zHgBA3JmP4rgoURqmBa-8i3-CpS5Ngr625W1wR2fVAm4IaIWkIYeuG7ZsR5ROroq1buDKQDILbvMKsEpdOsdNhemjlw5DRG5Bl5lvB-5P2ak1kzbQ0N4lLfKiUw5LLoY5ePEyM6yf6bU6uzZtADMrcKnqGKJ5W3YX61B0lPxBed~KnN3xgdytQjap7qN8tiIr75OBKDjrXQbbNAlZZ257fj9J-kNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_dispersability_of_some_products_of_cycles","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84914261,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914261/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/84914261/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914261/2108.11839v1-libre.pdf?1650937972=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=fu9md13A2q9TxG4422LwViSFfqZOtGIBmMBSCUB22o8Mma-sYUEIvC1Cr0aSSXt5RmgfT-yB1QyqHh83pRIlKIzP8987YFAshuIBz-SUr8g~gZqJyZEb1DtP0zHgBA3JmP4rgoURqmBa-8i3-CpS5Ngr625W1wR2fVAm4IaIWkIYeuG7ZsR5ROroq1buDKQDILbvMKsEpdOsdNhemjlw5DRG5Bl5lvB-5P2ak1kzbQ0N4lLfKiUw5LLoY5ePEyM6yf6bU6uzZtADMrcKnqGKJ5W3YX61B0lPxBed~KnN3xgdytQjap7qN8tiIr75OBKDjrXQbbNAlZZ257fj9J-kNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":19907804,"url":"https://arxiv.org/pdf/2108.11839v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609545"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609545/On_Dispersability_of_Some_Circulant_Graphs"><img alt="Research paper thumbnail of On Dispersability of Some Circulant Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/84932551/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609545/On_Dispersability_of_Some_Circulant_Graphs">On Dispersability of Some Circulant Graphs</a></div><div class="wp-workCard_item"><span>SSRN Electronic Journal</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db8e6a0b358b5cffe33d88fbe7049868" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84932551,&quot;asset_id&quot;:77609545,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84932551/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609545"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609545"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609545; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609545]").text(description); $(".js-view-count[data-work-id=77609545]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609545; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609545']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609545, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db8e6a0b358b5cffe33d88fbe7049868" } } $('.js-work-strip[data-work-id=77609545]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609545,"title":"On Dispersability of Some Circulant Graphs","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"The matching book thickness mbt(G) of a graph G is the least number of pages in a book embedding such that each page is a matching; G is dispersable if mbt(G) = ∆(G), where ∆ is the maximum degree. A graph G is nearly dispersable if mbt(G) = 1 + ∆(G). Recently, Alam et al disproved the 40-year-old Bernhart-Kainen conjecture that all regular bipartite graphs are dispersable, motivating further work on dispersability. We show that most circulant graphs G with jump lengths not exceeding 3 are dispersable or nearly dispersable. Similar results are obtained for arbitrarily large jump lengths, obtained by rearranging repeated copies of a complete or bipartite complete graph.","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"SSRN Electronic Journal","grobid_abstract_attachment_id":84932551},"translated_abstract":null,"internal_url":"https://www.academia.edu/77609545/On_Dispersability_of_Some_Circulant_Graphs","translated_internal_url":"","created_at":"2022-04-25T17:46:22.270-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84932551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932551/thumbnails/1.jpg","file_name":"2109.10163v1.pdf","download_url":"https://www.academia.edu/attachments/84932551/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Dispersability_of_Some_Circulant_Grap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932551/2109.10163v1-libre.pdf?1650946262=\u0026response-content-disposition=attachment%3B+filename%3DOn_Dispersability_of_Some_Circulant_Grap.pdf\u0026Expires=1732801561\u0026Signature=BfNihctXyQlr1WIML9a7PKg-sC7clN6AsujJYdIDFKoBp~xlZpAK966bQ3Zd3TpN-Ba22cyk2aSJcWqS~1pZNZShAb4Bw2OmajKlUMAyUY8G82e19iE8~zLxJpJS13xHghrP8WYbSqiKQFZYrMpkA3pnZPPA2jr~IxC53sr98gm1cotN6ghV3itPrJXAzDRiZkMVsPa5hMAyCpcU6V5D6D4ZLUYICGwadGLxbWNF16haXTCDfImcD1PG2aghc7w5Scm7o1aKf1vxGiO3mik9CsFwaWmaE~Qh9IaM~5oy1-w55MGCaDxB~xaSbVy3JPMa1Yn9f4hw9GjaIgBJPmfvqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Dispersability_of_Some_Circulant_Graphs","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84932551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932551/thumbnails/1.jpg","file_name":"2109.10163v1.pdf","download_url":"https://www.academia.edu/attachments/84932551/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Dispersability_of_Some_Circulant_Grap.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932551/2109.10163v1-libre.pdf?1650946262=\u0026response-content-disposition=attachment%3B+filename%3DOn_Dispersability_of_Some_Circulant_Grap.pdf\u0026Expires=1732801561\u0026Signature=BfNihctXyQlr1WIML9a7PKg-sC7clN6AsujJYdIDFKoBp~xlZpAK966bQ3Zd3TpN-Ba22cyk2aSJcWqS~1pZNZShAb4Bw2OmajKlUMAyUY8G82e19iE8~zLxJpJS13xHghrP8WYbSqiKQFZYrMpkA3pnZPPA2jr~IxC53sr98gm1cotN6ghV3itPrJXAzDRiZkMVsPa5hMAyCpcU6V5D6D4ZLUYICGwadGLxbWNF16haXTCDfImcD1PG2aghc7w5Scm7o1aKf1vxGiO3mik9CsFwaWmaE~Qh9IaM~5oy1-w55MGCaDxB~xaSbVy3JPMa1Yn9f4hw9GjaIgBJPmfvqA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609543/Quadrilateral_embedding_of_G_Q_s_"><img alt="Research paper thumbnail of Quadrilateral embedding of G × Q s ∗" class="work-thumbnail" src="https://attachments.academia-assets.com/84914228/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609543/Quadrilateral_embedding_of_G_Q_s_">Quadrilateral embedding of G × Q s ∗</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×Qs has a quadrilateral embedding in some surface, where Qs is the hypercube graph. This answers a question of Pisanski.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7a8c11d391083e9db882436795ea25c6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84914228,&quot;asset_id&quot;:77609543,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84914228/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609543]").text(description); $(".js-view-count[data-work-id=77609543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7a8c11d391083e9db882436795ea25c6" } } $('.js-work-strip[data-work-id=77609543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609543,"title":"Quadrilateral embedding of G × Q s ∗","translated_title":"","metadata":{"abstract":"It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×Qs has a quadrilateral embedding in some surface, where Qs is the hypercube graph. This answers a question of Pisanski.","publication_date":{"day":null,"month":null,"year":2006,"errors":{}}},"translated_abstract":"It is shown that for any connected graph G and all sufficiently large s, the cartesian product G×Qs has a quadrilateral embedding in some surface, where Qs is the hypercube graph. This answers a question of Pisanski.","internal_url":"https://www.academia.edu/77609543/Quadrilateral_embedding_of_G_Q_s_","translated_internal_url":"","created_at":"2022-04-25T17:46:21.361-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84914228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914228/thumbnails/1.jpg","file_name":"icg4.pdf","download_url":"https://www.academia.edu/attachments/84914228/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quadrilateral_embedding_of_G_Q_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914228/icg4-libre.pdf?1650937974=\u0026response-content-disposition=attachment%3B+filename%3DQuadrilateral_embedding_of_G_Q_s.pdf\u0026Expires=1732801561\u0026Signature=U8jro7Yfohjm1DWHucgVAp1343~A01uE1vH9evah4g8TS7ZCgQMVVWP-AykW8PwXqFqLaFL-8JQxHnhNIvsPrFWIfAChOjxoigudNADWfxLzyussUpVkhiGEjuVW3j0sGHaYTLiVYcQCFOfMPHG-XY1kgNVXTA9kdQgRPPY~iyd5jRtTbkkYTGG~mNUIrALmisw-lKct0HkGx9yrsZA9GnvJ4QkOSdUfD6QGPpntkPJAwwuQjj0cNUY7XYnx42y4g7qi~O784xSteyuQSlwyofTDZGr~ruHt9Q5gX7wKY7htp0NiGSeKLqG3SUFO1lgEEYbzYaomlX7WLvciQzyNEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Quadrilateral_embedding_of_G_Q_s_","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84914228,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914228/thumbnails/1.jpg","file_name":"icg4.pdf","download_url":"https://www.academia.edu/attachments/84914228/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Quadrilateral_embedding_of_G_Q_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914228/icg4-libre.pdf?1650937974=\u0026response-content-disposition=attachment%3B+filename%3DQuadrilateral_embedding_of_G_Q_s.pdf\u0026Expires=1732801561\u0026Signature=U8jro7Yfohjm1DWHucgVAp1343~A01uE1vH9evah4g8TS7ZCgQMVVWP-AykW8PwXqFqLaFL-8JQxHnhNIvsPrFWIfAChOjxoigudNADWfxLzyussUpVkhiGEjuVW3j0sGHaYTLiVYcQCFOfMPHG-XY1kgNVXTA9kdQgRPPY~iyd5jRtTbkkYTGG~mNUIrALmisw-lKct0HkGx9yrsZA9GnvJ4QkOSdUfD6QGPpntkPJAwwuQjj0cNUY7XYnx42y4g7qi~O784xSteyuQSlwyofTDZGr~ruHt9Q5gX7wKY7htp0NiGSeKLqG3SUFO1lgEEYbzYaomlX7WLvciQzyNEA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":84914223,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84914223/thumbnails/1.jpg","file_name":"icg4.pdf","download_url":"https://www.academia.edu/attachments/84914223/download_file","bulk_download_file_name":"Quadrilateral_embedding_of_G_Q_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84914223/icg4-libre.pdf?1650937974=\u0026response-content-disposition=attachment%3B+filename%3DQuadrilateral_embedding_of_G_Q_s.pdf\u0026Expires=1732801561\u0026Signature=TdR5WSiSVenv6cGF7mgk3YfOp~3wQzGMbHZiAuFpohj9WtokoiAgqkwlSkZjAr4bXQ2A7JXMJ7davtswB1d1pOXhI4oDZvgItLAp8N2KpQ8PTovwr1kvR2775zRxw4PYSkQxI4FiB3Gnh4fByVUhJofqD1F0GBpZMNtKcS0LplDZyRDIammnp3pI2fdWmO0nKYcOif2PsvOODQKQLJbxAyf19qjcwmqJ89qSgMBLDSqcZKZmYIPZv~ez5N7uztUG6IL-dzAFF8EPiZylCWwuWHK4DBn5-3Em8uSCifhaaLo6SP0gEHpjAur~3UHWOzwtEzirUiSwLqm9ag1bLYW3pA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":19907802,"url":"http://faculty.georgetown.edu/kainen/icg4.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="77609492"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/77609492/Book_embeddings_of_graphs_and_a_theorem_of_Whitney"><img alt="Research paper thumbnail of Book embeddings of graphs and a theorem of Whitney" class="work-thumbnail" src="https://attachments.academia-assets.com/84932499/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/77609492/Book_embeddings_of_graphs_and_a_theorem_of_Whitney">Book embeddings of graphs and a theorem of Whitney</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">It is shown that the number of pages required for a book embedding of a graph is the maximum of t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">It is shown that the number of pages required for a book embedding of a graph is the maximum of the numbers needed for any of the maximal nonseparable subgraphs and that a plane graph in which every triangle bounds a face has a two-page book embedding. The latter extends a theorem of H. Whitney and gives two-page book embeddings for X-trees and square grids.