CINXE.COM

Intrinsic telescope aberrations

<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Intrinsic telescope aberrations</title> <meta name="keywords" content="telescope aberrations, optical aberrations, aberration notation, spherical aberration, coma, astigmatism, field curvature, distortion, telescope, optics, correction error"> <meta name="description" content="Intrinsic telescope optical aberrations, as a wavefront and ray aberrations; definition, illustrations and formulae."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">&#1138;</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3">&nbsp;&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3">&nbsp; </font></b> <font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font> <font size="1" color="#95AAA6">&#9642;</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1">&nbsp;</font></font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;&#9642;&#9642;&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font><font size="1" color="#95AAA6">&#9642;</font><font size="1" face="Verdana" color="#95AAA6">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</font><font face="Verdana" color="#518FBD"><b><font size="2">&nbsp;</font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> &nbsp;</font></span></p> <h4 align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">&#9668;</font><font face="Verdana" size="2"> <a href="zernike_expansion_schemes.htm">3.5.3. Zernike expansion schemes</a>&nbsp;</font></span><font size="2" face="Arial"><font color="#C0C0C0">&nbsp; </font> <font color="#999999">&#9616;</font>&nbsp;&nbsp;&nbsp; </font> <span style="font-weight: 400"> <font face="Verdana" size="2"> <a href="lower_order_spherical.htm">4.1.2. Lower-order spherical: aberration function</a> </font></span> <font face="Arial" size="2" color="#336699">&#9658;</font></h4> </font> <h1 align="center" style="text-indent: 0"> <font face="Trebuchet MS" size="3" color="#336699"> 4. INTRINSIC TELESCOPE ABERRATIONS</font></h1><font size="2"> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0"> PAGE HIGHLIGHTS<br> &bull; <a href="#account">Primary spherical aberration</a>:&nbsp;&nbsp; <a href="#account">wavefront&nbsp; shape</a>&nbsp; <a href="#With"> wavefront error</a>&nbsp;&nbsp; <a href="#aberration">ray spot</a></p></div> </font> </div> <font size="2"> <p align="justify" style="line-height: 150%"><font face="Verdana" size="2">As mentioned, these are the aberrations caused by the inherent properties of properly positioned optical elements, thus caused either by the aberration limitations of a conic surface, or fabrication error (i.e. error in surface radius or conic). They are identical in form to the corresponding aberration caused by miscollimation, but they cannot be eliminated in the alignment <a name="procedure">procedure</a>. </font> </p> <p align="justify" style="line-height: 150%"><font face="Verdana" size="2">Intrinsic telescope aberrations include the five primary aberrations intrinsic to conical surfaces of revolution - spherical, <a href="coma.htm">coma</a>, <a href="astigmatism1.htm">astigmatism</a>, <a href="curvature.htm">field curvature</a> and <a href="distortion.htm">distortion</a> - as well as <a href="chromatic.htm">chromatism</a> and wavefront aberrations resulting from <a href="fabrication.htm">fabrication errors</a>.</font></p> <p align="justify" style="line-height: 150%">Specific notation for the five conic surface aberration<font face="Verdana" size="2">s is based on a power series expansion of the aberration function that sums up all the geometric deviations in point imaging for <a href="terms_and_conventions.htm#conveniently,">Gaussian image point</a>, in which a general aberration term is given as </font><font size="1" face="Terminal"> <span style="vertical-align: sub">2l+m</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">nm</span></font><b><font face="Verdana" size="2">d</font><font face="Verdana" size="1"><span style="vertical-align: super">n</span></font><font face="Verdana" size="2">h</font><font face="Verdana" size="1"><span style="vertical-align: super">(2l+m)</span></font><font face="Verdana" size="2">cos</font><font face="Verdana" size="1"><span style="vertical-align: super">m</span></font>&#952;</b><font face="Verdana" size="2">, where <b>w</b>, <b>d, h</b> and </font><b>&#952;</b><font face="Verdana" size="2"> are the <a href="aberration_function.htm#well">aberration coefficient</a>, pupil radius, point height in the image space and pupil angle, respectively, and <b>l</b>, <b>m</b>, and <b>n</b> are the power terms from the function. The latter are associated with specific aberrations as shown in table below.