CINXE.COM
Search results for: aircraft propulsion
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aircraft propulsion</title> <meta name="description" content="Search results for: aircraft propulsion"> <meta name="keywords" content="aircraft propulsion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aircraft propulsion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aircraft propulsion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 591</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aircraft propulsion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tulwin">T. Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C4%99ca"> M. Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sochaczewski"> R. Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion" title=" propulsion "> propulsion </a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/106678/electric-propulsion-systems-in-aerospace-applications-energy-balance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Alex%20Junior%20Kuitche">Maxime Alex Junior Kuitche</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruxandra%20Mihaela%20Botez"> Ruxandra Mihaela Botez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Chirstophe%20Maunand"> Jean-Chirstophe Maunand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title="CFD analysis">CFD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=propeller%20performance" title=" propeller performance"> propeller performance</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20system%20propeller" title=" unmanned aerial system propeller"> unmanned aerial system propeller</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS-S45" title=" UAS-S45"> UAS-S45</a> </p> <a href="https://publications.waset.org/abstracts/87348/propeller-performance-modeling-through-a-computational-fluid-dynamics-analysis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> The LIP’s Electric Propulsion Development for Chinese Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Tianping">Zhang Tianping</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Yanhui"> Jia Yanhui</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Juan"> Li Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Le"> Yang Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Hao"> Yang Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Wei"> Yang Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Xiaojing"> Sun Xiaojing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Kai"> Shi Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xingda"> Li Xingda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Yunkui"> Sun Yunkui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanzhou Institute of Physics (LIP) is the major supplier of electric propulsion subsystems for Chinese satellite platforms. The development statuses of these electric propulsion subsystems were summarized including the LIPS-200 ion electric propulsion subsystem (IEPS) for DFH-3B platform, the LIPS-300 IEPS for DFH-5 and DFH-4SP platform, the LIPS-200+ IEPS for DFH-4E platform and near-earth asteroid exploration spacecraft, the LIPS-100 IEPS for small satellite platform, the LHT-100 hall electric propulsion subsystem (HEPS) for flight test on XY-2 satellite, the LHT-140 HEPS for large LEO spacecraft, the LIPS-400 IEPS for deep space exploration mission and other EPS for other Chinese spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20electric%20propulsion" title="ion electric propulsion">ion electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20electric%20propulsion" title=" hall electric propulsion"> hall electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20platform" title=" satellite platform"> satellite platform</a>, <a href="https://publications.waset.org/abstracts/search?q=LIP" title=" LIP"> LIP</a> </p> <a href="https://publications.waset.org/abstracts/39136/the-lips-electric-propulsion-development-for-chinese-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> [Keynote Speech]: Conceptual Design of a Short Take-Off and Landing (STOL) Light Sport Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zamri%20Omar">Zamri Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alifi%20Zainal%20Abidin"> Alifi Zainal Abidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although flying machines have made their tremendous technological advancement since the first successfully flight of the heavier-than-air aircraft, its benefits to the greater community are still belittled. One of the reasons for this drawback is due to the relatively high cost needed to fly on the typical light aircraft. A smaller and lighter plane, widely known as Light Sport Aircraft (LSA) has the potential to attract more people to actively participate in numerous flying activities, such as for recreational, business trips or other personal purposes. In this paper, we propose a new LSA design with some simple, yet important analysis required in the aircraft conceptual design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20sport%20aircraft" title="light sport aircraft">light sport aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20design" title=" conceptual design"> conceptual design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20layout" title=" aircraft layout"> aircraft layout</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a> </p> <a href="https://publications.waset.org/abstracts/63570/keynote-speech-conceptual-design-of-a-short-take-off-and-landing-stol-light-sport-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> Rollet vs Rocket: A New in-Space Propulsion Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Baraov">Arthur