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b0acc827278656f72da728da2e8a7465" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:84932499,&quot;asset_id&quot;:77609492,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/84932499/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="77609492"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="77609492"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 77609492; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=77609492]").text(description); $(".js-view-count[data-work-id=77609492]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 77609492; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='77609492']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 77609492, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b0acc827278656f72da728da2e8a7465" } } $('.js-work-strip[data-work-id=77609492]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":77609492,"title":"Book embeddings of graphs and a theorem of Whitney","translated_title":"","metadata":{"abstract":"It is shown that the number of pages required for a book embedding of a graph is the maximum of the numbers needed for any of the maximal nonseparable subgraphs and that a plane graph in which every triangle bounds a face has a two-page book embedding. The latter extends a theorem of H. Whitney and gives two-page book embeddings for X-trees and square grids.","publication_date":{"day":null,"month":null,"year":2003,"errors":{}}},"translated_abstract":"It is shown that the number of pages required for a book embedding of a graph is the maximum of the numbers needed for any of the maximal nonseparable subgraphs and that a plane graph in which every triangle bounds a face has a two-page book embedding. The latter extends a theorem of H. Whitney and gives two-page book embeddings for X-trees and square grids.","internal_url":"https://www.academia.edu/77609492/Book_embeddings_of_graphs_and_a_theorem_of_Whitney","translated_internal_url":"","created_at":"2022-04-25T17:45:46.332-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":84932499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932499/thumbnails/1.jpg","file_name":"pbip3.pdf","download_url":"https://www.academia.edu/attachments/84932499/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Book_embeddings_of_graphs_and_a_theorem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932499/pbip3-libre.pdf?1650946261=\u0026response-content-disposition=attachment%3B+filename%3DBook_embeddings_of_graphs_and_a_theorem.pdf\u0026Expires=1732801561\u0026Signature=G5ivXeIFYTCFeN3VYDNbUN0aOUSqQJLiuRZsqrCemfZnNMqnzjFewKzWX3QUd6eOSSbGzKIHpgK5Mdkh9f9Lo2ZFPNVxivVkjjI15WTDl3BZWUWpPrq7U-mJyJ-ZZMn6ZeyDu6s6o3Lfcrcdj9n63xZWefGHAAenTwdDjg1w9j2-ANNZxkMGguxAIfoLl1zj8SHRxTiy4SXUlxYADpMdhdEJxPnWxMz3OpSUraWCsDj~W7fB22OF1Vfwt5nZttWCbJaH23Hcga03xkcShRSyIKcv9uzYeOQYZ53ReY5oMRoJX5bxPO69OeTSr6Tk95ZcIGJoVldNSZX8MuXAjLqjIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Book_embeddings_of_graphs_and_a_theorem_of_Whitney","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":84932499,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/84932499/thumbnails/1.jpg","file_name":"pbip3.pdf","download_url":"https://www.academia.edu/attachments/84932499/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Book_embeddings_of_graphs_and_a_theorem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/84932499/pbip3-libre.pdf?1650946261=\u0026response-content-disposition=attachment%3B+filename%3DBook_embeddings_of_graphs_and_a_theorem.pdf\u0026Expires=1732801561\u0026Signature=G5ivXeIFYTCFeN3VYDNbUN0aOUSqQJLiuRZsqrCemfZnNMqnzjFewKzWX3QUd6eOSSbGzKIHpgK5Mdkh9f9Lo2ZFPNVxivVkjjI15WTDl3BZWUWpPrq7U-mJyJ-ZZMn6ZeyDu6s6o3Lfcrcdj9n63xZWefGHAAenTwdDjg1w9j2-ANNZxkMGguxAIfoLl1zj8SHRxTiy4SXUlxYADpMdhdEJxPnWxMz3OpSUraWCsDj~W7fB22OF1Vfwt5nZttWCbJaH23Hcga03xkcShRSyIKcv9uzYeOQYZ53ReY5oMRoJX5bxPO69OeTSr6Tk95ZcIGJoVldNSZX8MuXAjLqjIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":19907782,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.7420\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70970474"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70970474/Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier"><img alt="Research paper thumbnail of Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70970474/Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier">Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that heavily used networks admit simple heuristic approximations with excellent quantitative accuracy. We describe a number of different examples in which having many parameters actually facilitates computation and we suggest connections with geometric phenomena in high-dimensional spaces. It seems that in several interesting and quite general situations, dimensionality may be a blessing in disguise provided that some suitable form of computing is used which can deal with it. 1. Introduction This is a particularly appropriate time to consider the problem of systems having a very large number of parameters. Reasons include: neural networks, genetic algorithms, expert systems, fuzzy logic and cellular automata. Moreover, the current level of sensor technology can flood us with data like water from a firehose. Already, there are terrabytes of data that have been collected by NASA and others whi...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70970474"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70970474"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70970474; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70970474]").text(description); $(".js-view-count[data-work-id=70970474]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70970474; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70970474']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70970474, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=70970474]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70970474,"title":"Utilizing Geometric Anomalies of High Dimension: When Complexity Makes Computation Easier","translated_title":"","metadata":{"abstract":"Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that heavily used networks admit simple heuristic approximations with excellent quantitative accuracy. We describe a number of different examples in which having many parameters actually facilitates computation and we suggest connections with geometric phenomena in high-dimensional spaces. It seems that in several interesting and quite general situations, dimensionality may be a blessing in disguise provided that some suitable form of computing is used which can deal with it. 1. Introduction This is a particularly appropriate time to consider the problem of systems having a very large number of parameters. Reasons include: neural networks, genetic algorithms, expert systems, fuzzy logic and cellular automata. Moreover, the current level of sensor technology can flood us with data like water from a firehose. Already, there are terrabytes of data that have been collected by NASA and others whi...","publication_date":{"day":null,"month":null,"year":1996,"errors":{}}},"translated_abstract":"Just as a busy kitchen can be more efficient than an idle one, Kleinrock showed 35 years ago that heavily used networks admit simple heuristic approximations with excellent quantitative accuracy. We describe a number of different examples in which having many parameters actually facilitates computation and we suggest connections with geometric phenomena in high-dimensional spaces. It seems that in several interesting and quite general situations, dimensionality may be a blessing in disguise provided that some suitable form of computing is used which can deal with it. 1. Introduction This is a particularly appropriate time to consider the problem of systems having a very large number of parameters. Reasons include: neural networks, genetic algorithms, expert systems, fuzzy logic and cellular automata. Moreover, the current level of sensor technology can flood us with data like water from a firehose. Already, there are terrabytes of data that have been collected by NASA and others whi...","internal_url":"https://www.academia.edu/70970474/Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier","translated_internal_url":"","created_at":"2022-02-08T18:47:54.528-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Utilizing_Geometric_Anomalies_of_High_Dimension_When_Complexity_Makes_Computation_Easier","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":17472423,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4244\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70970470"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70970470/An_octonion_model_for_physics"><img alt="Research paper thumbnail of An octonion model for physics" class="work-thumbnail" src="https://attachments.academia-assets.com/80502661/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70970470/An_octonion_model_for_physics">An octonion model for physics</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric form of associativity is the common thread.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b1ddee3ec796642ab1530fa2ac8e6c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80502661,&quot;asset_id&quot;:70970470,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80502661/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70970470"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70970470"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70970470; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70970470]").text(description); $(".js-view-count[data-work-id=70970470]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70970470; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70970470']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70970470, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b1ddee3ec796642ab1530fa2ac8e6c2" } } $('.js-work-strip[data-work-id=70970470]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70970470,"title":"An octonion model for physics","translated_title":"","metadata":{"abstract":"The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric form of associativity is the common thread.