</font></p> <div align="center"> <table border="1" width="700" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center" bordercolor="#FFFFFF"> <tr> <td bgcolor="#FFFFFF" colspan="2"><b>ABERRATION</b></td> <td bgcolor="#FFFFFF"><b>l</b></td> <td bgcolor="#FFFFFF"><b>n</b></td> <td bgcolor="#FFFFFF"><b>m</b></td> <td bgcolor="#FFFFFF"><b>2l+m</b></td> <td bgcolor="#FFFFFF"><b>Term</b></td> <td bgcolor="#FFFFFF"><b>Order<br> 2l+m+n</b></td> </tr> <tr> <td rowspan="5"><b>Primary<br> (Siedel)</b></td> <td>SPHERICAL</td> <td>0</td> <td>4</td> <td>0</td> <td>0</td> <td><font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">0</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">40</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font></font></td> <td>4</td> </tr> <tr> <td>COMA</td> <td>0</td> <td>3</td> <td>1</td> <td>1</td> <td><font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">1</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">31</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2"><b>h</b>cos</font><b>&#952;</b></font></td> <td>4</td> </tr> <tr> <td>ASTIGMATISM</td> <td>0</td> <td>2</td> <td>2</td> <td>2</td> <td> <font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">2</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">22</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><b><font face="Verdana" size="2">h</font></b><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">cos</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><b>&#952;</b></font></td> <td>4</td> </tr> <tr> <td>FIELD CURVATURE (DEFOCUS)</td> <td>1</td> <td>2</td> <td>0</td> <td>2</td> <td> <font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub"> 2l</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">20</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><b><font face="Verdana" size="2">h</font></b><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font></font></td> <td>4</td> </tr> <tr> <td>DISTORTION (TILT)</td> <td>1</td> <td>1</td> <td>1</td> <td>3</td> <td><font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">3</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">11</span></font><font face="Verdana" size="2"><b>dh</b></font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">cos</font><b>&#952;</b></font></td> <td>4</td> </tr> <tr> <td bgcolor="#FFD24A" rowspan="4"><b>Secondary</b></td> <td bgcolor="#FFD24A">SPHERICAL</td> <td bgcolor="#FFD24A">0</td> <td bgcolor="#FFD24A">6</td> <td bgcolor="#FFD24A">0</td> <td bgcolor="#FFD24A">0</td> <td bgcolor="#FFD24A"><font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">0</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">60</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">6</span></font></font></td> <td bgcolor="#FFD24A">6</td> </tr> <tr> <td bgcolor="#FFD24A">COMA</td> <td bgcolor="#FFD24A">0</td> <td bgcolor="#FFD24A">5</td> <td bgcolor="#FFD24A">1</td> <td bgcolor="#FFD24A">1</td> <td bgcolor="#FFD24A"><font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">1</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">51</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">5</span></font><font face="Verdana" size="2"><b>h</b>cos</font><b>&#952;</b></font></td> <td bgcolor="#FFD24A">6</td> </tr> <tr> <td bgcolor="#FFD24A">ASTIGMATISM</td> <td bgcolor="#FFD24A">0</td> <td bgcolor="#FFD24A">4</td> <td bgcolor="#FFD24A">2</td> <td bgcolor="#FFD24A">2</td> <td bgcolor="#FFD24A"> <font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">2</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">42</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font><b><font face="Verdana" size="2">h</font></b><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><font face="Verdana" size="2">cos</font><font face="Verdana" size="1"><span style="vertical-align: super">2</span></font><b>&#952;</b></font></td> <td bgcolor="#FFD24A">6</td> </tr> <tr> <td bgcolor="#FFD24A">ARROWS (TREFOIL)</td> <td bgcolor="#FFD24A">0</td> <td bgcolor="#FFD24A">3</td> <td bgcolor="#FFD24A">3</td> <td bgcolor="#FFD24A">3</td> <td bgcolor="#FFD24A"><font size="2"> <font size="1" face="Terminal"><span style="vertical-align: sub">3</span></font><b><font face="Verdana" size="2">w</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">33</span></font><b><font face="Verdana" size="2">d</font></b><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><b><font face="Verdana" size="2">h</font></b><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">cos</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><b>&#952;</b></font></td> <td bgcolor="#FFD24A">6</td> </tr> </table> <p><b>TABLE 4: Wavefront aberrations: notation for selected aberrations.