CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–21 of 21 results for author: <span class="mathjax">Melnik, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/q-bio" aria-role="search"> Searching in archive <strong>q-bio</strong>. <a href="/search/?searchtype=author&query=Melnik%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Melnik, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Melnik%2C+R&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Melnik, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10551">arXiv:2411.10551</a> <span> [<a href="https://arxiv.org/pdf/2411.10551">pdf</a>, <a href="https://arxiv.org/ps/2411.10551">ps</a>, <a href="https://arxiv.org/format/2411.10551">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> The role of inducible defence in ecological models: Effects of nonlocal intraspecific competitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Saha%2C+S">Sangeeta Saha</a>, <a href="/search/q-bio?searchtype=author&query=Pal%2C+S">Swadesh Pal</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10551v1-abstract-short" style="display: inline;"> Phenotypic plasticity is a key factor in driving the evolution of species in the predator-prey interaction. The natural environment is replete with phenotypic plasticity, which is the source of inducible defences against predators, including concealment, cave-dwelling, mimicry, evasion, and revenge. In this work, a predator-prey model is proposed where the prey species shows inducible defence agai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10551v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10551v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10551v1-abstract-full" style="display: none;"> Phenotypic plasticity is a key factor in driving the evolution of species in the predator-prey interaction. The natural environment is replete with phenotypic plasticity, which is the source of inducible defences against predators, including concealment, cave-dwelling, mimicry, evasion, and revenge. In this work, a predator-prey model is proposed where the prey species shows inducible defence against their predators. The dynamics produce a wide range of non-trivial and impactful results, including the stabilizing effect of the defence mechanism. The model is also analyzed in the presence of spatio-temporal diffusion in a bounded domain. It is found in the numerical simulation that the Turing domain shrinks with the increase of defence level. The work is extended further by introducing a nonlocal term in the intra-specific competition of the prey species. The Turing instability condition has been studied for the local model around the coexisting steady state, followed by the Turing and non-Turing patterns in the presence of the nonlocal interaction term. The work reveals how an increase in inducible defence reduces the Turing domain in the local interaction model but expands it when the range of nonlocal interactions is extended, suggesting a higher likelihood of species colonization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10551v1-abstract-full').style.display = 'none'; document.getElementById('2411.10551v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2310.01392</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23445">arXiv:2410.23445</a> <span> [<a href="https://arxiv.org/pdf/2410.23445">pdf</a>, <a href="https://arxiv.org/format/2410.23445">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Brain Network Dynamics and Multiscale Modelling of Neurodegenerative Disorders: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Shaheen%2C+H">Hina Shaheen</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23445v1-abstract-short" style="display: inline;"> It is essential to understand the complex structure of the human brain to develop new treatment approaches for neurodegenerative disorders (NDDs). This review paper comprehensively discusses the challenges associated with modelling the complex brain networks and dynamic processes involved in NDDs, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and cortical spreading depression (C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23445v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23445v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23445v1-abstract-full" style="display: none;"> It is essential to understand the complex structure of the human brain to develop new treatment approaches for neurodegenerative disorders (NDDs). This review paper comprehensively discusses the challenges associated with modelling the complex brain networks and dynamic processes involved in NDDs, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and cortical spreading depression (CSD). We investigate how the brain's biological processes and associated multiphysics interact and how this influences the structure and functionality of the brain. We review the literature on brain network models and dynamic processes, highlighting the need for sophisticated mathematical and statistical modelling techniques. Specifically, we go through large-scale brain network models relevant to AD and PD, highlighting the pathological mechanisms and potential therapeutic strategies investigated in the literature. Additionally, we investigate the propagation of CSD in the brain and its implications for neurological disorders. Furthermore, we discuss how data-driven approaches and artificial neural networks refine and validate models related to NDDs. Overall, this review underscores the significance of coupled multiscale models in deciphering disease mechanisms, offering potential avenues for therapeutic development and advancing our understanding of pathological brain dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23445v1-abstract-full').style.display = 'none'; document.getElementById('2410.23445v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 26 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23429">arXiv:2410.23429</a> <span> [<a