Baraov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nearly all rocket and spacecraft propulsion concepts in existence today can be linked one way or the other to one of the two ancient warfare devices: the gun and the sling. Chemical, thermoelectric, ion, nuclear thermal and electromagnetic rocket engines – all fall into the first group which, for obvious reasons, can be categorized as “hot” space propulsion concepts. Space elevator, orbital tower, rolling satellite, orbital skyhook, tether propulsion and gravitational assist – are examples of the second category which lends itself for the title “cold” space propulsion concepts. The “hot” space propulsion concepts skyrocketed – literally and figuratively – from the naïve ideas of Jules Verne to the manned missions to the Moon. On the other hand, with the notable exception of gravitational assist, hardly any of the “cold” space propulsion concepts made any progress in terms of practical application. Why is that? This article aims to show that the right answer to this question has the potential comparable by its implications and practical consequences to that of transition from Jules Verne’s stillborn and impractical conceptions of space flight to cogent and highly fertile ideas of Konstantin Tsiolkovsky and Yuri Kondratyuk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propulsion" title="propulsion">propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket" title=" rocket"> rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=rollet" title=" rollet"> rollet</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/29858/rollet-vs-rocket-a-new-in-space-propulsion-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Kaygan">Erdogan Kaygan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvin%20Gatto"> Alvin Gatto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation of adaptable winglets for enhancing morphing aircraft performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centered on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance the aerodynamic efficiency of a morphing aircraft. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist and cant angle considered. The results from this work indicate that if adaptable winglets were employed on aircraft’s improvements in aircraft performance could be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=twist" title=" twist"> twist</a>, <a href="https://publications.waset.org/abstracts/search?q=winglet" title=" winglet"> winglet</a> </p> <a href="https://publications.waset.org/abstracts/32680/computational-analysis-of-adaptable-winglets-for-improved-morphing-aircraft-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> Jet-Stream Airsail: Study of the Shape and the Behavior of the Connecting Cable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Frank">Christopher Frank</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiki%20Miyairi"> Yoshiki Miyairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A jet-stream airsail concept takes advantage of aerology in order to fly without propulsion. Weather phenomena, especially jet streams, are relatively permanent high winds blowing from west to east, located at average altitudes and latitudes in both hemispheres. To continuously extract energy from the jet-stream, the system is composed of a propelled plane and a wind turbine interconnected by a cable. This work presents the aerodynamic characteristics and the behavior of the cable that links the two subsystems and transmits energy from the turbine to the aircraft. Two ways of solving this problem are explored: numerically and analytically. After obtaining the optimal shape of the cross-section of the cable, its behavior is analyzed as a 2D problem solved numerically and analytically. Finally, a 3D extension could be considered by adding lateral forces. The results of this work can be further used in the design process of the overall system: aircraft-turbine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet-stream" title="jet-stream">jet-stream</a>, <a href="https://publications.waset.org/abstracts/search?q=cable" title=" cable"> cable</a>, <a href="https://publications.waset.org/abstracts/search?q=tether" title=" tether"> tether</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=airsail" title=" airsail"> airsail</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/11611/jet-stream-airsail-study-of-the-shape-and-the-behavior-of-the-connecting-cable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> Survivability of Maneuvering Aircraft against Air to Air Infrared Missile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Yeul%20Bae">Ji-Yeul Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Mo%20Bae"> Hyung Mo Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihyuk%20Kim"> Jihyuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An air to air infrared missile poses a significant threat to the survivability of an aircraft due to an advanced sensitivity of sensor and maneuverability of the missile. Therefore, recent military aircraft is equipped with MAW (Missile Approach Warning) to take an evasive maneuver and to deploy countermeasures like chaff and flare. In this research, an effect of MAW sensitivity and resulting evasive maneuver on the survivability of the fighter aircraft is studied. A single engine fighter jet with Mach 0.9 flying at an altitude of 5 km is modeled in the research and infrared signature of the aircraft is calculated by numerical simulation. The survivability is assessed in terms of lethal range. The MAW sensitivity and maneuverability of an aircraft is used as variables. The result showed that improvement in survivability mainly achieved when the missile approach