</b></div> <p align="justify" style="line-height: 150%"> Wavefront aberration forms with 2l+m+n=4 are called 4th order or <span style="background-color: #FFFF99">primary aberrations</span>, those with 2l+m+n=6 are 6th order, or <span style="background-color: #FFFF99">secondary</span>, those with 2l+m+n=8 are 8th order or <span style="background-color: #FFFF99"> tertiary</span>, and so on.</p> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">The entire term constitutes the <a href="aberration_function.htm#well">peak aberration coefficient</a>, equaling the value of the peak (coma, tilt), or peak-to-valley (spherical, astigmatism, field curvature) wavefront error at the Gaussian image point. </font>&nbsp;For primary spherical, it is <font face="Verdana" size="2">paraxial focus, where the P-V wavefront error changes with (&#961;d)</font><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font><font face="Verdana" size="2">, <b>&#961;</b> being the height in the pupil normalized to 1. Thus, for unit radius, it is proportional to &#961;</font><font face="Verdana" size="1"><span style="vertical-align: super">4</span></font><font face="Verdana" size="2">, which is its <a href="aberration_function.htm">aberration function</a>. For coma, the P-V wavefront error changes with (&#961;d)</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">, i.e. in proportion to &#961;</font><font face="Verdana" size="1"><span style="vertical-align: super">3</span></font><font face="Verdana" size="2">, and so on. Strictly talking, these are Siedel aberrations, but best (diffraction) focus is shifted away from the Gaussian image point, as given in <a href="Seidel_aberrations.htm#Table">Table 3</a>.</font></p> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Sum in the last column is the <i>order</i> of the aberration term. Fourth order wavefront aberrations are called <i>primary</i>, and sixth order aberrations are called <i>secondary</i> aberrations (since this sum is smaller by one for transverse ray aberrations, primary aberrations are also called <i>third</i> order, and secondary aberrations <i>fifth</i> order).</font></p> <p align="justify" style="line-height: 150%">For practical purposes, the front subscript is <font face="Verdana" size="2">often omitted, with the aberration coefficient identified only as </font><b><font face="Verdana" size="2">w</font><font size="1" face="Tahoma"><span style="vertical-align: sub">nm</span></font></b><font face="Verdana" size="2">. The subscript is sometimes entirely omitted, for simplicity, as it is in this text, where aberration coefficients for primary spherical aberration, coma, astigmatism and field curvature are denoted by <b>s</b>, <b>c</b>, <b>a</b>, <b>p</b> and <b>g</b>, respectively, with the corresponding peak aberration coefficients <b>S</b>, <b>C</b>, <b>A</b>, <b>P</b> and <b>G</b>. Aberration coefficients for secondary aberrations are more complex and are not <a name="specified">specified</a>, but secondary aberrations are described and illustrated for the three point-image quality aberrations, spherical, coma and astigmatism.</font></p> <p align="justify" style="line-height: 150%">This nominal notation ca<font face="Verdana" size="2">n also be used to identify the aberration with <a href="zernike_coefficients.htm">Zernike coefficients</a>.<br> <br> </p> </font> <h2 align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font face="Trebuchet MS" size="3" color="#336699"><b>4.1. Spherical aberration</b></font></span></h2> </p> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Spherical aberration - or <i>correction error</i> - is the only form of monochromatic axial aberration produced by rotationally symmetrical surfaces centered and orthogonal in regard to the optical axis. The attribute <i>spherical</i> probably originates in this aberration being inherent to the basic optical surface - spherical - for object at infinity. However, spherical aberration will appear whenever optical surface form doesn't properly match that of the incident wavefront. Thus, it is induced with the change of object distance or, with multi-surface objectives, with deviations in proper spacing. Spherical aberration affects <a name="the_entire">the entire</a> image field, including the very center. For that reason, its correction in a telescope is more important than that of other inherent conic surface aberrations, which affect the outer field. </font> <p align="justify" style="line-height: 150%"> Spherical aberration in the majority of amateur telescopes - especially more traditional ones, like Newtonian reflector or achromat refractor - is sufficiently accurately presented based on the 4th order surface approximation, which includes the first two terms in the <a href="conic_surface_aberrations.htm#determines_level">conic surface expansion series</a>. Axial aberration associated with this surface approximation is called lower-order, or primary spherical aberration (also, 4th order wavefront, or 3rd order transverse ray aberration). Telescope objectives with strongly curved surfaces - like Maksutov-Cassegrain or doublet apochromatic refractors - generate significant amount of <a href="higher_order_spherical_aberration.htm">higher-order</a> (6th on the wavefront, or 5th transverse ray) spherical aberration, which requires inclusion of the third term in the series i.e. upgrading, or correcting 4th order surface approximation <a name="to_the">to the</a> 6th order surface. Very rarely, yet higher order terms also need to be taken into <a name="account">account</a>.