href="https://arxiv.org/pdf/2410.23429">pdf</a>, <a href="https://arxiv.org/format/2410.23429">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Bayesian Approaches for Revealing Complex Neural Network Dynamics in Parkinson's Disease </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Shaheen%2C+H">Hina Shaheen</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23429v1-abstract-short" style="display: inline;"> Parkinson's disease (PD) belongs to the class of neurodegenerative disorders that affect the central nervous system. It is usually defined as the gradual loss of dopaminergic neurons in the substantia nigra pars compacta, which causes both motor and non-motor symptoms. Understanding the neuronal processes that underlie PD is critical for creating successful therapies. This study combines machine l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23429v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23429v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23429v1-abstract-full" style="display: none;"> Parkinson's disease (PD) belongs to the class of neurodegenerative disorders that affect the central nervous system. It is usually defined as the gradual loss of dopaminergic neurons in the substantia nigra pars compacta, which causes both motor and non-motor symptoms. Understanding the neuronal processes that underlie PD is critical for creating successful therapies. This study combines machine learning (ML), stochastic modelling, and Bayesian inference with connectomic data to analyze the brain networks involved in PD. We use modern computational methods to study large-scale neural networks to identify neuronal activity patterns related to PD development. We aim to define the subtle structural and functional connection changes in PD brains by combining connectomic with stochastic noises. Stochastic modelling approaches reflect brain dynamics' intrinsic variability and unpredictability, shedding light on the origin and spread of pathogenic events in PD. We employ a novel hybrid model to assess how stochastic noise impacts the cortex-basal ganglia-thalamus (CBGTH) network, using data from the Human Connectome Project (HCP). Bayesian inference allows us to quantify uncertainty in model parameters, improving the accuracy of our predictions. Our findings reveal that stochastic disturbances increase thalamus activity, even under deep brain stimulation (DBS). Bayesian analysis suggests that reducing these disturbances could enhance healthy brain states, providing insights for potential therapeutic interventions. This approach offers a deeper understanding of PD dynamics and paves the way for personalized treatment strategies. This is an extended version of our work presented at the ICCS-2024 conference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23429v1-abstract-full').style.display = 'none'; document.getElementById('2410.23429v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16123">arXiv:2410.16123</a> <span> [<a href="https://arxiv.org/pdf/2410.16123">pdf</a>, <a href="https://arxiv.org/format/2410.16123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> The role of spike-timing-dependent plasticity and random inputs in neurodegenerative diseases and neuromorphic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Thieu%2C+T">Thoa Thieu</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16123v1-abstract-short" style="display: inline;"> Neuronal oscillations are related to symptoms of Parkinson's disease. The random inputs could affect such oscillations in the brain states that translate collective activities of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels and synaptic dynamics under the stochastic influence, together with spike-timing-dependent plasticity (STDP) of healthy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16123v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16123v1-abstract-full" style="display: none;"> Neuronal oscillations are related to symptoms of Parkinson's disease. The random inputs could affect such oscillations in the brain states that translate collective activities of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels and synaptic dynamics under the stochastic influence, together with spike-timing-dependent plasticity (STDP) of healthy brain cells with applications to Parkinson's disease (PD). In particular, we investigate the effects of random inputs and input correlations in a subthalamic nucleus (STN) cell membrane potential model. Our numerical results show that the random inputs strongly affect the spiking activities of the STN neuron not only in the case of healthy cells but also in the case of PD cells in the presence of DBS treatment. The STDP increases the interspike interval (ISI) regularity of spike trains of the output neurons. However, the existence of a random refractory period and random input current in the system may substantially influence an increased irregularity of spike trains of the output neurons. Furthermore, the presence of the stochastic influence together with spike-timing-dependent plasticity could increase the correlation of the neurons. These effects would potentially contribute to the management of PD symptoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16123v1-abstract-full').style.display = 'none'; document.getElementById('2410.16123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02050">arXiv:2403.02050</a> <span> [<a href="https://arxiv.org/pdf/2403.02050">pdf</a>, <a href="https://arxiv.org/format/2403.02050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Piezoelectricity and flexoelectricity in biological cells: The role of cell structure and organelles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Venkateshwarlu%2C+A">Akepogu Venkateshwarlu</a>, <a href="/search/q-bio?searchtype=author&query=Akshayveer"> Akshayveer</a>, <a href="/search/q-bio?searchtype=author&query=Singh%2C+S">Sundeep Singh</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02050v1-abstract-short" style="display: inline;"> Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02050v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02050v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02050v1-abstract-full" style="display: none;"> Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. Two distinct cell structures have been developed to explore the cell responses to mechanical displacement, resembling actual cell shapes. The finite element method has been utilized to integrate the linear piezoelectric and non-local flexoelectric effects accurately. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ($V_{\text{R,max}}$). It has been found that $V_{\text{R,max}}$ depends upon the orientation angle and shape of the microtubules. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behaviour based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02050v1-abstract-full').style.display = 'none'; document.getElementById('2403.02050v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14651">arXiv:2401.14651</a> <span> [<a href="https://arxiv.org/pdf/2401.14651">pdf</a>, <a href="https://arxiv.org/ps/2401.14651">ps</a>, <a href="https://arxiv.org/format/2401.14651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Nonlocal Models in Biology and Life Sciences: Sources, Developments, and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Pal%2C+S">Swadesh Pal</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14651v1-abstract-short" style="display: inline;"> Nonlocality is important in realistic mathematical models of physical and biological systems at small-length scales. It characterizes the properties of two individuals located in different locations. This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among oth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14651v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14651v1-abstract-full" style="display: none;"> Nonlocality is important in realistic mathematical models of physical and biological systems at small-length scales. It characterizes the properties of two individuals located in different locations. This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including models for brain dynamics that provide us with an important tool to better understand neurodegenerative diseases. In addition, we have discussed nonlocal modelling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales applied to nanotechnology to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14651v1-abstract-full').style.display = 'none'; document.getElementById('2401.14651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">71 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01648">arXiv:2311.01648</a> <span> [<a href="https://arxiv.org/pdf/2311.01648">pdf</a>, <a href="https://arxiv.org/ps/2311.01648">ps</a>, <a href="https://arxiv.org/format/2311.01648">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> The Role of Soil Surface in a Sustainable Semiarid Ecosystem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Pal%2C+S">Swadesh Pal</a>, <a href="/search/q-bio?searchtype=author&query=Banerjee%2C+M">Malay Banerjee</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01648v2-abstract-short" style="display: inline;"> Patterns in a semiarid ecosystem are important because they directly and indirectly affect ecological processes, biodiversity, and ecosystem resilience. Understanding the causes and effects of these patterns is critical for long-term land surface management and conservation efforts in semiarid regions, which are especially sensitive to climate change and human-caused disturbances. It is known that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01648v2-abstract-full').style.display = 'inline'; document.getElementById('2311.01648v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01648v2-abstract-full" style="display: none;"> Patterns in a semiarid ecosystem are important because they directly and indirectly affect ecological processes, biodiversity, and ecosystem resilience. Understanding the causes and effects of these patterns is critical for long-term land surface management and conservation efforts in semiarid regions, which are especially sensitive to climate change and human-caused disturbances. It is known that there is a regular connection between the vegetation and the living species in a habitat since some animals evolved to live in a semiarid ecosystem and rely on plants for food. In this work, we have constructed a coupled mathematical model to connect the water resource, vegetation and living organisms and have investigated how the soil surface affects the resulting patterns for the long term. This study contributes to a better understanding of ecological patterns and processes in semiarid environments by shedding light on the complex interaction mechanisms that depend on the structure of semiarid ecosystems. The findings provide further critical insight into the influence of efforts for improving ecosystem resilience and adjusting to the challenges posed by climate change and human activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01648v2-abstract-full').style.display = 'none'; document.getElementById('2311.01648v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35K55; 37N25; 92D40 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01392">arXiv:2310.01392</a> <span> [<a href="https://arxiv.org/pdf/2310.01392">pdf</a>, <a href="https://arxiv.org/ps/2310.01392">ps</a>, <a href="https://arxiv.org/format/2310.01392">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> The analysis of the impact of fear in the presence of additional food and prey refuge with nonlocal predator-prey models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Saha%2C+S">Sangeeta Saha</a>, <a href="/search/q-bio?searchtype=author&query=Pal%2C+S">Swadesh Pal</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01392v2-abstract-short" style="display: inline;"> In a predator-prey interaction, many