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}}},"translated_abstract":"The no-zero-divisor division algebra of highest possible dimension over the reals is taken as a model for various physical and mathematical phenomena mostly related to the Four Color Conjecture. A geometric form of associativity is the common thread.","internal_url":"https://www.academia.edu/70970470/An_octonion_model_for_physics","translated_internal_url":"","created_at":"2022-02-08T18:47:54.304-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80502661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502661/thumbnails/1.jpg","file_name":"octophys.pdf","download_url":"https://www.academia.edu/attachments/80502661/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_octonion_model_for_physics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502661/octophys-libre.pdf?1644375610=\u0026response-content-disposition=attachment%3B+filename%3DAn_octonion_model_for_physics.pdf\u0026Expires=1732801561\u0026Signature=gLL-~CEKept4WoxpcL-pJSvqgsyIx1uLEUR2X6eLUyBZKGKymj5-AV4AUJszjqrt6MYrE~QJJUQoTjsarx9z7GiT6nx9a672KDSaUtRvkLl6ANQzoJzcDtWs5BSITWZYTALNLH9l3V4vX2IOaIpK0vSlAqW19a~cA08v-Z5NGg~VjHM5v8nQjTVMgqNh9tM3OxJ~JwQtHnAdazXbj4WghDX8jbMVE15cOliVsfv8JB3wlijlQnbXmn8CXnj2yw0aMtcrbYXHiAIt22eP3SWTXRjVIpDOh4RUZSuPBqD~g-5TfZEzJXqIWipeyVuMZFyZUMqG9WLcEE1G~yEOkgqoJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"An_octonion_model_for_physics","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":80502661,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502661/thumbnails/1.jpg","file_name":"octophys.pdf","download_url":"https://www.academia.edu/attachments/80502661/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"An_octonion_model_for_physics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502661/octophys-libre.pdf?1644375610=\u0026response-content-disposition=attachment%3B+filename%3DAn_octonion_model_for_physics.pdf\u0026Expires=1732801561\u0026Signature=gLL-~CEKept4WoxpcL-pJSvqgsyIx1uLEUR2X6eLUyBZKGKymj5-AV4AUJszjqrt6MYrE~QJJUQoTjsarx9z7GiT6nx9a672KDSaUtRvkLl6ANQzoJzcDtWs5BSITWZYTALNLH9l3V4vX2IOaIpK0vSlAqW19a~cA08v-Z5NGg~VjHM5v8nQjTVMgqNh9tM3OxJ~JwQtHnAdazXbj4WghDX8jbMVE15cOliVsfv8JB3wlijlQnbXmn8CXnj2yw0aMtcrbYXHiAIt22eP3SWTXRjVIpDOh4RUZSuPBqD~g-5TfZEzJXqIWipeyVuMZFyZUMqG9WLcEE1G~yEOkgqoJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80502662,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502662/thumbnails/1.jpg","file_name":"octophys.pdf","download_url":"https://www.academia.edu/attachments/80502662/download_file","bulk_download_file_name":"An_octonion_model_for_physics.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502662/octophys-libre.pdf?1644375613=\u0026response-content-disposition=attachment%3B+filename%3DAn_octonion_model_for_physics.pdf\u0026Expires=1732801561\u0026Signature=RZ6zrtvGHIrZmcddPhnXK7OxGmp571MuWzvQk4O4C2Pqxqr4AthxWqJrhxekUnE2tSFP5GW~cFw2xKWjPaMmzTTk8Y0-Rphf3w5kgzV-u--hKe8QC2UwE1lpouxgy5ra5OBx4yKzCRphjhmVMMHZQEGedndFFH~0vqn7bKehOUhvdopUuwz5X1cflq5NglraptZG4d9-U7mjFOehwNMwfCjpvqqZnnMdEM5AcsFuDPmQM-pDxfWi08mWuVBG9wub2M9RNGTR7ykKUpv62Y-UGcmLrVyDDa-6ze0vnwWI4o~nVNjSzN-uLoDeVnwU-btPZnOipmmLYFaqRSHgP7iymQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":77562,"name":"Geometric Algebra","url":"https://www.academia.edu/Documents/in/Geometric_Algebra"},{"id":79394,"name":"Gravity","url":"https://www.academia.edu/Documents/in/Gravity"}],"urls":[{"id":17472422,"url":"http://www9.georgetown.edu/faculty/kainen/octophys.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="70970443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/70970443/approximation_by_Heaviside_perceptron_networks_Neural_Networks_13"><img alt="Research paper thumbnail of approximation by Heaviside perceptron networks, Neural Networks 13" class="work-thumbnail" src="https://attachments.academia-assets.com/80502648/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/70970443/approximation_by_Heaviside_perceptron_networks_Neural_Networks_13">approximation by Heaviside perceptron networks, Neural Networks 13</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions co...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions computable by Heaviside perceptron networks with n hidden units; however for p ∈ (1, ∞) such best approximation is not unique and cannot be continuous. Keywords. One-hidden-layer networks, Heaviside perceptrons, best approximation, metric projection, continuous selection, approximatively compact. 1</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="062b5f30caa61d1af73524c75870f11f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:80502648,&quot;asset_id&quot;:70970443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/80502648/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="70970443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="70970443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 70970443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=70970443]").text(description); $(".js-view-count[data-work-id=70970443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 70970443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='70970443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 70970443, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "062b5f30caa61d1af73524c75870f11f" } } $('.js-work-strip[data-work-id=70970443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":70970443,"title":"approximation by Heaviside perceptron networks, Neural Networks 13","translated_title":"","metadata":{"abstract":"In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions computable by Heaviside perceptron networks with n hidden units; however for p ∈ (1, ∞) such best approximation is not unique and cannot be continuous. Keywords. One-hidden-layer networks, Heaviside perceptrons, best approximation, metric projection, continuous selection, approximatively compact. 1","publication_date":{"day":null,"month":null,"year":2000,"errors":{}}},"translated_abstract":"In Lp-spaces with p ∈ [1, ∞) there exists a best approximation mapping to the set of functions computable by Heaviside perceptron networks with n hidden units; however for p ∈ (1, ∞) such best approximation is not unique and cannot be continuous. Keywords. One-hidden-layer networks, Heaviside perceptrons, best approximation, metric projection, continuous selection, approximatively compact. 1","internal_url":"https://www.academia.edu/70970443/approximation_by_Heaviside_perceptron_networks_Neural_Networks_13","translated_internal_url":"","created_at":"2022-02-08T18:47:29.052-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":80502648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502648/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80502648/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"approximation_by_Heaviside_perceptron_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502648/download-libre.pdf?1644375612=\u0026response-content-disposition=attachment%3B+filename%3Dapproximation_by_Heaviside_perceptron_ne.pdf\u0026Expires=1732801561\u0026Signature=Hxg0S8sNIH9r1Gq5Tdl5z~2aMFrhX3ZdjFy5mLPSu1isU4hcAbHWjrN~Who9g9x79T1h4fTjL47B9fAohXdQND~e3~vKtzncZAk7JgdOsZTk8G8lKm4eoeKK2uPs2LVLdxZAB~Wcqq4PL3Lhr8-jbYJINw3U1Tg4ZGcivSPoZL2RqG9RYE9mGWrc61TL6ldqT~6MJlW~dccR-O4yMdzqKK0WKKlzap6SxsmE8sVtM7V3UMHH-VMXK0NnoaVoQxj9dgJrBM2H9N-jBkL9DDrklgF-uJCqLvZowYJLzSCO-K3I1sQPtDtdL~52zDxem5Y~R1C97tobCt-yYaUih32TXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"approximation_by_Heaviside_perceptron_networks_Neural_Networks_13","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":80502648,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502648/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80502648/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"approximation_by_Heaviside_perceptron_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502648/download-libre.pdf?1644375612=\u0026response-content-disposition=attachment%3B+filename%3Dapproximation_by_Heaviside_perceptron_ne.pdf\u0026Expires=1732801561\u0026Signature=Hxg0S8sNIH9r1Gq5Tdl5z~2aMFrhX3ZdjFy5mLPSu1isU4hcAbHWjrN~Who9g9x79T1h4fTjL47B9fAohXdQND~e3~vKtzncZAk7JgdOsZTk8G8lKm4eoeKK2uPs2LVLdxZAB~Wcqq4PL3Lhr8-jbYJINw3U1Tg4ZGcivSPoZL2RqG9RYE9mGWrc61TL6ldqT~6MJlW~dccR-O4yMdzqKK0WKKlzap6SxsmE8sVtM7V3UMHH-VMXK0NnoaVoQxj9dgJrBM2H9N-jBkL9DDrklgF-uJCqLvZowYJLzSCO-K3I1sQPtDtdL~52zDxem5Y~R1C97tobCt-yYaUih32TXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":80502647,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/80502647/thumbnails/1.jpg","file_name":"download.pdf","download_url":"https://www.academia.edu/attachments/80502647/download_file","bulk_download_file_name":"approximation_by_Heaviside_perceptron_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/80502647/download-libre.pdf?1644375612=\u0026response-content-disposition=attachment%3B+filename%3Dapproximation_by_Heaviside_perceptron_ne.pdf\u0026Expires=1732801561\u0026Signature=RwD06rCsXyqwhdLYhCow3PNJitFcmOmmo2U1sDgFhrE9gQq8EOi~Sk1HjaR2KRvlrXxn4hSLlBDRWlyOQVbSTwJvfW8T1zHPoSKBCUfe9gRqQpBpLjJoZ4MEm8Dfe59rQeyUecqvaJFc1D6HHSJxh~7oYQ8uJCDRXK8Kxc0CdJPhTgEYn1uGHCbgE1HdIRgTfgz8HXH-rnCMGn8ZQZRCNixowMW3G6hIVy4CS1NWuiX5vGmcShb6uPhHl-MWbriN3Bj53IuZoBaSRhE6mxatDWHltnDTHwEdDEdBzUCpIrHH2Yinnft7AfK7X8C2rQyxD4GZ66P9QiAI5e-wTeGvHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":17472415,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.4760\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089433"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089433/On_dispersability_of_some_products_of_cycles"><img alt="Research paper thumbnail of On dispersability of some products of cycles" class="work-thumbnail" src="https://attachments.academia-assets.com/76829440/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089433/On_dispersability_of_some_products_of_cycles">On dispersability of some products of cycles</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f0b0744df58035d27c4972a39750b7d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829440,&quot;asset_id&quot;:65089433,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829440/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089433"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089433"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089433; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089433]").text(description); $(".js-view-count[data-work-id=65089433]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089433; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089433']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089433, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f0b0744df58035d27c4972a39750b7d0" } } $('.js-work-strip[data-work-id=65089433]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089433,"title":"On dispersability of some products of cycles","translated_title":"","metadata":{"abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"We show that the matching book thickness of the Cartesian product of two odd-length cycle-graphs is five if at least one of the cycles has length 3 or 