<br> &nbsp;<p align="center" style="text-indent:0"> <b><font face="Trebuchet MS" size="3" color="#336699">4.1.1. Lower-order (primary) spherical aberration</font></b><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"><b>FIG. 33</b> illustrates <i>under-corrected</i> (negative) form of primary spherical aberration, characteristic of a spherical mirror for object at infinity. Due to the actual wavefront being not spherical, <a href="wave.htm#_Any_image">rays</a> projected from it do not meet at the same point; the wavefront becoming more <a name="strongly_curved">strongly curved</a> toward the edge causes the foci for rays projected from its outer zones to fall progressively closer to the mirror.</font><div style="padding-left:3px; padding-right:3px; background-color:#FFFFFF"> <p align="center" style="text-indent: 0"> &nbsp;<b><font size="2" face="Arial"><img border="0" src="images/spherical1.PNG" width="740" height="424"><br> <br> </font><font size="2" face="Tahoma">FIGURE </font> <font face="Tahoma">33</font></b><font size="2" face="Tahoma">: Spherical aberration of a concave spherical mirror, commonly called <i>under-correction</i> (due to marginal rays falling short of paraxial focus). <span style="background-color: #FFFFCC">LEFT</span>: After flat incident wavefront reflects off spherical surface, it is increasingly more curved toward the edge than the reference sphere centered at paraxial focus</font></font><font face="Tahoma" size="2">, which would coincide with wavefront p</font><font size="2"><font face="Tahoma" size="2">roduced by reflection from the imaginary paraboloid <b>P<font color="#FF0000"> </font> </b>(for object at infinity) of identical vertex radius. As a result, its outer rays focus progressively closer to the mirror: while central rays meet at the paraxial focus, the edge rays meet at the marginal focus. Best focus is midway between the marginal and paraxial focus, due to the deviation of the actual wavefront from perfect reference sphere centered at this point being the smallest. Best focus wavefront error peaks at 0.707 aperture radius. It is measured with respect to reference sphere centered at the best focus, which would have been generated by a paraboloid of slightly smaller vertex radius than that of the spherical surface. The best focus P-V wavefront error is smaller from the error at either marginal or paraxial focus by a factor of 0.25. The aberration at the paraxial focus is <b><font color="#000080">primary spherical aberration</font></b>, and at the best focus location it is <font color="#000080"><b>balanced primary spherical aberration</b> </font>(it is balanced - or minimized - with defocus aberration)<font color="#000080">.</font> Ray geometry determines the longitudinal (<b>L</b>) and transverse (<b>T</b>) aberration, shown at the Gaussian focus. <span style="background-color: #FFFFCC">RIGHT</span>: The relative wavefront deviation from their respective reference spheres is constant for the marginal, paraxial, best, or diffraction focus and the minimum geometric blur focus for any amount of the aberration. Taking paraxial (Gaussian) focus as the reference point, the wavefront error <b>W</b> at any point of the longitudinal aberration <b>L</b> can be expressed as a sum of the spherical aberration P-V WFE at paraxial focus <b>W</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">P</span></font><font size="2" face="Arial"> </font><font size="2" face="Tahoma"> and defocus P-V WFE <b>W</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="2" face="Arial"> </font><font size="2" face="Tahoma"> with respect to the reference sphere centered at the Gaussian focus, which gives to it the opposite sign. Thus W=W</font><font size="1" face="Terminal"><span style="vertical-align: sub">P</span></font><font size="2" face="Tahoma">+W</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="2" face="Arial">, </font><font size="2" face="Tahoma">with <b>W</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">P</span></font><font size="2" face="Arial"> </font><font size="2" face="Tahoma"> being constant and <b>W</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="2" face="Arial"> </font><font size="2" face="Tahoma"> ranging from zero at the paraxial focus to W</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="2" face="Tahoma">=-2W</font><font size="1" face="Terminal"><span style="vertical-align: sub">P</span></font><font size="2" face="Arial"> </font><font size="2" face="Tahoma"> at the marginal focus (for given longitudinal aberration the defocus error is double the s.a. error). Since for a given longitudinal aberration the defocus P-V WFE is twice that of spherical aberration, and the P-V WFE for both equals the peak aberration coefficient, with <b>W</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">P</span></font><font size="2" face="Tahoma">=S&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">4</span></font><font size="2" face="Arial"> </font><font size="2" face="Tahoma"> and <b>W</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="2" face="Tahoma">=P&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">2</span></font><font size="2" face="Arial">, </font><font size="2" face="Tahoma"> <b>S</b> and <b>P</b> being the peak aberration coefficients for <a href="lower_order_spherical.htm">primary spherical</a> and <a href="defocus1.htm#reference_sphere">defocus</a>, respectively, and <b>&#961;</b> being the zonal height for the aperture radius normalized to 1, the relative coefficients can be expressed in terms of the relative defocus value alone. Taking <b>S</b> for unit, with <b>P</b> ranging from 0 to 2, we can write the relative aberration in units of the s.a. error at paraxial focus as </font></font> <p align="center" style="text-indent: 0"> <font size="2"><font size="2" face="Tahoma">W/S=(&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">4</span></font><font size="2" face="Tahoma">-x&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">2</span></font><font size="2" face="Arial">)</font><font size="2" face="Tahoma">, </font></font> <font face="Tahoma" size="2">and the actual WFE of spherical aberration as W=</font><font size="2"><font size="2" face="Tahoma">(&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">4</span></font><font size="2" face="Tahoma">-x&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">2</span></font><font size="2" face="Tahoma">)S,</font></font><p align="center" style="text-indent: 0"> <font size="2"><font size="2" face="Tahoma">with <b>x</b> ranging from 0 at the paraxial to 2 at the marginal focus (note that the sign of actual wavefront deviation for &#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">4</span></font><font size="2" face="Tahoma"> is by the sign of (&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">4</span></font><font size="2" face="Tahoma">-x&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">2</span></font><font size="2" face="Arial">)</font><font size="2" face="Tahoma"> and that of <b>S</b>; with the latter for the specific case shown at left - undercorrection - being numerically negative). The right side of the second equation is the general form of aberration function for primary spherical aberration, giving the actual error at <a name="any_point">any point</a> in the pupil For x=0, thus W=S&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">4</span></font><font size="2" face="Arial">,</font><font size="2" face="Tahoma"> the maximum deviation, or P-V WFE, is for &#961;=1 (also for x&lt;0, and x&#8805;2). For 2&#8804;x&#8804;1, the P-V WFE is given directly by the deviation at the point of deflection (i.e. point of WFE plot reversal, tangent to which is parallel to the reference sphere line). Value of <b>&#961;</b> for this point is obtained by setting first derivative</font><font size="2" face="Arial"> of the aberration function - </font><font face="Tahoma" size="2">f'(x)=nx</font><font size="1" face="Georgia"><span style="vertical-align: super; font-style:italic">n</span></font><font size="1" face="Tahoma"><span style="vertical-align: super">-1</span></font><font size="2" face="Tahoma"> for the functions of f</font></font><b><font size="1" face="Tahoma">(x</font><font size="1" face="Tahoma">)</font></b><font size="2"><font size="2" face="Tahoma">=x</font><font size="1" face="Georgia"><span style="vertical-align: super; font-style:italic">n</span></font><font size="2" face="Tahoma"> type, and for f'</font></font><b><font size="1" face="Tahoma">(x</font><font size="1" face="Tahoma">)</font></b><font size="2"><font size="2" face="Tahoma">=</font><font face="Tahoma">&#931;</font><font face="Tahoma" size="2">f'</font></font><b><font size="1" face="Tahoma">(x)</font></b><font size="2"><font size="2" face="Tahoma"> with a function that is a sum of more than one exponential term of <b>x</b></font><font size="1" face="Georgia"><span