factors are present that affect the growth of the species, either positively or negatively. Fear of predation is such a factor that causes psychological stress in a prey species, so their overall growth starts to decline. In this work, a predator-prey model is proposed where the prey species faces a reduction in their growth out of fear, and the predator is als… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01392v2-abstract-full').style.display = 'inline'; document.getElementById('2310.01392v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01392v2-abstract-full" style="display: none;"> In a predator-prey interaction, many factors are present that affect the growth of the species, either positively or negatively. Fear of predation is such a factor that causes psychological stress in a prey species, so their overall growth starts to decline. In this work, a predator-prey model is proposed where the prey species faces a reduction in their growth out of fear, and the predator is also provided with an alternative food source that helps the prey to hide in a safer place. The dynamics produce a wide range of interesting results, including the significance of the presence of a certain amount of fear or even prey refuge for population coexistence. The analysis is extended later to the nonlocal model to analyze how the non-equilibrium phenomena influence the dynamical behaviour. It is observed through numerical simulations that the scope of pattern formation reduces with the increase of fear level in the spatio-temporal model, whereas the incorporation of nonlocal interaction further increases the chance of species colonization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01392v2-abstract-full').style.display = 'none'; document.getElementById('2310.01392v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05731">arXiv:2307.05731</a> <span> [<a href="https://arxiv.org/pdf/2307.05731">pdf</a>, <a href="https://arxiv.org/format/2307.05731">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Social human collective decision-making and its applications with brain network models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Thieu%2C+T">Thoa Thieu</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05731v1-abstract-short" style="display: inline;"> In this chapter, we consider probabilistic drift-diffusion models and Bayesian inference frameworks to address this issue, assisting better social human decision-making. We provide details of the models, as well as representative numerical examples, and discuss the decision-making process with a representative example of the escape route decision-making phenomena by further developing the drift-di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05731v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05731v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05731v1-abstract-full" style="display: none;"> In this chapter, we consider probabilistic drift-diffusion models and Bayesian inference frameworks to address this issue, assisting better social human decision-making. We provide details of the models, as well as representative numerical examples, and discuss the decision-making process with a representative example of the escape route decision-making phenomena by further developing the drift-diffusion models and Bayesian inference frameworks. In the latter context, we also give a review of recent developments in human collective decision-making and its applications with brain network models. Furthermore, we provide illustrative numerical examples to discuss the role of neuromodulation, reinforcement learning in decision-making processes. Finally, we call attention to existing challenges, open problems, and promising approaches in studying social dynamics and collective human decision-making, including those arising from nonequilibrium considerations of the associated processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05731v1-abstract-full').style.display = 'none'; document.getElementById('2307.05731v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages,10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12520">arXiv:2306.12520</a> <span> [<a href="https://arxiv.org/pdf/2306.12520">pdf</a>, <a href="https://arxiv.org/format/2306.12520">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Bayesian inference and role of astrocytes in amyloid-beta dynamics with modelling of Alzheimer's disease using clinical data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Shaheen%2C+H">Hina Shaheen</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a>, <a href="/search/q-bio?searchtype=author&query=Initiative%2C+T+A+D+N">The Alzheimer's Disease Neuroimaging Initiative</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12520v1-abstract-short" style="display: inline;"> Alzheimer's disease (AD) is a prominent, worldwide, age-related neurodegenerative disease that currently has no systemic treatment. Strong evidence suggests that permeable amyloid-beta peptide (Abeta) oligomers, astrogliosis and reactive astrocytosis cause neuronal damage in AD. A large amount of Abeta is secreted by astrocytes, which contributes to the total Abeta deposition in the brain. This su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12520v1-abstract-full').style.display = 'inline'; document.getElementById('2306.12520v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12520v1-abstract-full" style="display: none;"> Alzheimer's disease (AD) is a prominent, worldwide, age-related neurodegenerative disease that currently has no systemic treatment. Strong evidence suggests that permeable amyloid-beta peptide (Abeta) oligomers, astrogliosis and reactive astrocytosis cause neuronal damage in AD. A large amount of Abeta is secreted by astrocytes, which contributes to the total Abeta deposition in the brain. This suggests that astrocytes may also play a role in AD, leading to increased attention to their dynamics and associated mechanisms. Therefore, in