from the side of the aircraft. And maximum 30% increase in survivability of the aircraft is achieved when existence of the missile is noticed at 7 km distance. As a conclusion, sensitivity of the MAW seems to be more important factor than the maneuverability of the aircraft in terms of the survivability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20to%20air%20missile" title="air to air missile">air to air missile</a>, <a href="https://publications.waset.org/abstracts/search?q=missile%20approach%20warning" title=" missile approach warning"> missile approach warning</a>, <a href="https://publications.waset.org/abstracts/search?q=lethal%20range" title=" lethal range"> lethal range</a>, <a href="https://publications.waset.org/abstracts/search?q=survivability" title=" survivability"> survivability</a> </p> <a href="https://publications.waset.org/abstracts/89381/survivability-of-maneuvering-aircraft-against-air-to-air-infrared-missile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> Double Layer Security Model for Identification Friend or Foe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buse%20T.%20Ayd%C4%B1n">Buse T. Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozdemir"> Enver Ozdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a double layer authentication scheme between the aircraft and the Air Traffic Control (ATC) tower is designed to prevent any unauthorized aircraft from introducing themselves as friends. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or foe according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as a friend. In this method, even if embedded key is captured by the enemy aircraft, without the information of the second layer, the enemy can easily be determined. Overall, in this work, we present a more reliable system by adding a physical layer in the authentication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADS-B" title="ADS-B">ADS-B</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20with%20physical%20layer%20security" title=" communication with physical layer security"> communication with physical layer security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20friend%20or%20foe" title=" identification friend or foe"> identification friend or foe</a> </p> <a href="https://publications.waset.org/abstracts/105521/double-layer-security-model-for-identification-friend-or-foe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Nagy">David Nagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20simulation" title="aerodynamic simulation">aerodynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%20to%20drag%20ratio" title=" lift to drag ratio"> lift to drag ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%2064-206" title=" NACA 64-206"> NACA 64-206</a>, <a href="https://publications.waset.org/abstracts/search?q=NACA%2065-415" title=" NACA 65-415"> NACA 65-415</a> </p> <a href="https://publications.waset.org/abstracts/137836/simulations-of-naca-65-415-and-naca-64-206-airfoils-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Kumar%20Tiwari">Sudhir Kumar Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-disciplinary%20optimization" title="multi-disciplinary optimization">multi-disciplinary optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20load" title=" aircraft load"> aircraft load</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stick%20model" title=" stick model"> stick model</a> </p> <a href="https://publications.waset.org/abstracts/70989/multi-disciplinary-optimisation-methodology-for-aircraft-load-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Double Layer Security Authentication Model for Automatic Dependent Surveillance-Broadcast </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buse%20T.%20Aydin">Buse T. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozdemir"> Enver Ozdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automatic dependent surveillance-broadcast (ADS-B) system has serious security problems. In this study, a double layer authentication scheme between the aircraft and ground station, aircraft to aircraft, ground station to ATC tower is designed to prevent any unauthorized aircrafts from introducing themselves as friends. This method can be used as a solution to the problem of authentication. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or unknown according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as friend. As a result, the ADS-B messages coming from this authenticated friendly aircraft will be processed. In this method, even if the embedded key is captured by the unknown aircraft, without the information of the second layer, the unknown aircraft can easily be determined. Overall, in this work, we present a reliable system by adding physical layer in the authentication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADS-B" title="ADS-B">ADS-B</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication" title=" authentication"> authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20with%20physical%20layer%20security" title=" communication with physical layer security"> communication with physical layer security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20friend%20or%20foe" title=" identification friend or foe"> identification friend or foe</a> </p> <a href="https://publications.waset.org/abstracts/105990/double-layer-security-authentication-model-for-automatic-dependent-surveillance-broadcast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Saifudin%20Ahmed%20Atique">M. Saifudin Ahmed Atique</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Paudyal"> Santosh Paudyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Caixia%20Yang"> Caixia Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration%20energy" title="vibration energy">vibration energy</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20wing" title=" aircraft wing"> aircraft wing</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title=" piezoelectric material"> piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=inflight%20accessories" title=" inflight accessories"> inflight accessories</a> </p> <a href="https://publications.waset.org/abstracts/111023/vibration-energy-harvesting-from-aircraft-structure-using-piezoelectric-transduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Machine Learning Algorithms for Rocket Propulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R%C3%B4mulo%20Eust%C3%A1quio%20Martins%20de%20Souza">Rômulo Eustáquio Martins de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Alexandre%20Rodrigues%20de%20Vasconcelos%20Figueiredo"> Paulo Alexandre Rodrigues de Vasconcelos Figueiredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20propulsion" title=" rocket propulsion"> rocket propulsion</a> </p> <a href="https://publications.waset.org/abstracts/168232/machine-learning-algorithms-for-rocket-propulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Understanding Student Pilot Mental Workload in Recreational Aircraft Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ron%20Bishop">Ron Bishop</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20Mitchell"> Jim Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Talitha%20Best"> Talitha Best</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in air travel worldwide has resulted in a pilot shortage. To increase student pilot capacity and lower costs, flight schools have increased the use of recreational aircraft (RA) with technological advanced cockpits in flight schools. The impact of RA based training compared to general aviation (GA) aircraft training on student mental workload is not well understood. This research investigated student pilot (N = 17) awareness of mental workload between technologically advanced cockpit equipped RA training with analogue gauge equipped GA training. The results showed a significantly higher rating of mental workload across subscales of mental and physical demand on the NASA-TLX in recreational aviation aircraft training compared to GA aircraft. Similarly, thematic content analysis of follow-up questions identified that mental workload of the student pilots flying the RA was perceived to be more than the GA aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20workload" title="mental workload">mental workload</a>, <a href="https://publications.waset.org/abstracts/search?q=recreational%20aircraft" title=" recreational aircraft"> recreational aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20pilot" title=" student pilot"> student pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a> </p> <a href="https://publications.waset.org/abstracts/116045/understanding-student-pilot-mental-workload-in-recreational-aircraft-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> Minimize Wear and Tear in Y12 Aircraft Tyres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Hiripitiya">N. D. Hiripitiya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20H.%20De%20Soysa"> H. V. H. De Soysa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20U.%20Thrimavithana"> H. S. U. Thrimavithana</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Epitawala"> B. R. Epitawala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20D.%20D.%20Kuruppu"> K. A. D. D. Kuruppu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20K.%20Lokupathirage"> D. J. K. Lokupathirage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was related to identify the reasons which lead for early wear and tear of aircraft tyres. Further this research focused to rectify those issues in tyres with some modifications. The aircraft tyres of Y12 aircraft was selected for the study as due to Y12 aircraft fly frequently. Self-structured questionnaire was prepared and it was distributed among Y12 aircraft technicians. Based on their feedback several issues were identified related to tyre wear and tear. One of the reasons was uneven tyre wearing. But it could rectify after interchanging the tyre sides after completion of 50 landings. Several modifications were done in order to rectify all the identified issues. Several devices were constructed in order to enhance the life time of the Y12 aircraft tyre. Mechanical properties were measured for the worn-out tyres. The properties were compared with the control tyre sample. It was found that there was an average increment of tensile strength by 38.14 % of control tyre, when compared with the worn-out tyres which were completed 50 number of landings. The suggested modifications are in the process of implementation. It is confident that above mentioned solutions will lead to increase the life span of tyres in Y12 aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=devices" title=" devices"> devices</a>, <a href="https://publications.waset.org/abstracts/search?q=enhance%20life%20span" title=" enhance life span"> enhance life span</a>, <a href="https://publications.waset.org/abstracts/search?q=modifications%20for%20tyre%20wear" title=" modifications for tyre wear"> modifications for tyre wear</a> </p> <a href="https://publications.waset.org/abstracts/57455/minimize-wear-and-tear-in-y12-aircraft-tyres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Development of Self-Reliant Satellite-Level Propulsion System by Using Hydrogen Peroxide Propellant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Liu">H. J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Chan"> Y. A. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Pai"> C. K. Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Tseng"> K. C. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Chen"> Y. H. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Chan"> Y. L. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Kuo"> T. C. Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To satisfy the mission requirement of the FORMOSAT-7 project, NSPO has initialized a self-reliant development on satellite propulsion technology. A trade-off study on different types of on-board propulsion system has been done. A green propellant, high-concentration hydrogen peroxide (H2O2 hereafter), is chosen in this research because it is ITAR-free, nontoxic and easy to produce. As the components designed for either cold gas or hydrazine propulsion system are not suitable for H2O2 propulsion system, the primary objective of the research is to develop the components compatible with H2O2. By cooperating with domestic research institutes and manufacturing vendors, several prototype components, including a diaphragm-type tank, pressure transducer, ball latching valve, and one-Newton thruster with catalyst bed, were manufactured, and the functional tests were performed successfully according to the mission requirements. The requisite environmental tests, including hot firing test, thermal vaccum test, vibration test and compatibility test, are prepared and will be to completed in the near future. To demonstrate the subsystem function, an Air-Bearing Thrust Stand (ABTS) and a real-time Data Acquisition & Control System (DACS) were implemented to assess the performance of the proposed H2O2 propulsion system. By measuring the distance that the thrust stand has traveled in a given time, the thrust force can be derived from the kinematics equation. To validate the feasibility of the approach, it is scheduled to assess the performance of a cold gas (N2) propulsion system prior to the H2O2 propulsion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FORMOSAT-7" title="FORMOSAT-7">FORMOSAT-7</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20propellant" title=" green propellant"> green propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrogen%20peroxide" title=" Hydrogen peroxide"> Hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thruster" title=" thruster"> thruster</a> </p> <a href="https://publications.waset.org/abstracts/30721/development-of-self-reliant-satellite-level-propulsion-system-by-using-hydrogen-peroxide-propellant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Investigation for the Mechanism of Lateral-Torsional Coupled Vibration of the Propulsion Shaft in a Ship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungsuk%20Han">Hyungsuk Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soohong%20Jeon"> Soohong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chungwon%20Lee"> Chungwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YongHoon%20Kim"> YongHoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a rubber mount and flexible coupling are installed on the main engine, high torsional vibration can occur. The root cause of this high torsional vibration can be attributed to the lateral-torsional coupled vibration of the shaft system. Therefore, the lateral-torsional coupled vibration is investigated numerically after approximating the shaft system to a three-degrees-of-freedom Jeffcott rotor. To verify that the high torsional vibration is caused by the lateral-torsional coupled vibration, a test unit that can simulate this lateral-torsional coupled vibration occurring in the propulsion shaft is developed. Performing a vibration test with the test unit, it can be experimentally verified that the high torsional vibration occurring in the propulsion shaft of the particular ship was caused by the lateral-torsional coupled vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffcott%20rotor" title="Jeffcott rotor">Jeffcott rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration" title=" lateral-torsional coupled vibration"> lateral-torsional coupled vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20shaft" title=" propulsion shaft"> propulsion shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/107458/investigation-for-the-mechanism-of-lateral-torsional-coupled-vibration-of-the-propulsion-shaft-in-a-ship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucjan%20Setlak">Lucjan Setlak</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Ruda"> Emil Ruda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=converters" title="converters">converters</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20machines" title=" electric machines"> electric machines</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA%20%28more%20electric%20aircraft%29" title=" MEA (more electric aircraft)"> MEA (more electric aircraft)</a>, <a href="https://publications.waset.org/abstracts/search?q=PES%20%28power%20electronics%20systems%29" title=" PES (power electronics systems)"> PES (power electronics systems)</a> </p> <a href="https://publications.waset.org/abstracts/31446/review-analysis-and-simulation-of-advanced-technology-solutions-of-selected-components-in-power-electronics-systems-pes-of-more-electric-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Aerodynamic Analysis of Dimple Effect on Aircraft Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Livya">E. Livya</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Anitha"> G. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Valli"> P. Valli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=dimple%20effect" title=" dimple effect"> dimple effect</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20separation" title=" boundary layer separation"> boundary layer separation</a> </p> <a href="https://publications.waset.org/abstracts/24631/aerodynamic-analysis-of-dimple-effect-on-aircraft-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Noise Reduction by Energising the Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20P.%20Kumar">Kiran P. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Nayana"> H. M. Nayana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rakshitha"> R. Rakshitha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sushmitha"> S. Sushmitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airframe" title="airframe">airframe</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a> </p> <a href="https://publications.waset.org/abstracts/53714/noise-reduction-by-energising-the-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Design & Development of a Static-Thrust Test-Bench for Aviation/UAV Based Piston Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muhammad%20Basit%20Ali">Syed Muhammad Basit Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Saleem"> Usama Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Irtiza%20Ali"> Irtiza Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internal combustion engines have been pioneers in the aviation industry, use of piston engines for aircraft propulsion, from propeller-driven bi-planes to turbo-prop, commercial, and cargo airliners. To provide an adequate amount of thrust piston engine rotates the propeller at a specific rpm, allowing enough mass airflow. Thrust is the only forward-acting force of an aircraft that helps heavier than air bodies to fly, depending on the mathematical model and variables included in that with the correct measurement. Test-benches have been a bench-mark in the aerospace industry to analyse the results before a flight, having paramount significance in reliability and safety engineering, depending on the mathematical model and variables included in that with the correct measurement. Calculation of thrust from a piston engine also depends on environmental changes, the diameter of the propeller, and the density of air. The project would be centered on piston engines used in the aviation industry for light aircraft and UAVs. A static thrust test bench involves various units, each performing a designed purpose to monitor and display. Static thrust tests are performed on the ground, and safety concerns hold paramount importance. The execution of this study involves research, design, manufacturing, and results based on reverse engineering initiating from virtual design, analytical analysis, and simulations. The final evaluation of results gathered from various methods such as co-relation between conventional mass-spring and digital loadcell. On average, we received 17.5kg of thrust (25+ engine run-ups – around 40 hours of engine run), only 10% deviation from analytically calculated thrust –providing 90% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=aeronautics" title=" aeronautics"> aeronautics</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20thrust" title=" static thrust"> static thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20bench" title=" test bench"> test bench</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20maintenance" title=" aircraft maintenance"> aircraft maintenance</a> </p> <a href="https://publications.waset.org/abstracts/140749/design-development-of-a-static-thrust-test-bench-for-aviationuav-based-piston-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Aircraft Pitch Attitude Control Using Backstepping </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Labane%20Chrif">Labane Chrif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title="nonlinear control">nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=backstepping" title=" backstepping"> backstepping</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20control" title=" aircraft control"> aircraft control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20model" title=" longitudinal model"> longitudinal model</a> </p> <a href="https://publications.waset.org/abstracts/23396/aircraft-pitch-attitude-control-using-backstepping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Research of the Rotation Magnetic Field Current Driven Effect on Pulsed Plasmoid Acceleration of Electric Propulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20F.%20Sun">X. F. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20D.%20Wen"> X. D. Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Liu"> L. J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Wu"> C. C. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Jia"> Y. H. Jia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field reversed closed magnetic field configuration plasmoid has a potential for large thrust and high power propulsion missions such as deep space exploration due to its high plasma density and larger azimuthal current, which will be a most competitive program for the next generation electric propulsion technology. Moreover, without the electrodes, it also has a long lifetime. Thus, the research on this electric propulsion technology is quite necessary. The plasmoid will be formatted and accelerated by applying a rotation magnetic field (RMF) method. And, the essence of this technology lies on the generation of the azimuthal electron currents driven by RMF. Therefore, the effect of RMF current on the plasmoid acceleration efficiency is a concerned problem. In the paper, the influences of the penetration process of RMF in plasma, the relations of frequency and