style="vertical-align: super; font-style:italic">n</span></font><font size="2" face="Arial"> </font> <font size="2" face="Tahoma"> type - to zero. <br> For instance, for best focus location (x=1) the maximum P-V wavefront error for f</font></font><b><font size="1" face="Tahoma">(&#961;</font><font size="1" face="Tahoma">)</font></b><font size="2"><font size="2" face="Tahoma">=&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">4</span></font><font size="2" face="Tahoma">-&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">2</span></font><font size="2" face="Tahoma"> and <br> f'</font></font><b><font size="1" face="Tahoma">(&#961;</font><font size="1" face="Tahoma">)</font></b><font size="2"><font size="2" face="Tahoma">=4&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">3</span></font><font size="2" face="Tahoma">-2&#961;=2&#961;(2&#961;</font><font size="1" face="Tahoma"><span style="vertical-align: super">2</span></font><font size="2" face="Tahoma">-1)=0 is for &#961;=0.5</font><font size="1" face="Tahoma"><span style="vertical-align: super">0.5</span></font><font size="2" face="Tahoma">=0.707. For 0&lt;x&lt;1, the WFE plot crosses the reference sphere line and the P-V error is given as a sum of the absolute values for the deviation at the point of plot reversal, and deviation for &#961;=1.</font></div> </div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"><a name="With">With</a> <i>over-corrected</i> (positive) spherical aberration, marginal rays focus farther away than paraxial rays. In either case, geometrical structure of the defocused zone remains identical in regard to the paraxial focus. </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> The <b><font color="#000080">relative wavefront error</font></b> - either P-V or RMS - for any point between the two foci - the paraxial and marginal - in units of the error at the paraxial or marginal focus, is constant, as given by:</font></font><p align="center" style="text-indent: 0"> <font face="Comic Sans MS">&#373; = [1 + 0.9375&#923;(&#923;-2)]</font><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">1/2</span></font></b><font size="2"><font face="Verdana" size="2"><b>&nbsp;</b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font> <font face="Comic Sans MS" size="2">(6)</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">It gives the minimum relative aberration of 0.25 for </font> <font size="1" face="Verdana"> &#923;</font><font face="Verdana" size="2">=1, which is the mid point between marginal and paraxial focus, as shown on the</font> graph at left. The error is four times larger at either paraxial or marginal focus. At the location of smallest geometrical blur (<i>circle of least confusion</i>) the normalized error is 0.545, or larger than the error at the best focus by a factor 2.18.<p align="justify"> <font face="Verdana" size="2"> <img border="0" src="images/spherical_aberration.PNG" width="388" height="255" align="left"></font><div style="background-color: #FFFFFF"> <p align="center"> <font face="Tahoma"><b>FIGURE 34</b>: Wavefront error of primary spherical aberration normalized to 1 at the paraxial and marginal focus, for the range of longitudinal aberration (LA) normalized to 2. The error is symmetrical with respect to the mid point between paraxial and marginal focus, with the rate of change becoming nearly linear for the portion of defocus range outside its central 1/4 (as the plot indicates, linear rate of change extends beyond the defocus range). The rate of wavefront error increase relative to the error at the mid point is approximated with xw</font><font size="1" face="Terminal"><span style="vertical-align: sub">min</span></font><font face="Tahoma">~8</font>&#916;<font face="Tahoma">, where <b>x</b> is the ratio of increase, <b>w</b></font><font size="1" face="Terminal"><span style="vertical-align: sub">min</span></font><font face="Tahoma"> the error at mid point, and </font><b>&#916;</b><font face="Tahoma"> is the longitudinal separation from the mid point in units of the LA range normalized to 1, for simplicity. That gives x=2 for </font>&#916;<font face="Tahoma">=1/4 , or wavefront error doubled at 1/4 of the LA range from the mid point&nbsp; (correct <b>x</b> value 2.18), and x=4 for </font>&#916;<font face="Tahoma">=1/2, or fourfold larger wavefront error&nbsp; at 1/2 of the LA range from the mid point (correct <b>x</b> value 4).