the present study, we developed and evaluated novel stochastic models for Abeta growth using ADNI data to predict the effect of astrocytes on AD progression in a clinical trial. In the AD case, accurate prediction is required for a successful clinical treatment plan. Given that AD studies are observational in nature and involve routine patient visits, stochastic models provide a suitable framework for modelling AD. Using the approximate Bayesian computation (ABC) approach, the AD etiology may be modelled as a multi-state disease process. As a result, we use this approach to examine the weak and strong influence of astrocytes at multiple disease progression stages using ADNI data from the baseline to 2-year visits for AD patients whose ages ranged from 50 to 90 years. Based on ADNI data, we discovered that the strong astrocyte effect (i.e., a higher concentration of astrocytes as compared to Abeta) could help to lower or clear the growth of Abeta, which is a key to slowing down AD progression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12520v1-abstract-full').style.display = 'none'; document.getElementById('2306.12520v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10, figures and 30 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10373">arXiv:2306.10373</a> <span> [<a href="https://arxiv.org/pdf/2306.10373">pdf</a>, <a href="https://arxiv.org/format/2306.10373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Data-driven Stochastic Model for Quantifying the Interplay Between Amyloid-beta and Calcium Levels in Alzheimer's Disease </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Shaheen%2C+H">Hina Shaheen</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a>, <a href="/search/q-bio?searchtype=author&query=Singh%2C+S">Sundeep Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10373v1-abstract-short" style="display: inline;"> The abnormal aggregation of extracellular amyloid-$尾$ (A尾) in senile plaques resulting in calcium (Ca^{+2}) dyshomeostasis is one of the primary symptoms of Alzheimer's disease (AD). Significant research efforts have been devoted in the past to better understand the underlying molecular mechanisms driving A尾deposition and Ca^{+2} dysregulation. To better understand this interaction, we report a no… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10373v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10373v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10373v1-abstract-full" style="display: none;"> The abnormal aggregation of extracellular amyloid-$尾$ (A尾) in senile plaques resulting in calcium (Ca^{+2}) dyshomeostasis is one of the primary symptoms of Alzheimer's disease (AD). Significant research efforts have been devoted in the past to better understand the underlying molecular mechanisms driving A尾deposition and Ca^{+2} dysregulation. To better understand this interaction, we report a novel stochastic model where we analyze the positive feedback loop between A尾and Ca^{+2} using ADNI data. A good therapeutic treatment plan for AD requires precise predictions. Stochastic models offer an appropriate framework for modelling AD since AD studies are observational in nature and involve regular patient visits. The etiology of AD may be described as a multi-state disease process using the approximate Bayesian computation method. So, utilizing ADNI data from $2$-year visits for AD patients, we employ this method to investigate the interplay between A尾and Ca^{+2} levels at various disease development phases. Incorporating the ADNI data in our physics-based Bayesian model, we discovered that a sufficiently large disruption in either A尾metabolism or intracellular Ca^{+2} homeostasis causes the relative growth rate in both Ca^{+2} and A尾, which corresponds to the development of AD. The imbalance of Ca^{+2} ions causes A尾disorders by directly or indirectly affecting a variety of cellular and subcellular processes, and the altered homeostasis may worsen the abnormalities of Ca^{+2} ion transportation and deposition. This suggests that altering the Ca^{+2} balance or the balance between A尾and Ca^{+2} by chelating them may be able to reduce disorders associated with AD and open up new research possibilities for AD therapy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10373v1-abstract-full').style.display = 'none'; document.getElementById('2306.10373v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03540">arXiv:2208.03540</a> <span> [<a href="https://arxiv.org/pdf/2208.03540">pdf</a>, <a href="https://arxiv.org/format/2208.03540">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Non-Markovian behaviour and the dual role of astrocytes in Alzheimer's disease development and propagation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Pal%2C+S">Swadesh Pal</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03540v2-abstract-short" style="display: inline;"> Alzheimer's disease (AD) is a common neurodegenerative disorder nowadays. Amyloid-beta (A$尾$) and tau proteins are among the main contributors to the development or propagation of AD. In AD, A$尾$ proteins clump together to form plaques and disrupt cell functions. On the other hand, the abnormal chemical change in the brain helps to build sticky tau tangles that block the neuron's transport system.