5.","internal_url":"https://www.academia.edu/65089433/On_dispersability_of_some_products_of_cycles","translated_internal_url":"","created_at":"2021-12-19T04:22:20.203-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829440/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/76829440/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829440/2108.11839v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=KTVwmxlRsrgPqX7ACGXlOQYKvNYN9KHeEfjkYv2NzgNPWEJhKFSgZWDYLeXg89eG0gwC8udB~L60bx~glK24Yzy12SDeeV-vk2dJ-XPA~60cL5FZc~xrCPoqwbfVcT4jhGbyahgzNOLnULBVwqfnvh5YKr2GFEmWKcu0JFDFgzdFYgbQRC8l5SR7hNdS8F59TsIUjA5fDwOPJCsCtJeRceYHoMMoxbxUM~YVv3eksiXCr7TZ3MNsRjThgTl-RivUvKkJ3xtO9bpD7r82KdOy-~r7PvvigzMdL4KLZtnyiq6cblSnqjruxEhHnnAU~9j6KmMBqAmgLkJvAwbq-AApHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_dispersability_of_some_products_of_cycles","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829440,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829440/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/76829440/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829440/2108.11839v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=KTVwmxlRsrgPqX7ACGXlOQYKvNYN9KHeEfjkYv2NzgNPWEJhKFSgZWDYLeXg89eG0gwC8udB~L60bx~glK24Yzy12SDeeV-vk2dJ-XPA~60cL5FZc~xrCPoqwbfVcT4jhGbyahgzNOLnULBVwqfnvh5YKr2GFEmWKcu0JFDFgzdFYgbQRC8l5SR7hNdS8F59TsIUjA5fDwOPJCsCtJeRceYHoMMoxbxUM~YVv3eksiXCr7TZ3MNsRjThgTl-RivUvKkJ3xtO9bpD7r82KdOy-~r7PvvigzMdL4KLZtnyiq6cblSnqjruxEhHnnAU~9j6KmMBqAmgLkJvAwbq-AApHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829441/thumbnails/1.jpg","file_name":"2108.11839v1.pdf","download_url":"https://www.academia.edu/attachments/76829441/download_file","bulk_download_file_name":"On_dispersability_of_some_products_of_cy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829441/2108.11839v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DOn_dispersability_of_some_products_of_cy.pdf\u0026Expires=1732801561\u0026Signature=D2EekPXMVWqEerJStjn0nMhW8I-jVtbt-Utay0Q59vAU8tYvBKDg8xOhbEVCAQZ4sLSS1pHiRXjAba1TiZnPxzOLIBse5n1i~ooJ1AzGaPWJZWIrrUSy8rSlWRyHXsHOJv9CZI49~hxmf7km04j8en0MhYxhbw0~OuFemOCnpv4zCGpZ9xDyyz1zYziQCD6nuNTfyvxIPklYt2tFNLhZUFT2AbCjP8-vG5tBzoGf3nwNp3ZiD1apQIR9YA0xeZXGf29~mqQjuAPTxGyFhVyw5ferY3WnXf3JW2vHyU2YcdjQImT6ywxGrYS3tjuoZMunZpEULMO4WyEa5eo9t48~6Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":15399765,"url":"https://arxiv.org/pdf/2108.11839v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089432"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089432/A_New_View_of_Hypercube_Genus"><img alt="Research paper thumbnail of A New View of Hypercube Genus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089432/A_New_View_of_Hypercube_Genus">A New View of Hypercube Genus</a></div><div class="wp-workCard_item"><span>The American Mathematical Monthly</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-dimensional hypercube graph can be embedded. We give a new proof of the formula by building this surface as a union of certain faces in the hypercube’s 2-skeleton. For odd dimension n, the entire 2-skeleton decomposes into copies of the surface, and the intersection of any two copies is the hypercube graph.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089432"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089432"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089432; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089432]").text(description); $(".js-view-count[data-work-id=65089432]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089432; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089432']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089432, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=65089432]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089432,"title":"A New View of Hypercube Genus","translated_title":"","metadata":{"abstract":"Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-dimensional hypercube graph can be embedded. We give a new proof of the formula by building this surface as a union of certain faces in the hypercube’s 2-skeleton. For odd dimension n, the entire 2-skeleton decomposes into copies of the surface, and the intersection of any two copies is the hypercube graph.","publisher":"Am. Math. Mon.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"The American Mathematical Monthly"},"translated_abstract":"Beineke, Harary, and Ringel discovered a formula for the minimum genus of a torus in which the n-dimensional hypercube graph can be embedded. We give a new proof of the formula by building this surface as a union of certain faces in the hypercube’s 2-skeleton. For odd dimension n, the entire 2-skeleton decomposes into copies of the surface, and the intersection of any two copies is the hypercube graph.","internal_url":"https://www.academia.edu/65089432/A_New_View_of_Hypercube_Genus","translated_internal_url":"","created_at":"2021-12-19T04:22:20.023-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_New_View_of_Hypercube_Genus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":15399764,"url":"https://doi.org/10.1080/00029890.2020.1867472"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089431"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089431/Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8"><img alt="Research paper thumbnail of Robust cycle bases do not exist for K n , n if n ≥ 8" class="work-thumbnail" src="https://attachments.academia-assets.com/76829438/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089431/Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8">Robust cycle bases do not exist for K n , n if n ≥ 8</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 +...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 + C2 + · · · + Ck of basis elements such that (i) (C1 + C2 + · · · + Cl−1) ∩ Cl is a nontrivial path for each 2 ≤ l &amp;lt; k. Hence, (ii) each partial sum C1 + C2 + · · ·+ Cl is a cycle for 1 ≤ l ≤ k. While complete graphs and 2-connected plane graphs have robust cycle bases, it is shown that regular complete bipartite graphs Kn,n do not have any robust cycle basis if n ≥ 8. © 2017 Elsevier B.V. All rights reserved.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="31284f254150fa7739b08313aa2bca16" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829438,&quot;asset_id&quot;:65089431,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829438/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089431"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089431"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089431; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089431]").text(description); $(".js-view-count[data-work-id=65089431]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089431; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089431']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089431, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "31284f254150fa7739b08313aa2bca16" } } $('.js-work-strip[data-work-id=65089431]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089431,"title":"Robust cycle bases do not exist for K n , n if n ≥ 8","translated_title":"","metadata":{"abstract":"A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 + C2 + · · · + Ck of basis elements such that (i) (C1 + C2 + · · · + Cl−1) ∩ Cl is a nontrivial path for each 2 ≤ l \u0026lt; k. Hence, (ii) each partial sum C1 + C2 + · · ·+ Cl is a cycle for 1 ≤ l ≤ k. While complete graphs and 2-connected plane graphs have robust cycle bases, it is shown that regular complete bipartite graphs Kn,n do not have any robust cycle basis if n ≥ 8. © 2017 Elsevier B.V. All rights reserved.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}}},"translated_abstract":"A basis for the cycle space of a graph is said to be robust if any cycle Z of G is a sum Z = C1 + C2 + · · · + Ck of basis elements such that (i) (C1 + C2 + · · · + Cl−1) ∩ Cl is a nontrivial path for each 2 ≤ l \u0026lt; k. Hence, (ii) each partial sum C1 + C2 + · · ·+ Cl is a cycle for 1 ≤ l ≤ k. While complete graphs and 2-connected plane graphs have robust cycle bases, it is shown that regular complete bipartite graphs Kn,n do not have any robust cycle basis if n ≥ 8. © 2017 Elsevier B.V. All rights reserved.","internal_url":"https://www.academia.edu/65089431/Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8","translated_internal_url":"","created_at":"2021-12-19T04:22:19.831-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829438/thumbnails/1.jpg","file_name":"DA7394.pdf","download_url":"https://www.academia.edu/attachments/76829438/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_cycle_bases_do_not_exist_for_K_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829438/DA7394-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DRobust_cycle_bases_do_not_exist_for_K_n.pdf\u0026Expires=1732801561\u0026Signature=a3YRgp7IZVAOGsQoq3Ts~QnOkDCD1d1pA81Lp0ZQX0iXfnhE1GTbeTtyYXaegUPsux6Kc~f93tL3gQ86IaASLhXRWJ2~os4tdmcInzweRrU4Weh3KaqB7C-8~LZCNxCTcAsBO015Q4BCPUYPr4X5ls7HvX0yMlHdkw4f7lDnTjPa~v~lmI0KPEUsdOsAzaIMnYdxFhkCVTz-0lZM0qHCRduxWrpxW7-pxw2M64smGqEZIQeSyCV3DhAfmUEb902jIlchMX-fwLzUFPEyAWGPeZKRRsWuXLeO8Wye~eluYQcwROJ5s7ESEHYNEvs4bX02oxtxzJ~-IQJD4O7ZpVUfow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Robust_cycle_bases_do_not_exist_for_K_n_n_if_n_8","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829438/thumbnails/1.jpg","file_name":"DA7394.pdf","download_url":"https://www.academia.edu/attachments/76829438/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Robust_cycle_bases_do_not_exist_for_K_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829438/DA7394-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DRobust_cycle_bases_do_not_exist_for_K_n.pdf\u0026Expires=1732801561\u0026Signature=a3YRgp7IZVAOGsQoq3Ts~QnOkDCD1d1pA81Lp0ZQX0iXfnhE1GTbeTtyYXaegUPsux6Kc~f93tL3gQ86IaASLhXRWJ2~os4tdmcInzweRrU4Weh3KaqB7C-8~LZCNxCTcAsBO015Q4BCPUYPr4X5ls7HvX0yMlHdkw4f7lDnTjPa~v~lmI0KPEUsdOsAzaIMnYdxFhkCVTz-0lZM0qHCRduxWrpxW7-pxw2M64smGqEZIQeSyCV3DhAfmUEb902jIlchMX-fwLzUFPEyAWGPeZKRRsWuXLeO8Wye~eluYQcwROJ5s7ESEHYNEvs4bX02oxtxzJ~-IQJD4O7ZpVUfow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829439,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829439/thumbnails/1.jpg","file_name":"DA7394.pdf","download_url":"https://www.academia.edu/attachments/76829439/download_file","bulk_download_file_name":"Robust_cycle_bases_do_not_exist_for_K_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829439/DA7394-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DRobust_cycle_bases_do_not_exist_for_K_n.pdf\u0026Expires=1732801561\u0026Signature=Nl7p0i8pKVwHiQFrGRUuGxoisUxooQ49HwUYHQX5kMqfRCxFushZq9aATN3CcV-hGooTtbLv07dHyGP-aoF7dN4z5cjAcs7CfB~4fEPDMqRHZuaQ8etFbX20cDbDxbu3uYJomO4bDL8A-hoOt7piynSm8~QpsPw9EPU07IK-3Vgqfvp~qGJPkuxdM~s54Gzr4LfrJPvvfZZ61bmFdrNg7MiDpC35AbyuHpELAMmBs7DpgyvRnP-yJEDqjlnO3v5smR-wtx~yW6RD04vAF-dDBYS-t-348OY~C35ZJVDCKA13-2nvLlGNtoC0q5hY97AvxABgiqzS-BFI~sLE-Tfp~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1172727,"name":"Discrete Applied Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Applied_Mathematics"}],"urls":[{"id":15399763,"url":"https://www.people.vcu.edu/~rhammack/reprints/DA7394.