</font></div> <div style="border-style:solid; border-width:0px; padding-left:4px; padding-right:3px; "> <p align="justify" style="line-height: 150%"> If normalized to unit error at the best focus location, which may be more convenient in a simplified context, the relative wavefront error <font face="Verdana"><b>&#373;</b> </font>along the longitudinal aberration length normalized to 2, <b> <font size="1" face="Verdana"> &#923;</font></b>, is:</font><p align="center" style="text-indent: 0"> <font face="Comic Sans MS">&#373; = [16+15&#923;(&#923;-2)]</font><b><font face="Comic Sans MS" size="1"><span style="vertical-align: super">1/2</span></font></b><font size="2"><font face="Verdana" size="2">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </font> <font face="Comic Sans MS" size="2">(6.1)</font><p align="justify" style="text-indent: 0; line-height:150%"> giving <font face="Verdana">&#373;</font>=1 for <font size="1" face="Verdana"> &#923;</font>=1 (best focus location), <font face="Verdana">&#373;</font>=4 for <font size="1" face="Verdana"> &#923;</font>=0 (paraxial focus) and <font size="1" face="Verdana"> &#923;</font>=2 (marginal focus) and <font face="Verdana">&#373;</font>=2.18 for <font size="1" face="Verdana"> &#923;</font>=1.5 (smallest ray spot). So, a 6-inch <font face="Verdana" size="2">f</font>/8.16 sphere, having 1/4 wave P-V of primary spherical aberration at the best focus, has 1 wave P-V at either paraxial or marginal focus, and 0.54 wave P-V at the location of the smallest ray spot.<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Note that the parameter </font><b> <font SIZE="1" face="Verdana"> &#923;</font></b><font face="Verdana" size="2"> is related to the peak aberration coefficients for spherical aberration and <a href="defocus1.htm">defocus</a>, <b>S</b> and <b>P</b>, respectively, as </font> <font size="1" face="Verdana"> &#923;</font><font face="Verdana" size="2">=-|P/S|, with the defocus coefficient always of opposite sign. Since, for given focal ratio, the P-V wavefront error of defocus (equal to the <a href="defocus1.htm#reference_sphere">peak aberration coefficient of defocus</a>) from paraxial to marginal focus is double the P-V error of spherical aberration (equal to the <a href="lower_order_spherical.htm">peak aberration coefficient for spherical aberration</a>) at either paraxial or marginal focus for identical longitudinal error, the absolute value of </font><b> <font size="1" face="Tahoma"> &#923;</font></b><font face="Verdana" size="2"> ranges from the minimum 0, at paraxial focus, to 2 at the marginal focus (the sign of aberration coefficient is negative for undercorrection and positive for overcorrection, while can be of either sign for defocus, depending on the direction).</font><p align="justify" style="line-height: 150%"> While the above relations hold for any level of spherical aberration with respect to the wavefront error, the corresponding PSF peak, being determined by the phase sum, shifts away from the mid focus, more as the aberration exceeds 0.625 waves P-V (<a href="lower_order_spherical.htm#brighter">FIG. 36B</a>).<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">For the longitudinal aberration <b>L</b> normalized to 2 (0&#8804;</font><b><font size="1" face="Verdana">&#923;</font></b><font face="Verdana" size="2">&#8804;2, i.e. with 0 at paraxial focus, increasing with longitudinal shift to 2 at the marginal focus), the geometric (ray) spot increases steadily from mid focus toward paraxial focus, while initially decreasing and then resuming increase toward marginal focus, as illustrated in <b>FIG. 35</b>. Location of the smallest geometric blur does not coincide with the location of lowest wavefront error. </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">In units of the paraxial blur diameter (</font><font size="1" face="Verdana">&#923;</font><font face="Verdana" size="2">=0), the blur size is 0.385 for </font> <font size="1" face="Verdana"> &#923;</font><font face="Verdana" size="2">=2 (marginal focus), 0.25 for </font> <font size="1" face="Verdana"> &#923;</font><font face="Verdana" size="2">=1.5 (circle of least confusion) and 0.5 for </font> <font size="1" face="Verdana"> &#923;</font><font face="Verdana" size="2">=1 (diffraction focus). In general, for 0&#8804;</font><b><font size="1" face="Verdana">&#923;</font></b><font face="Verdana" size="2">&#8804;1.5 the relative blur diameter is given by (2-</font><font size="1" face="Verdana">&#923;</font><font face="Verdana" size="2">)/2; for 1.5&#8804;</font><b><font size="1" face="Verdana">&#923;</font></b><font face="Verdana" size="2">&#8804;2, it is closely approximated by (</font><font size="1" face="Verdana">&#923;</font><font face="Verdana" size="2">-0.5)/4 (the approximation is exact for </font> <font size="1" face="Verdana"> &#923;</font><font face="Verdana" size="2">=1.5, wit the error increasing to a -2.6% maximum at </font> <font size="1" face="Verdana"> &#923;</font><font face="Verdana" size="2">=2).