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03540v2-abstract-full').style.display = 'inline'; document.getElementById('2208.03540v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03540v2-abstract-full" style="display: none;"> Alzheimer's disease (AD) is a common neurodegenerative disorder nowadays. Amyloid-beta (A$尾$) and tau proteins are among the main contributors to the development or propagation of AD. In AD, A$尾$ proteins clump together to form plaques and disrupt cell functions. On the other hand, the abnormal chemical change in the brain helps to build sticky tau tangles that block the neuron's transport system. Astrocytes generally maintain a healthy balance in the brain by clearing the A$尾$ plaques (toxic A$尾$). However, over-activated astrocytes release chemokines and cytokines in the presence of A$尾$ and react to pro-inflammatory cytokines, further increasing the production of A$尾$. In this paper, we construct a mathematical model that can capture astrocytes' dual behaviour. Furthermore, we reveal that the disease propagation depends on the current time instance and the disease's earlier status, called the ``memory effect''. We consider a fractional order network mathematical model to capture the influence of such memory effect on AD propagation. We have integrated brain connectome data into the model and studied the memory effect, the dual role of astrocytes, and the brain's neuronal damage. Based on the pathology, primary, secondary, and mixed tauopathies parameters are considered in the model. Due to the mixed tauopathy, different brain nodes or regions in the brain connectome accumulate different toxic concentrations of A$尾$ and tau proteins. Finally, we explain how the memory effect can slow down the propagation of such toxic proteins in the brain, decreasing the rate of neuronal damage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03540v2-abstract-full').style.display = 'none'; document.getElementById('2208.03540v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04655">arXiv:2205.04655</a> <span> [<a href="https://arxiv.org/pdf/2205.04655">pdf</a>, <a href="https://arxiv.org/format/2205.04655">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Effects of random inputs and short-term synaptic plasticity in a LIF conductance model for working memory applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Thieu%2C+T+K+T">Thi Kim Thoa Thieu</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04655v1-abstract-short" style="display: inline;"> Working memory (WM) has been intensively used to enable the temporary storing of information for processing purposes, playing an important role in the execution of various cognitive tasks. Recent studies have shown that information in WM is not only maintained through persistent recurrent activity but also can be stored in activity-silent states such as in short-term synaptic plasticity (STSP). Mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04655v1-abstract-full').style.display = 'inline'; document.getElementById('2205.04655v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04655v1-abstract-full" style="display: none;"> Working memory (WM) has been intensively used to enable the temporary storing of information for processing purposes, playing an important role in the execution of various cognitive tasks. Recent studies have shown that information in WM is not only maintained through persistent recurrent activity but also can be stored in activity-silent states such as in short-term synaptic plasticity (STSP). Motivated by important applications of the STSP mechanisms in WM, the main focus of the present work is on the analysis of the effects of random inputs on a leaky integrate-and-fire (LIF) synaptic conductance neuron under STSP. Furthermore, the irregularity of spike trains can carry the information about previous stimulation in a neuron. A LIF conductance neuron with multiple inputs and coefficient of variation (CV) of the inter-spike-interval (ISI) can bring an output decoded neuron. Our numerical results show that an increase in the standard deviations in the random input current and the random refractory period can lead to an increased irregularity of spike trains of the output neuron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04655v1-abstract-full').style.display = 'none'; document.getElementById('2205.04655v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:2202.09482</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09482">arXiv:2202.09482</a> <span> [<a href="https://arxiv.org/pdf/2202.09482">pdf</a>, <a href="https://arxiv.org/format/2202.09482">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Effects of noise on leaky integrate-and-fire neuron models for neuromorphic computing applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Thieu%2C+T+K+T">Thi Kim Thoa Thieu</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09482v2-abstract-short" style="display: inline;"> Artificial neural networks (ANNs) have been extensively used for the description of problems arising from biological systems and for constructing neuromorphic computing models. The third generation of ANNs, namely, spiking neural networks (SNNs), inspired by biological neurons enable a more realistic mimicry of the human brain. A large class of the problems from these domains is characterized by t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09482v2-abstract-full').style.display = 'inline'; document.getElementById('2202.09482v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09482v2-abstract-full" style="display: none;"> Artificial neural networks (ANNs) have been extensively used for the description of problems arising from biological systems and for constructing neuromorphic computing models. The third generation of ANNs, namely, spiking neural networks (SNNs), inspired by biological neurons enable a more realistic mimicry of the human brain. A large class of the problems from these domains is characterized by the necessity to deal with the combination of neurons, spikes and synapses via integrate-and-fire neuron models. Motivated by important applications of the integrate-and-fire of neurons in neuromorphic computing for bio-medical studies, the main focus of the present work is on the analysis of the effects of additive and multiplicative types of random input currents together with a random refractory period on a leaky integrate-and-fire (LIF) synaptic conductance neuron model. Our analysis is carried out via Langevin stochastic dynamics in a numerical setting describing a cell membrane potential. We provide the details of the model, as well as representative numerical