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089430"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089430/Factorization_of_Platonic_Polytopes_into_canonical_spheres"><img alt="Research paper thumbnail of Factorization of Platonic Polytopes into canonical spheres" class="work-thumbnail" src="https://attachments.academia-assets.com/76829437/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089430/Factorization_of_Platonic_Polytopes_into_canonical_spheres">Factorization of Platonic Polytopes into canonical spheres</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2671d6574269fcee900a5ff12b32c05d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829437,&quot;asset_id&quot;:65089430,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829437/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089430"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089430"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089430; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089430]").text(description); $(".js-view-count[data-work-id=65089430]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089430; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089430']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089430, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2671d6574269fcee900a5ff12b32c05d" } } $('.js-work-strip[data-work-id=65089430]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089430,"title":"Factorization of Platonic Polytopes into canonical spheres","translated_title":"","metadata":{"abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","internal_url":"https://www.academia.edu/65089430/Factorization_of_Platonic_Polytopes_into_canonical_spheres","translated_internal_url":"","created_at":"2021-12-19T04:22:19.641-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829437/thumbnails/1.jpg","file_name":"2108.07867v1.pdf","download_url":"https://www.academia.edu/attachments/76829437/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Factorization_of_Platonic_Polytopes_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829437/2108.07867v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DFactorization_of_Platonic_Polytopes_into.pdf\u0026Expires=1732801562\u0026Signature=UoxkF21BE87WaaGOBcWVPUapU4ZVuU33HUgMwZmB8OdgFvEMNjpb0D3COQ3IC~tlX7k-4j3yp2tVVAZZvV3cPV2s7-XR~l4dPFmVEP2X-mQVlU8crvZ7to6gbIZXs9FPyu4Z2rEucdzUti9dz-2nF-QDmqt0~~uTeSRQhwLlhkx9rbI746Mz-6LJzzH-dMUrRdrhyVWyKGET8KzCzQKl-w0gpPnfKkowr3AUYB7hFIS7ArlBrJS-RD6ALlMEq1O-snF3nNJcpoxlZvh9IZsBEvcG~vb9UwpDkvKTpQ8GyalGFMNSZzIYLcilLTrMiih6mCsezmoqBfFVKmn~8s1suw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Factorization_of_Platonic_Polytopes_into_canonical_spheres","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829437,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829437/thumbnails/1.jpg","file_name":"2108.07867v1.pdf","download_url":"https://www.academia.edu/attachments/76829437/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Factorization_of_Platonic_Polytopes_into.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829437/2108.07867v1-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DFactorization_of_Platonic_Polytopes_into.pdf\u0026Expires=1732801562\u0026Signature=UoxkF21BE87WaaGOBcWVPUapU4ZVuU33HUgMwZmB8OdgFvEMNjpb0D3COQ3IC~tlX7k-4j3yp2tVVAZZvV3cPV2s7-XR~l4dPFmVEP2X-mQVlU8crvZ7to6gbIZXs9FPyu4Z2rEucdzUti9dz-2nF-QDmqt0~~uTeSRQhwLlhkx9rbI746Mz-6LJzzH-dMUrRdrhyVWyKGET8KzCzQKl-w0gpPnfKkowr3AUYB7hFIS7ArlBrJS-RD6ALlMEq1O-snF3nNJcpoxlZvh9IZsBEvcG~vb9UwpDkvKTpQ8GyalGFMNSZzIYLcilLTrMiih6mCsezmoqBfFVKmn~8s1suw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399762,"url":"https://arxiv.org/pdf/2108.07867v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089429"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089429/Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets"><img alt="Research paper thumbnail of Chapter 5 Approximating Multivariable Functions by Feedforward Neural Nets" class="work-thumbnail" src="https://attachments.academia-assets.com/76829435/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089429/Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets">Chapter 5 Approximating Multivariable Functions by Feedforward Neural Nets</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Theoretical results on approximation of multivariable functions by feedforward neural networks ar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Theoretical results on approximation of multivariable functions by feedforward neural networks are surveyed. Some proofs of universal approximation capabilities of networks with perceptrons and radial units are sketched. Major tools for estimation of rates of decrease of approximation errors with increasing model complexity are proven. Properties of best approximation are discussed. Recent results on dependence of model complexity on input dimension are presented and some cases when multivariable functions can be tractably approximated are described.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9151c4f112922654187422b29c7c2492" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829435,&quot;asset_id&quot;:65089429,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829435/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089429"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089429"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089429; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089429]").text(description); $(".js-view-count[data-work-id=65089429]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089429; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089429']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089429, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9151c4f112922654187422b29c7c2492" } } $('.js-work-strip[data-work-id=65089429]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089429,"title":"Chapter 5 Approximating Multivariable Functions by Feedforward Neural Nets","translated_title":"","metadata":{"abstract":"Theoretical results on approximation of multivariable functions by feedforward neural networks are surveyed. Some proofs of universal approximation capabilities of networks with perceptrons and radial units are sketched. Major tools for estimation of rates of decrease of approximation errors with increasing model complexity are proven. Properties of best approximation are discussed. Recent results on dependence of model complexity on input dimension are presented and some cases when multivariable functions can be tractably approximated are described.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":"Theoretical results on approximation of multivariable functions by feedforward neural networks are surveyed. Some proofs of universal approximation capabilities of networks with perceptrons and radial units are sketched. Major tools for estimation of rates of decrease of approximation errors with increasing model complexity are proven. Properties of best approximation are discussed. Recent results on dependence of model complexity on input dimension are presented and some cases when multivariable functions can be tractably approximated are described.","internal_url":"https://www.academia.edu/65089429/Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets","translated_internal_url":"","created_at":"2021-12-19T04:22:19.478-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829435/thumbnails/1.jpg","file_name":"app.pdf","download_url":"https://www.academia.edu/attachments/76829435/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chapter_5_Approximating_Multivariable_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829435/app-libre.pdf?1639921868=\u0026response-content-disposition=attachment%3B+filename%3DChapter_5_Approximating_Multivariable_Fu.pdf\u0026Expires=1732801562\u0026Signature=PF2Jy5Uw0Hi~j5aDsUri39s3S5HGP8FCw8VH9yNWoFu9LCSELFcyOPEvOHLuU-fGav08oedLNpJMMvxvFGQ3ZtLDY0i5VYGrLJ3WYCodvjSKno5iSsT3Zc0x3DzDIK-azPKqap7Lp7-Woc0ngNxbC3C8dL95CEByA5v994pxMTzyouCKOBTJAxLQfUu8bKe0M05De4dvWKjM~9YOcu6jC6d2ywxQuDdVXU5S6LeMwmNtIO81YJIL8VVwGVISfDPESfWCD8d4D~OJpdqZCCsFjtjl66D3110LfGBBbWLEyX1QxAJ0BI4Z3kX8N9D3DXu~juSybW1XfAJDsrgpZgL02w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chapter_5_Approximating_Multivariable_Functions_by_Feedforward_Neural_Nets","translated_slug":"","page_count":39,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829435/thumbnails/1.jpg","file_name":"app.pdf","download_url":"https://www.academia.edu/attachments/76829435/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chapter_5_Approximating_Multivariable_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829435/app-libre.pdf?1639921868=\u0026response-content-disposition=attachment%3B+filename%3DChapter_5_Approximating_Multivariable_Fu.pdf\u0026Expires=1732801562\u0026Signature=PF2Jy5Uw0Hi~j5aDsUri39s3S5HGP8FCw8VH9yNWoFu9LCSELFcyOPEvOHLuU-fGav08oedLNpJMMvxvFGQ3ZtLDY0i5VYGrLJ3WYCodvjSKno5iSsT3Zc0x3DzDIK-azPKqap7Lp7-Woc0ngNxbC3C8dL95CEByA5v994pxMTzyouCKOBTJAxLQfUu8bKe0M05De4dvWKjM~9YOcu6jC6d2ywxQuDdVXU5S6LeMwmNtIO81YJIL8VVwGVISfDPESfWCD8d4D~OJpdqZCCsFjtjl66D3110LfGBBbWLEyX1QxAJ0BI4Z3kX8N9D3DXu~juSybW1XfAJDsrgpZgL02w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829436,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829436/thumbnails/1.jpg","file_name":"app.pdf","download_url":"https://www.academia.edu/attachments/76829436/download_file","bulk_download_file_name":"Chapter_5_Approximating_Multivariable_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829436/app-libre.pdf?1639921869=\u0026response-content-disposition=attachment%3B+filename%3DChapter_5_Approximating_Multivariable_Fu.pdf\u0026Expires=1732801562\u0026Signature=Bto0vn--dJHu-bem2NORxSQavdtQwGoabSf78FscO2yf~~ejHIZydXFLr2fwYG5ouyF5Gzq2nuDuaCjOX44aTcnXlyyZu3nE-I4DJG9ZPuGUNUaeToonUkok7B-uF0-hzi8NW2UWpdp83akOvs~aWjE~38TFzpQukfYSdXpM3yBBn~aik09zSBAD1t1EmZ4gEcQBdJGnUVsrbPe1JPt7flWq6q2xWAwB2nIKNks0actJtVXxXJCF-mEH-EE6Y0TOqTyZ2dIJDSQQRzZlitBrad7bBUWNPB-3h0RnK7DhVosu6KEdCfJjdA5iuqlJWaIHLcum2BSKeGMHwKT-hFd2Yg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399761,"url":"http://www.cs.cas.cz/~vera/publications/books/app.