amplitude of input RF power with current strength and the RMF antenna configuration on the plasmoid acceleration efficiency will be given by a two-fluid numerical simulation method. The results show that the radio-frequency and input power have remarkable influence on the formation and acceleration of plasmoid. These results will provide useful advice for the development, and optimized designing of field reversed configuration plasmoid thruster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotation%20magnetic%20field" title="rotation magnetic field">rotation magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20driven" title=" current driven"> current driven</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20penetration" title=" plasma penetration"> plasma penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion" title=" electric propulsion"> electric propulsion</a> </p> <a href="https://publications.waset.org/abstracts/102126/research-of-the-rotation-magnetic-field-current-driven-effect-on-pulsed-plasmoid-acceleration-of-electric-propulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Effects of Aircraft Wing Configuration on Aerodynamic Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aderet%20Pantierer">Aderet Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Pantierer"> Shmuel Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Atif%20Saeed"> Atif Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Elzawawy"> Amir Elzawawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, air travel has seen volatile growth. Due to this growth, the maximization of efficiency and space utilization has been a major issue for aircraft manufacturers. Elongation of the wingspan of aircraft has resulted in increased lift; and, thereby, efficiency. However, increasing the wingspan of aircraft has been detrimental to the manufacturing process and has led to airport congestion and required airport reconfiguration to accommodate the extended wingspans of aircraft. This project outlines differing wing configurations of a commercial aircraft and the effects on the aerodynamic loads produced. Multiple wing configurations are analyzed using Finite Element Models. These models are then validated by testing one wing configuration in a wind tunnel under laminar flow and turbulent flow conditions. The wing configurations to be tested include high and low wing aircraft, as well as various combinations of the two, including a unique model hereon referred to as an infinity wing. The infinity wing configuration consists of both a high and low wing, with the two wings connected by a vertical airfoil. This project seeks to determine if a wing configuration consisting of multiple airfoils produces more lift than the standard wing configurations and is able to provide a solution to manufacturing limitations as well as airport congestion. If the analysis confirms the hypothesis, a trade study will be performed to determine if and when an arrangement of multiple wings would be cost-effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20design" title=" aircraft design"> aircraft design</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20efficiency" title=" aircraft efficiency"> aircraft efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20configuration" title=" wing configuration"> wing configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20design" title=" wing design"> wing design</a> </p> <a href="https://publications.waset.org/abstracts/115909/effects-of-aircraft-wing-configuration-on-aerodynamic-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Factors Associated with Fatal and Non-Fatal Accidents of Commercial Aviation Fixed-Wing Aircraft in Indonesia (2007-2018)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adre%20Dwi%20Wiratama">Adre Dwi Wiratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Sampurna"> Budi Sampurna</a>, <a href="https://publications.waset.org/abstracts/search?q=Syougie%20Ali"> Syougie Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Djunadi"> Djunadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Even though safety is a priority in Commercial Aviation (CA) operations, fatal fixed-wing aircraft accidents still occur frequently in Indonesia. Objective: This research aims to determine factors associated with fatal and non-fatal CA fixed-wing aircraft accidents in Indonesia. Methods: The research used a cross-sectional design, which was carried out in July 2023. It included all final reports on fixed-wing aircraft accidents published by the Indonesian National Transportation Safety Committee (KNKT). Analysis was conducted using chi-square and Fisher’s exact test methods using IBM SPSS software version 29.0. Results: Out of 52 final reports, 25 were fatal. The study found that factors associated with a higher risk of fatal accidents are pilots in command with CPL, unpressurized aircraft, single-engine aircraft, aircraft with MTOW less than 5,700kg, accidents occurring at weekends, accidents occurring outside of airport premises, CFIT occurrences, and the cruise phase of flight. The factor associated with non-fatal accidents is the landing phase. Conclusion: Efforts such as enhancing pilot training and certification processes, implementing stricter safety regulations for small, unpressurized, single-engine aircraft, and increasing safety measures during weekends and specific phases of flight can reduce future fatal accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatal%20accident" title="fatal accident">fatal accident</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-wing%20aircraft" title=" fixed-wing aircraft"> fixed-wing aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20aviation" title=" commercial aviation"> commercial aviation</a> </p> <a href="https://publications.waset.org/abstracts/193251/factors-associated-with-fatal-and-non-fatal-accidents-of-commercial-aviation-fixed-wing-aircraft-in-indonesia-2007-2018" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Ballistics of Main Seat Ejection Cartridges for Aircraft Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Parate">B. A. Parate</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Deodhar"> K. D. Deodhar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Dixit"> V. K. Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Rao"> V. V. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time is taken to reach the maximum pressure, and time required to reach half the maximum pressure contributes to the spinal injury of the pilot. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing was carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility was devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on seat ejection tower. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for an aircraft application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistics%20of%20seat%20ejection" title="ballistics of seat ejection">ballistics of seat ejection</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20seat" title=" ejection seat"> ejection seat</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20generator" title=" gas generator"> gas generator</a>, <a href="https://publications.waset.org/abstracts/search?q=gun%20propulsion" title=" gun propulsion"> gun propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20seat%20ejection%20cartridges" title=" main seat ejection cartridges"> main seat ejection cartridges</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20pressure" title=" maximum pressure"> maximum pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20parameters" title=" performance parameters"> performance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant" title=" propellant"> propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20burning%20and%20vented%20vessel" title=" progressive burning and vented vessel"> progressive burning and vented vessel</a> </p> <a href="https://publications.waset.org/abstracts/131210/ballistics-of-main-seat-ejection-cartridges-for-aircraft-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Preliminary Design and Aerodynamic Study of Hybrid Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratyush%20Agnihotri">Pratyush Agnihotri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comprehensive overview of the conceptual design process for a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). Fixed-wing VTOL UAVs combine the advantages of rotary-wing aircraft, such as vertical take-off and landing capabilities, with the efficiency and speed of fixed-wing flight. The primary objective of this study is to explore the aerodynamic design principles that optimize performance parameters, including range, endurance, and stability while maintaining the VTOL capability. The design process involves selecting appropriate airfoils, optimizing wing configurations, and integrating propulsion systems suitable for both hovering and forward flight. Analytical methods are employed to evaluate aerodynamic performance, with a focus on lift-to-drag ratio, power requirements, and control strategies. The results highlight the challenges and trade-offs inherent in designing such hybrid aircraft, particularly in balancing the conflicting requirements of VTOL and fixed-wing flight. This study contributes to the development of efficient, versatile UAVs capable of operating in diverse environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixed%20wing" title="fixed wing">fixed wing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=VTOL" title=" VTOL"> VTOL</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/192215/preliminary-design-and-aerodynamic-study-of-hybrid-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20P.%20Andrade">J. P. P. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20F.%20Campos"> V. A. F. Campos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=F-16%20aircraft" title="F-16 aircraft">F-16 aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=pole%20placement" title=" pole placement"> pole placement</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a> </p> <a href="https://publications.waset.org/abstracts/58790/robust-control-of-a-dynamic-model-of-an-f-16-aircraft-with-improved-damping-through-linear-matrix-inequalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Monteiro">Alexandra Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bousson"> K. Bousson</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20J.%20O.%20Moreira"> Fernando J. O. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Reis"> Ricardo Reis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20propulsion%20control" title="robust propulsion control">robust propulsion control</a>, <a href="https://publications.waset.org/abstracts/search?q=h-infinity%20control" title=" h-infinity control"> h-infinity control</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-directional%20flight%20dynamics" title=" lateral-directional flight dynamics"> lateral-directional flight dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20uncertainties" title=" parameter uncertainties"> parameter uncertainties</a> </p> <a href="https://publications.waset.org/abstracts/111523/hybrid-lateral-directional-robust-flight-control-with-propulsive-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aircraft%20propulsion&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>