</font><div style="background-color: #FFFFFF"> <p align="center"> <img border="0" src="images/9sa.PNG" width="711" height="311"> <p align="center"> <b> <font face="Arial" size="2">FIGURE </font><font face="Arial">35</font></b><font face="Arial" size="2">: Defocus caused by spherical aberration, illustrated by selected rays projected from the aberrated wavefront. Axial separation between the foci for paraxial and marginal rays determines longitudinal aberration <b> L</b> (</font><b><font SIZE="1" face="Tahoma">&#923;</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">0</span></font><font face="Arial" size="2"> when normalized to 2. Note that </font> <font face="Tahoma" size="1"> &#923;</font><font face="Arial" size="2">=P/S, <b>P</b> and <b>S</b> being the peak aberration coefficients for defocus and spherical aberration, respectively. Both, transverse and wavefront aberration vary with the relative defocus </font><b> <font SIZE="1" face="Tahoma">&#923;</font></b><font face="Arial" size="2"> within the aberrated focal zone. Transverse blurs, from left, at the paraxial, or Gaussian focus (</font><font face="Tahoma" size="1">&#923;</font><font face="Arial" size="2">=0), at the best, or diffraction focus (</font><font size="1" face="Arial">&#923;</font><font face="Arial" size="2">=1), at the location of the circle of least confusion (</font><font face="Tahoma" size="1">&#923;</font><font face="Arial" size="2">=1.5), and at the marginal focus (</font><font face="Tahoma" size="1">&#923;</font><font face="Arial" size="2">=2). Pupil semi-diameter is <b>d</b>, and arbitrary paraxial zone height (illustration only) is <b>p</b>. Darker blur coloration roughly indicates increased ray density. The smallest blur radius is determined by the point of intersection of marginal ray and ray originating at the 0.5d zone. The relative blur radius, in units of the paraxial blur, is given by </font><font face="Tahoma" size="1">(&#923;</font><font face="Arial" size="2">&#961;/2)-&#961;</font><font size="1" face="Arial"><span style="vertical-align: super">3</span></font><font face="Arial" size="2"> with &#961;=1 for </font><font face="Tahoma" size="1"> &#923;</font><font face="Arial" size="2">=0, 1 and 1.5 (paraxial, best focus, and smallest circle location, respectively), and with &#961;=</font><font face="Arial">1/3<font size="1"><span style="vertical-align: super">1/2</span></font></font><font face="Arial" size="2"> for </font><font face="Tahoma" size="1"> &#923;</font><font face="Arial" size="2">=2 (marginal focus, where the blur radius is of opposite sign to the former three due to being measured, for positive <b>&#961;</b>, relative to the converging ray above the axis). That gives the relative blur size as 1, 0.5, 0.25 and 0.385, respectively. </font></div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Thus, in terms of defocus error, spherical aberration is minimized, or <i>balanced</i>, for P=-S, or for spherical aberration at paraxial focus combined with the identical P-V wavefront error of defocus <a name="aberration">aberration</a> (the minus sign indicates the direction of defocus, which is from paraxial toward marginal focus when the defocus aberration is opposite in sign to spherical aberration).</font><p align="justify" style="line-height: 150%"> Aberration shown on <b>FIG. 35</b> is spherical <i> under-correction</i>; the term probably originates from the ray geometry, with the rays from outer zones focusing slightly shorter than paraxial rays. Neither blur size/structure, nor size of wavefront error for given (absolute) value of<font face="Arial" size="2"> </font><b> <font size="1" face="Tahoma"> &#923;</font><font SIZE="2" face="Tahoma"> </font></b> change for <i> over-correction</i>, where the geometry is symmetrically reversed, with the outer rays focusing longer than paraxial rays.</div> </div> </div> <p align="left" style="text-indent: 22px; line-height:150%"> Follows detailed review of quantifying primary spherical aberration in both, wavefront and ray (geometric) form for reflecting surfaces and lenses.</font><font size="2" face="Verdana"><p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">&#9668;</font></span> <a href="zernike_expansion_schemes.htm">3.5.3. Zernike expansion schemes</a>&nbsp;<font size="2" face="Arial"><font color="#C0C0C0">&nbsp; </font> <font color="#999999">&#9616;</font>&nbsp;&nbsp;&nbsp; </font><font size="2"> <span style="font-weight: 400"> <font face="Verdana" size="2"> <a href="lower_order_spherical.htm">4.1.2. Lower-order spherical: aberration function</a></font></span></font> <font face="Arial" size="2" color="#336699">&#9658;</font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a>&nbsp; |&nbsp; <font size="2"> <a href="mailto:webpub@fastmail.com">Comments</a></font><p>&nbsp;</td> </tr> </table> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10