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089428/Isolated_squares_in_hypercubes_and_robustness_of_commutativity"><img alt="Research paper thumbnail of Isolated squares in hypercubes and robustness of commutativity" class="work-thumbnail" src="https://attachments.academia-assets.com/76829433/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089428/Isolated_squares_in_hypercubes_and_robustness_of_commutativity">Isolated squares in hypercubes and robustness of commutativity</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">On montre que, dans toute collection non vide d&amp;#39;au plus d-2 carres d&amp;#39;un hypercube Q d de ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">On montre que, dans toute collection non vide d&amp;#39;au plus d-2 carres d&amp;#39;un hypercube Q d de dimension d il existe un 3-cube sous-graphe de Q d qui contient exactement un de ces carres. Par suite, un diagramme d&amp;#39;isomorphismes sur le schema de l&amp;#39;hypercube d-dimensionnel ayant strictement moins de d-1 carres non commutaitfs a toutes ses faces commutatives. Des consequences statistiques sont donnees pour verifier la commutativite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2c0fe0e0f7e7821519947d3bd885c82a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829433,&quot;asset_id&quot;:65089428,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829433/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089428]").text(description); $(".js-view-count[data-work-id=65089428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089428, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2c0fe0e0f7e7821519947d3bd885c82a" } } $('.js-work-strip[data-work-id=65089428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089428,"title":"Isolated squares in hypercubes and robustness of commutativity","translated_title":"","metadata":{"abstract":"On montre que, dans toute collection non vide d\u0026#39;au plus d-2 carres d\u0026#39;un hypercube Q d de dimension d il existe un 3-cube sous-graphe de Q d qui contient exactement un de ces carres. Par suite, un diagramme d\u0026#39;isomorphismes sur le schema de l\u0026#39;hypercube d-dimensionnel ayant strictement moins de d-1 carres non commutaitfs a toutes ses faces commutatives. Des consequences statistiques sont donnees pour verifier la commutativite.","publication_date":{"day":null,"month":null,"year":2002,"errors":{}}},"translated_abstract":"On montre que, dans toute collection non vide d\u0026#39;au plus d-2 carres d\u0026#39;un hypercube Q d de dimension d il existe un 3-cube sous-graphe de Q d qui contient exactement un de ces carres. Par suite, un diagramme d\u0026#39;isomorphismes sur le schema de l\u0026#39;hypercube d-dimensionnel ayant strictement moins de d-1 carres non commutaitfs a toutes ses faces commutatives. Des consequences statistiques sont donnees pour verifier la commutativite.","internal_url":"https://www.academia.edu/65089428/Isolated_squares_in_hypercubes_and_robustness_of_commutativity","translated_internal_url":"","created_at":"2021-12-19T04:22:19.307-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829433/thumbnails/1.jpg","file_name":"blockprt.pdf","download_url":"https://www.academia.edu/attachments/76829433/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isolated_squares_in_hypercubes_and_robus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829433/blockprt-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DIsolated_squares_in_hypercubes_and_robus.pdf\u0026Expires=1732801562\u0026Signature=gvtaK5g8Fqoi4IHlGWokBiTmj98caynkd1GgJ17TTS1c~uD3RWwYnesunYQYX4vHttroJsL4-wHdLgn36ax3-3iHg39G2QbP4gZ~cS6dZTXrpk7q37Loqsx-~0uqSBY5ibSGyrPAyvbosnE4GSV6Cfz9O~pK5CdM2vnnjNAmcCDebymDHCLtFwsTJvfgrnms7XGLJbqiKAk4GqcrVBnbWYuJqyER5-yuKg58Zt0QIUFOdROP~AO3SdM~ztcsSTs6~EdJ2lENPyjXT1T4OmoD-VbVUYDFTwC~yH16iAuciVjilRjjjWZD-fUvvj9pmsK0gVB8jn81VaaOEyTfuCCnNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Isolated_squares_in_hypercubes_and_robustness_of_commutativity","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829433/thumbnails/1.jpg","file_name":"blockprt.pdf","download_url":"https://www.academia.edu/attachments/76829433/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isolated_squares_in_hypercubes_and_robus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829433/blockprt-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DIsolated_squares_in_hypercubes_and_robus.pdf\u0026Expires=1732801562\u0026Signature=gvtaK5g8Fqoi4IHlGWokBiTmj98caynkd1GgJ17TTS1c~uD3RWwYnesunYQYX4vHttroJsL4-wHdLgn36ax3-3iHg39G2QbP4gZ~cS6dZTXrpk7q37Loqsx-~0uqSBY5ibSGyrPAyvbosnE4GSV6Cfz9O~pK5CdM2vnnjNAmcCDebymDHCLtFwsTJvfgrnms7XGLJbqiKAk4GqcrVBnbWYuJqyER5-yuKg58Zt0QIUFOdROP~AO3SdM~ztcsSTs6~EdJ2lENPyjXT1T4OmoD-VbVUYDFTwC~yH16iAuciVjilRjjjWZD-fUvvj9pmsK0gVB8jn81VaaOEyTfuCCnNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829434,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829434/thumbnails/1.jpg","file_name":"blockprt.pdf","download_url":"https://www.academia.edu/attachments/76829434/download_file","bulk_download_file_name":"Isolated_squares_in_hypercubes_and_robus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829434/blockprt-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DIsolated_squares_in_hypercubes_and_robus.pdf\u0026Expires=1732801562\u0026Signature=eMhE52kKbRYNNWAL464nLpVNQd9AN9Rw3-CGKi1FDcmXAD1Ak8WhCNe~82APekWBosesrW2Ac5CiwwulDk8kP6WeA8WWqoE3V-XEIBVJqmy8P7YBtf3kzwVzO1FZd3ipCuG2odjO3tq02sAxw-7H6ZurYAhmxyEyhjjwdNeRmJAoAcg-5av-cvn27FjJoBBRtt0X3yiBt0oZ29L7~k7tYPEhCcuMhoonq4D97Qo36cptlVUPeSs4xLJGpuQdY5f74IXEGP-Jg7Tul320JlsETbN0t2VP~-8UoA7vmnJ2qTvwe63g76YvDpbQW5nDgXW5x4bqErMj3MsL0~tTZOkj0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399760,"url":"http://www9.georgetown.edu/faculty/kainen/blockprt.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089427/A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1"><img alt="Research paper thumbnail of A ug 2 02 1 FACTORIZATION OF PLATONIC POLYTOPES INTO CANONICAL SPHERES 1" class="work-thumbnail" src="https://attachments.academia-assets.com/76829432/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089427/A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1">A ug 2 02 1 FACTORIZATION OF PLATONIC POLYTOPES INTO CANONICAL SPHERES 1</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a6d26df6067e62e70c96ce4c73dd4c98" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829432,&quot;asset_id&quot;:65089427,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829432/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089427]").text(description); $(".js-view-count[data-work-id=65089427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089427, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a6d26df6067e62e70c96ce4c73dd4c98" } } $('.js-work-strip[data-work-id=65089427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089427,"title":"A ug 2 02 1 FACTORIZATION OF PLATONIC POLYTOPES INTO CANONICAL SPHERES 1","translated_title":"","metadata":{"abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Factorization into spheres is achieved for skeleta of the simplex, cube, and cross-polytope, both explicitly and using Keevash’s proof of existence of designs. Key Phrases: Decomposition of skeleta, Steiner triples, Hanani quadruples Decomposing a polytope’s 2-skeleton (i.e., partitioning its 2-cells) into closed manifolds was studied in [1], [13], [5], [7], [9], while in [6] we found factorizations of hypercube 2-skeleta into boundaries of (pairwise isomorphic) 3-cubes. Here we obtain such sphere factorizations for k-skeleta of all (non-exceptional) Platonic polytopes both explicitly for low values of k and, as a consequence of Keevash’s result [11], also existentially with k ≥ 1 arbitrary. Note we only use the case of multiplicity λ = 1 of [11]. Let ∆n denote the n-dimensional simplex, whose 1-skeleton is the graph Kn+1. Let On denote the n-dimensional cross-polytope, whose 1-skeleton is the graph K2n−F , where F is a 1-factor. Let Qn denote the n-dimensional hypercube, whose 1-sk...","internal_url":"https://www.academia.edu/65089427/A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1","translated_internal_url":"","created_at":"2021-12-19T04:22:19.138-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829432/thumbnails/1.jpg","file_name":"2108.pdf","download_url":"https://www.academia.edu/attachments/76829432/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829432/2108-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DA_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf\u0026Expires=1732801562\u0026Signature=WEFEiC6tG9g5r1eJiE7gRBLs11WzSlE4t2torQJ~cb~SmebxGVcYEdDXwwJOmqRbY9LkS6cJqZnpxM7gvX~52gk6hNfR2YeytGR~W3Vu6FzpB24NArbT6wMAL4qUlG~RZ4MwdL3I21VBcfJvlJqhb4sgXGQJ4hbERBD2s-CYaHitcJbC2EyMwK9-BdXurTz2i5dQGRoUxrJiYew-tT9XnErnZuP3LYlZ5EDyoyptxW9kIqVGipReK8sSJ72-q~-A~VbyPXEGcbZIjI4iUfk8mbdQT0LHBTgbie6jCPzD6z0IuITR5RZyPHl3vZNylnxaI151DJTydbF2i0kT9gWfmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_POLYTOPES_INTO_CANONICAL_SPHERES_1","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829432/thumbnails/1.jpg","file_name":"2108.pdf","download_url":"https://www.academia.edu/attachments/76829432/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829432/2108-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DA_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf\u0026Expires=1732801562\u0026Signature=WEFEiC6tG9g5r1eJiE7gRBLs11WzSlE4t2torQJ~cb~SmebxGVcYEdDXwwJOmqRbY9LkS6cJqZnpxM7gvX~52gk6hNfR2YeytGR~W3Vu6FzpB24NArbT6wMAL4qUlG~RZ4MwdL3I21VBcfJvlJqhb4sgXGQJ4hbERBD2s-CYaHitcJbC2EyMwK9-BdXurTz2i5dQGRoUxrJiYew-tT9XnErnZuP3LYlZ5EDyoyptxW9kIqVGipReK8sSJ72-q~-A~VbyPXEGcbZIjI4iUfk8mbdQT0LHBTgbie6jCPzD6z0IuITR5RZyPHl3vZNylnxaI151DJTydbF2i0kT9gWfmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829431/thumbnails/1.jpg","file_name":"2108.pdf","download_url":"https://www.academia.edu/attachments/76829431/download_file","bulk_download_file_name":"A_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829431/2108-libre.pdf?1639921861=\u0026response-content-disposition=attachment%3B+filename%3DA_ug_2_02_1_FACTORIZATION_OF_PLATONIC_PO.pdf\u0026Expires=1732801562\u0026Signature=g9D5aeF2hga5zr1457Jmk7hmRDFnM28w9sFvZEM9zLDNdBf96HQcozIwZncjx-vO4Ms5mMz4kvkQxYXpzVLNYhHCD6dew7A5oZXr8CIKuL7PL0R~DV9ON5oDBDxe8pBxb60ewH1oeI6oFwqaOnphdDgLG9b-fQEjPEMaibgAq3MIrx0YPr8x62A9ZEquihUeI6l3lgJ23E9d~pLPLleAHLSjoMoiIb3O7IX6IujHzQNYKAV-evPK8cpzxDSvLcz6NnHXKyLglALbmifZVMUy1DaYKYrzQp0JqwvUXeQ-ZTOE-Wn0n3gB5E8x9M7~~A6MFfU3SmYXMHtQQyzhGibJdg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399759,"url":"https://arxiv-export-lb.library.cornell.edu/pdf/2108.07867"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089426"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089426/Lunaport_Math_Mechanics_and_Transport"><img alt="Research paper thumbnail of Lunaport: Math, Mechanics &amp; Transport" class="work-thumbnail" src="https://attachments.academia-assets.com/76829461/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089426/Lunaport_Math_Mechanics_and_Transport">Lunaport: Math, Mechanics &amp; Transport</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Issues for transport facilities on the lunar surface related to science, engineering, architectur...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Issues for transport facilities on the lunar surface related to science, engineering, architecture, and human-factors are discussed. Logistic decisions made in the next decade may be crucial to financial success. In addition to outlining some of the problems and their relations with math and computation, the paper provides useful resources for decision-makers, scientists, and engineers. Key Phrases: Large-scale transport facilities in low-gravity, failsafes, solar power, ergonomics, facility planning, material science, non-rocket propulsion, efficient terminal layout, mathematics, heuristics, neural networks.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b6cbfeb6b9f4a6ce0e9ad10ed20f029c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829461,&quot;asset_id&quot;:65089426,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829461/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089426"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089426"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089426; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089426]").text(description); $(".js-view-count[data-work-id=65089426]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089426; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089426']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089426, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b6cbfeb6b9f4a6ce0e9ad10ed20f029c" } } $('.js-work-strip[data-work-id=65089426]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089426,"title":"Lunaport: Math, Mechanics \u0026 Transport","translated_title":"","metadata":{"abstract":"Issues for transport facilities on the lunar surface related to science, engineering, architecture, and human-factors are discussed. Logistic decisions made in the next decade may be crucial to financial success. In addition to outlining some of the problems and their relations with math and computation, the paper provides useful resources for decision-makers, scientists, and engineers. Key Phrases: Large-scale transport facilities in low-gravity, failsafes, solar power, ergonomics, facility planning, material science, non-rocket propulsion, efficient terminal layout, mathematics, heuristics, neural networks.","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"Issues for transport facilities on the lunar surface related to science, engineering, architecture, and human-factors are discussed. Logistic decisions made in the next decade may be crucial to financial success. In addition to outlining some of the problems and their relations with math and computation, the paper provides useful resources for decision-makers, scientists, and engineers. Key Phrases: Large-scale transport facilities in low-gravity, failsafes, solar power, ergonomics, facility planning, material science, non-rocket propulsion, efficient terminal layout, mathematics, heuristics, neural networks.","internal_url":"https://www.academia.edu/65089426/Lunaport_Math_Mechanics_and_Transport","translated_internal_url":"","created_at":"2021-12-19T04:22:18.966-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829461/thumbnails/1.jpg","file_name":"2107.14423v2.pdf","download_url":"https://www.academia.edu/attachments/76829461/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lunaport_Math_Mechanics_and_Transport.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829461/2107.14423v2-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DLunaport_Math_Mechanics_and_Transport.pdf\u0026Expires=1732801562\u0026Signature=MlWaoYf0XgaSFYA3LF7lE0tB3T6AH3QuDc75RRtCwq7i4OSt3MYjQQza2cigE1WbwWQTap6qa~ilEPbEBXiIsA9Q-6vEsI06fJnAM69nTh5~vM9mN9HJd05XyYCU-mpsQ6Mc~-dLo6SZL4U15IgOLEp-dHz0LiXt-tLPW8ZNOYvwC3UXxaIOmA5IZ3MRWV4HNnMb9Fi-ZrDudVkOzJXSlWFMTBFdnPJqhUDaRdLJk75WHSQSw0NOdNfH8J6kivk47unK4qR8IQfmmIto4WpAb8bI2Pn6SmNbB3niBgfOdR-KhmSLIBf61jGB5b5LOrKvne9iiy8du8yhE0cRHt9zmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lunaport_Math_Mechanics_and_Transport","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829461,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829461/thumbnails/1.jpg","file_name":"2107.14423v2.pdf","download_url":"https://www.academia.edu/attachments/76829461/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lunaport_Math_Mechanics_and_Transport.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829461/2107.14423v2-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DLunaport_Math_Mechanics_and_Transport.pdf\u0026Expires=1732801562\u0026Signature=MlWaoYf0XgaSFYA3LF7lE0tB3T6AH3QuDc75RRtCwq7i4OSt3MYjQQza2cigE1WbwWQTap6qa~ilEPbEBXiIsA9Q-6vEsI06fJnAM69nTh5~vM9mN9HJd05XyYCU-mpsQ6Mc~-dLo6SZL4U15IgOLEp-dHz0LiXt-tLPW8ZNOYvwC3UXxaIOmA5IZ3MRWV4HNnMb9Fi-ZrDudVkOzJXSlWFMTBFdnPJqhUDaRdLJk75WHSQSw0NOdNfH8J6kivk47unK4qR8IQfmmIto4WpAb8bI2Pn6SmNbB3niBgfOdR-KhmSLIBf61jGB5b5LOrKvne9iiy8du8yhE0cRHt9zmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":15399758,"url":"https://arxiv.org/abs/2107.14423"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089425/Cubic_planar_bipartite_graphs_are_dispersable"><img alt="Research paper thumbnail of Cubic planar bipartite graphs are dispersable" class="work-thumbnail" src="https://attachments.academia-assets.com/76829430/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089425/Cubic_planar_bipartite_graphs_are_dispersable">Cubic planar bipartite graphs are dispersable</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 and the number of pages is the maximum degree. Bernhart and Kainen conjectured every k-regular bipartite graph is dispersable. Forty years later, Alam, Bekos, Gronemann, Kaufmann, and Pupyrev have disproved this conjecture, identifying nonplanar 3and 4-regular bipartite graphs that are not dispersable. They also proved all cubic planar bipartite 3-connected graphs are dispersable and conjectured that the connectivity condition could be relaxed. We prove that every cubic planar bipartite multigraph is dispersable. Key Phrases: book thickness; dispersable book embeddings; matching book thickness; subhamiltonian vertex order; cubic bipartite planar multigraphs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8ed610d0dee6c60bc74a532047ac9a6d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829430,&quot;asset_id&quot;:65089425,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829430/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089425]").text(description); $(".js-view-count[data-work-id=65089425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089425, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8ed610d0dee6c60bc74a532047ac9a6d" } } $('.js-work-strip[data-work-id=65089425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089425,"title":"Cubic planar bipartite graphs are dispersable","translated_title":"","metadata":{"abstract":"A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 and the number of pages is the maximum degree. Bernhart and Kainen conjectured every k-regular bipartite graph is dispersable. Forty years later, Alam, Bekos, Gronemann, Kaufmann, and Pupyrev have disproved this conjecture, identifying nonplanar 3and 4-regular bipartite graphs that are not dispersable. They also proved all cubic planar bipartite 3-connected graphs are dispersable and conjectured that the connectivity condition could be relaxed. We prove that every cubic planar bipartite multigraph is dispersable. Key Phrases: book thickness; dispersable book embeddings; matching book thickness; subhamiltonian vertex order; cubic bipartite planar multigraphs.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}}},"translated_abstract":"A graph is called dispersable if it has a book embedding in which each page has maximum degree 1 and the number of pages is the maximum degree. Bernhart and Kainen conjectured every k-regular bipartite graph is dispersable. Forty years later, Alam, Bekos, Gronemann, Kaufmann, and Pupyrev have disproved this conjecture, identifying nonplanar 3and 4-regular bipartite graphs that are not dispersable. They also proved all cubic planar bipartite 3-connected graphs are dispersable and conjectured that the connectivity condition could be relaxed. We prove that every cubic planar bipartite multigraph is dispersable. Key Phrases: book thickness; dispersable book embeddings; matching book thickness; subhamiltonian vertex order; cubic bipartite planar multigraphs.","internal_url":"https://www.academia.edu/65089425/Cubic_planar_bipartite_graphs_are_dispersable","translated_internal_url":"","created_at":"2021-12-19T04:22:18.749-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829430/thumbnails/1.jpg","file_name":"2107.04728v1.pdf","download_url":"https://www.academia.edu/attachments/76829430/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cubic_planar_bipartite_graphs_are_disper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829430/2107.04728v1-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DCubic_planar_bipartite_graphs_are_disper.pdf\u0026Expires=1732801562\u0026Signature=PZveK6b8lNth8xXRwuiqWHWYyjuAfGSdP0NPRq3DQ3NdQrD9DfmH5p9-gCImt40Nz2qnZuVG6O40Cug2foZ~Ygy2oeZeFsXxfRVTO-Jl48NXbMbbNECK870~LYztPWJyK0iDW0sNCFS8aT5d0ZivRighaKCCA4n~jkxZDPjFUPOCVpM53ju1U2~03HHboinjCOtE65cASAzkQy-n3Tjjhc0OnU6dcGroJdQ~B6hqq2V68OylvpT7YM2ciK9ZrjpwbQkOJilkEfmVMPyTBar9~s4Eg50cg05Kf4WY5mwbgpF1rb0rBkARhVSHdvKcQnWf9sRmFOA4JlDmzMmLCvE~aw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cubic_planar_bipartite_graphs_are_dispersable","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829430/thumbnails/1.jpg","file_name":"2107.04728v1.pdf","download_url":"https://www.academia.edu/attachments/76829430/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cubic_planar_bipartite_graphs_are_disper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829430/2107.04728v1-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DCubic_planar_bipartite_graphs_are_disper.pdf\u0026Expires=1732801562\u0026Signature=PZveK6b8lNth8xXRwuiqWHWYyjuAfGSdP0NPRq3DQ3NdQrD9DfmH5p9-gCImt40Nz2qnZuVG6O40Cug2foZ~Ygy2oeZeFsXxfRVTO-Jl48NXbMbbNECK870~LYztPWJyK0iDW0sNCFS8aT5d0ZivRighaKCCA4n~jkxZDPjFUPOCVpM53ju1U2~03HHboinjCOtE65cASAzkQy-n3Tjjhc0OnU6dcGroJdQ~B6hqq2V68OylvpT7YM2ciK9ZrjpwbQkOJilkEfmVMPyTBar9~s4Eg50cg05Kf4WY5mwbgpF1rb0rBkARhVSHdvKcQnWf9sRmFOA4JlDmzMmLCvE~aw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":76829429,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829429/thumbnails/1.jpg","file_name":"2107.04728v1.pdf","download_url":"https://www.academia.edu/attachments/76829429/download_file","bulk_download_file_name":"Cubic_planar_bipartite_graphs_are_disper.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829429/2107.04728v1-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DCubic_planar_bipartite_graphs_are_disper.pdf\u0026Expires=1732801562\u0026Signature=ColtC9nxV2DP85-j7xkwkySmRQfpGwm8JnuJB7F7UxHiBZnZ~9bsDoUjVSa~1ZgNTH8xJ7u1OAjOBjkMwB3qaIoyEoM0q2d4Xaq35zERh4LsOzFuCXysqoYaLIqJL5xPih3l67WDGLW48SxKZQsUHvK0P4vOy0S-7sPCpL~Qvk2ZdZPQNoMdJulPSvyASzfHuBLLCeIdjmBkebKlt9SQ~vE7gQhXyKg4sfuOj8J1dY2WiEchRwg1-nDmcAprjkeVFXfENjlrrRCV96UYYZvPbcjvs046NBpfJUspwmk7uEc5S84RBRaJesparwL2yLR~NAgAw024Yr6cbHWwKX8Ueg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":15399757,"url":"https://arxiv.org/pdf/2107.04728v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089424"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089424/On_2_skeleta_of_hypercubes"><img alt="Research paper thumbnail of On 2-skeleta of hypercubes" class="work-thumbnail" src="https://attachments.academia-assets.com/76829460/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089424/On_2_skeleta_of_hypercubes">On 2-skeleta of hypercubes</a></div><div class="wp-workCard_item"><span>The Art of Discrete and Applied Mathematics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="10d619d4cd521e7c58d024b0c4a6b628" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829460,&quot;asset_id&quot;:65089424,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829460/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089424"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089424"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089424; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089424]").text(description); $(".js-view-count[data-work-id=65089424]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089424; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089424']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089424, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "10d619d4cd521e7c58d024b0c4a6b628" } } $('.js-work-strip[data-work-id=65089424]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089424,"title":"On 2-skeleta of hypercubes","translated_title":"","metadata":{"publisher":"University of Primorska Press","grobid_abstract":"It is shown that the 2-skeleton of the odd-d-dimensional hypercube can be decomposed into s d spheres and τ d tori, where s d = (d − 1)2 d−4 and τ d is asymptotically in the range (64/9)2 d−7 to (d − 1)(d − 3)2 d−7 .","publication_name":"The Art of Discrete and Applied Mathematics","grobid_abstract_attachment_id":76829460},"translated_abstract":null,"internal_url":"https://www.academia.edu/65089424/On_2_skeleta_of_hypercubes","translated_internal_url":"","created_at":"2021-12-19T04:22:18.583-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829460,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829460/thumbnails/1.jpg","file_name":"1151.pdf","download_url":"https://www.academia.edu/attachments/76829460/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_2_skeleta_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829460/1151-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DOn_2_skeleta_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=FHWa7Ich2FhZJf7YTJ0gLxP1-MWUa7XOFZDU03kniSZPXGU1c28007goe6j8ia88ga9znz9kLo8b2kW1HcPzPMUQYI7fxFXJz54zJS~HJ-PGKEuBFjRdFCicLLmuf5OWXQBoqW2Qa~GLXRfzWbGfiWleFyMumVhfdj3Mf~qVZbEA3PUMfzKGExoeR-JbUMMRpwayVfR3~lR0SU2zpenoVpxxKUxr7easmDGbCNy-L8bWAYQz6WUCmwqIkK54SC0de1TaCWm~eKavOGk5SVhLpAIPZ8hIXnSsAjOBORFhchVgKatKyJBwiAbHZPXqSVMV4Jjt7h2FGfbl4~MxMTfgIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_2_skeleta_of_hypercubes","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829460,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829460/thumbnails/1.jpg","file_name":"1151.pdf","download_url":"https://www.academia.edu/attachments/76829460/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_2_skeleta_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829460/1151-libre.pdf?1639921862=\u0026response-content-disposition=attachment%3B+filename%3DOn_2_skeleta_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=FHWa7Ich2FhZJf7YTJ0gLxP1-MWUa7XOFZDU03kniSZPXGU1c28007goe6j8ia88ga9znz9kLo8b2kW1HcPzPMUQYI7fxFXJz54zJS~HJ-PGKEuBFjRdFCicLLmuf5OWXQBoqW2Qa~GLXRfzWbGfiWleFyMumVhfdj3Mf~qVZbEA3PUMfzKGExoeR-JbUMMRpwayVfR3~lR0SU2zpenoVpxxKUxr7easmDGbCNy-L8bWAYQz6WUCmwqIkK54SC0de1TaCWm~eKavOGk5SVhLpAIPZ8hIXnSsAjOBORFhchVgKatKyJBwiAbHZPXqSVMV4Jjt7h2FGfbl4~MxMTfgIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="65089361"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/65089361/Sphere_decompositions_of_hypercubes"><img alt="Research paper thumbnail of Sphere decompositions of hypercubes" class="work-thumbnail" src="https://attachments.academia-assets.com/76829420/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/65089361/Sphere_decompositions_of_hypercubes">Sphere decompositions of hypercubes</a></div><div class="wp-workCard_item"><span>The Art of Discrete and Applied Mathematics</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc4a99738b23653efa8f45ed1d06fbac" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:76829420,&quot;asset_id&quot;:65089361,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/76829420/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="65089361"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="65089361"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 65089361; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=65089361]").text(description); $(".js-view-count[data-work-id=65089361]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 65089361; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='65089361']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 65089361, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc4a99738b23653efa8f45ed1d06fbac" } } $('.js-work-strip[data-work-id=65089361]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":65089361,"title":"Sphere decompositions of hypercubes","translated_title":"","metadata":{"publisher":"University of Primorska Press","grobid_abstract":"For d ≡ 1 or 3 (mod 6), the 2-skeleton of the d-dimensional hypercube is decomposed into the union of pairwise face-disjoint isomorphic 2-complexes, each a topological sphere. If d = 5 n , then such a decomposition can be achieved, but with non-isomorphic spheres.","publication_name":"The Art of Discrete and Applied Mathematics","grobid_abstract_attachment_id":76829420},"translated_abstract":null,"internal_url":"https://www.academia.edu/65089361/Sphere_decompositions_of_hypercubes","translated_internal_url":"","created_at":"2021-12-19T04:21:03.765-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":76829420,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829420/thumbnails/1.jpg","file_name":"1172.pdf","download_url":"https://www.academia.edu/attachments/76829420/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sphere_decompositions_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829420/1172-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DSphere_decompositions_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=MEZ-oBnHL-A9BvvsEcRJjeOgslQCQQJqsYNgsbnnrtECyCpA935S3Gdsk4-YyeoyEIeXPIdE-6uOE3xvgd0VJmBXn8qz96jEJs-m2zd~urMKMSMydviLS-aZYJSiv5mUsREpJrgE4zhfIU5UrIFldN6oIeToQEKt8UM33NZUBTSalCswCoq6z~vRKCwSCyMtT3lKTcohHgk-npc2JpCKPZVdtyxGSRwM9CNEQ0MGHj-X6H8aB~4T2ofLXcTueMtpm54TVp2TVWuPBvop3EQAwxcDuTHUQcCW07St3iFpOzj3kBMXHc7WDsoP-Px9BWrl08BghHSbAwPbjQVR0RJVXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sphere_decompositions_of_hypercubes","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[{"id":76829420,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76829420/thumbnails/1.jpg","file_name":"1172.pdf","download_url":"https://www.academia.edu/attachments/76829420/download_file?st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&st=MTczMjc5Nzk2Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sphere_decompositions_of_hypercubes.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76829420/1172-libre.pdf?1639921865=\u0026response-content-disposition=attachment%3B+filename%3DSphere_decompositions_of_hypercubes.pdf\u0026Expires=1732801562\u0026Signature=MEZ-oBnHL-A9BvvsEcRJjeOgslQCQQJqsYNgsbnnrtECyCpA935S3Gdsk4-YyeoyEIeXPIdE-6uOE3xvgd0VJmBXn8qz96jEJs-m2zd~urMKMSMydviLS-aZYJSiv5mUsREpJrgE4zhfIU5UrIFldN6oIeToQEKt8UM33NZUBTSalCswCoq6z~vRKCwSCyMtT3lKTcohHgk-npc2JpCKPZVdtyxGSRwM9CNEQ0MGHj-X6H8aB~4T2ofLXcTueMtpm54TVp2TVWuPBvop3EQAwxcDuTHUQcCW07St3iFpOzj3kBMXHc7WDsoP-Px9BWrl08BghHSbAwPbjQVR0RJVXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="57257435"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/57257435/Quasiorthogonal_Dimension"><img alt="Research paper thumbnail of Quasiorthogonal Dimension" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/57257435/Quasiorthogonal_Dimension">Quasiorthogonal Dimension</a></div><div class="wp-workCard_item"><span>Studies in Computational Intelligence</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="57257435"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="57257435"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 57257435; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=57257435]").text(description); $(".js-view-count[data-work-id=57257435]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 57257435; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='57257435']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 57257435, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=57257435]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":57257435,"title":"Quasiorthogonal Dimension","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_name":"Studies in Computational Intelligence"},"translated_abstract":null,"internal_url":"https://www.academia.edu/57257435/Quasiorthogonal_Dimension","translated_internal_url":"","created_at":"2021-10-11T14:21:21.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":46765975,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Quasiorthogonal_Dimension","translated_slug":"","page_count":null,"language":"cy","content_type":"Work","owner":{"id":46765975,"first_name":"Paul","middle_initials":null,"last_name":"Kainen","page_name":"PaulKainen","domain_name":"georgetown","created_at":"2016-04-10T12:44:29.992-07:00","display_name":"Paul Kainen","url":"https://georgetown.academia.edu/PaulKainen"},"attachments":[],"research_interests":[],"urls":[{"id":12804553,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-31041-7_35"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "8e44dd6b5e8879bc95c0237e5d7986a65c3ae178a5285be1cdde6a95acdf1f0d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="RaA+cgIL6vbsIcyfUlhLSmk/9NAU9TTkAPAhJEO+RoxdWboJ1BQs+oEp/BEPlJ6/Y61sGz3A+pMM2plDi2T1kg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://georgetown.academia.edu/PaulKainen" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="c8YUgnTlF7hB8XSLkWGPrEi4DRnU5xfwlQvonCLufulrP5D5ovrRtCz5RAXMrVpZQiqV0v3S2YeZIVD76jTN9w==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10