examples, and discuss the effects of noise on the time evolution of the membrane potential as well as the spiking activities of neurons in the LIF synaptic conductance model scrutinized here. Furthermore, our numerical results demonstrate that the presence of a random refractory period in the LIF synaptic conductance system may substantially influence an increased irregularity of spike trains of the output neuron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09482v2-abstract-full').style.display = 'none'; document.getElementById('2202.09482v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures. arXiv admin note: text overlap with arXiv:2112.12932</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12932">arXiv:2112.12932</a> <span> [<a href="https://arxiv.org/pdf/2112.12932">pdf</a>, <a href="https://arxiv.org/format/2112.12932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Coupled effects of channels and synaptic dynamics in stochastic modelling of healthy and Parkinson's-disease-affected brains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Thieu%2C+T+K+T">Thi Kim Thoa Thieu</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12932v2-abstract-short" style="display: inline;"> Our brain is a complex information processing network in which the nervous system receives information from the environment to quickly react to incoming events or learns from experience to sharp our memory. In the nervous system, the brain states translate collective activities of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels and synaptic dyna… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12932v2-abstract-full').style.display = 'inline'; document.getElementById('2112.12932v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12932v2-abstract-full" style="display: none;"> Our brain is a complex information processing network in which the nervous system receives information from the environment to quickly react to incoming events or learns from experience to sharp our memory. In the nervous system, the brain states translate collective activities of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels and synaptic dynamics under the stochastic influence of healthy brain cells with applications to Parkinson's disease (PD). In particular, we investigate the effects of random inputs in a subthalamic nucleus (STN) cell membrane potential model. The STN bursting phenomena and parkinsonian hypokinetic motor symptoms are closely connected, as electrical and chemical maneuvers modulating STN bursts are sufficient to ameliorate or mimic parkinsonian motor deficits. Deep brain stimulation (DBS) of the STN is an important surgical technique used in the treatment to improve PD symptoms. Our numerical results show that the random inputs strongly affect the spiking activities of the STN neuron not only in the case of healthy cells but also in the case of PD cells in the presence of DBS treatment. Specifically, the existence of a random refractory period together with random input current in the system may substantially influence an increased irregularity of spike trains of the output neurons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12932v2-abstract-full').style.display = 'none'; document.getElementById('2112.12932v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11681">arXiv:2112.11681</a> <span> [<a href="https://arxiv.org/pdf/2112.11681">pdf</a>, <a href="https://arxiv.org/format/2112.11681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Nonlocal Models in the Analysis of Brain Neurodegenerative Protein Dynamics with Application to Alzheimer's Disease </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Pal%2C+S">Swadesh Pal</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11681v1-abstract-short" style="display: inline;"> It is well known that today nearly one in six of the world's population has to deal with neurodegenerative disorders. While a number of medical devices have been developed for the detection, prevention, and treatments of such disorders, some fundamentals of the progression of associated diseases are in urgent need of further clarification. In this paper, we focus on Alzheimer's disease, where it i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11681v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11681v1-abstract-full" style="display: none;"> It is well known that today nearly one in six of the world's population has to deal with neurodegenerative disorders. While a number of medical devices have been developed for the detection, prevention, and treatments of such disorders, some fundamentals of the progression of associated diseases are in urgent need of further clarification. In this paper, we focus on Alzheimer's disease, where it is believed that the concentration changes in amyloid-beta and tau proteins play a central role in its onset and development. A multiscale model is proposed to analyze the propagation of these concentrations in the brain connectome. In particular, we consider a modified heterodimer model for the protein-protein interactions. Higher toxic concentrations of amyloid-beta and tau proteins destroy the brain cell. We have studied these propagations for the primary and secondary and their mixed tauopathy. We model the damage of a brain cell by the nonlocal contributions of these toxic loads present in the brain cells. With the help of rigorous analysis, we check the stability behaviour of the stationary points corresponding to the homogeneous system. After integrating the brain connectome data into the developed model, we see that the spreading patterns of the toxic concentrations for the whole brain are the same, but their concentrations are different in different regions. Also, the time to propagate the damage in each region of the brain connectome is different. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11681v1-abstract-full').style.display = 'none'; document.getElementById('2112.11681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 35M11 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.03238">arXiv:2112.03238</a> <span> [<a href="https://arxiv.org/pdf/2112.03238">pdf</a>, <a href="https://arxiv.org/format/2112.03238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> </div> </div> <p class="title is-5 mathjax"> Deep brain stimulation with a computational model for the cortex-thalamus-basal-ganglia system and network dynamics of neurological disorders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Shaheen%2C+H">Hina Shaheen</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.03238v1-abstract-short" style="display: inline;"> Deep brain stimulation (DBS) can alleviate the movement disorders like Parkinson's disease (PD). Indeed, it is known that aberrant beta (13-30Hz)oscillations and the loss of dopaminergic neurons in the basal ganglia-thalamus (BGTH) and cortex characterize the akinesia symptoms of PD. However, the relevant biophysical mechanism behind this process still remains unclear. Based on the prior striatal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03238v1-abstract-full').style.display = 'inline'; document.getElementById('2112.03238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.03238v1-abstract-full" style="display: none;"> Deep brain stimulation (DBS) can alleviate the movement disorders like Parkinson's disease (PD). Indeed, it is known that aberrant beta (13-30Hz)oscillations and the loss of dopaminergic neurons in the basal ganglia-thalamus (BGTH) and cortex characterize the akinesia symptoms of PD. However, the relevant biophysical mechanism behind this process still remains unclear. Based on the prior striatal inhibitory model, we propose an extended BGTH model incorporating medium spine neurons (MSNs) and fast-spiking interneurons (FSIs) along with the effect of DBS. We are focusing in this paper on an open-loop DBS mode, where the stimulation parameters stay constant independent of variations in the disease state, and modifications of parameters rely mainly on trial and error of medical experts. Additionally, we propose a novel combined model of the cerebellar-basal-ganglia thalamocortical network, MSNs, and FSIs, and show new results that indicate that Parkinsonian oscillations in the beta-band frequency range emerge from the dynamics of such a network. Our model predicts that DBS can be used to suppress beta oscillations in globus pallidus pars interna (GPi) neurons. This research will help our better understanding of the changes in brain activity caused by DBS, providing new insight for studying PD in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.03238v1-abstract-full').style.display = 'none'; document.getElementById('2112.03238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.10357">arXiv:2006.10357</a> <span> [<a href="https://arxiv.org/pdf/2006.10357">pdf</a>, <a href="https://arxiv.org/format/2006.10357">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> The topology of higher-order complexes associated with brain-function hubs in human connectomes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Andjelkovic%2C+M">Miroslav Andjelkovic</a>, <a href="/search/q-bio?searchtype=author&query=Tadic%2C+B">Bosiljka Tadic</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.10357v1-abstract-short" style="display: inline;"> Higher-order connectivity in complex systems described by simplexes of different orders provides a geometry for simplex-based dynamical variables and interactions. Simplicial complexes that constitute a functional geometry of the human connectome can be crucial for the brain complex dynamics. In this context, the best-connected brain areas, designated as hub nodes, play a central role in supportin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10357v1-abstract-full').style.display = 'inline'; document.getElementById('2006.10357v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.10357v1-abstract-full" style="display: none;"> Higher-order connectivity in complex systems described by simplexes of different orders provides a geometry for simplex-based dynamical variables and interactions. Simplicial complexes that constitute a functional geometry of the human connectome can be crucial for the brain complex dynamics. In this context, the best-connected brain areas, designated as hub nodes, play a central role in supporting integrated brain function. Here, we study the structure of simplicial complexes attached to eight global hubs in the female and male connectomes and identify the core networks among the affected brain regions. These eight hubs (Putamen, Caudate, Hippocampus and Thalamus-Proper in the left and right cerebral hemisphere) are the highest-ranking according to their topological dimension, defined as the number of simplexes of all orders in which the node participates. Furthermore, we analyse the weight-dependent heterogeneity of simplexes. We demonstrate changes in the structure of identified core networks and topological entropy when the threshold weight is gradually increased. These results highlight the role of higher-order interactions in human brain networks and provide additional evidence for (dis)similarity between the female and male connectomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.10357v1-abstract-full').style.display = 'none'; document.getElementById('2006.10357v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03399">arXiv:1904.03399</a> <span> [<a href="https://arxiv.org/pdf/1904.03399">pdf</a>, <a href="https://arxiv.org/format/1904.03399">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> Functional Geometry of Human Connectome and Robustness of Gender Differences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Tadic%2C+B">Bosiljka Tadic</a>, <a href="/search/q-bio?searchtype=author&query=Andjelkovic%2C+M">Miroslav Andjelkovic</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03399v1-abstract-short" style="display: inline;"> Mapping the brain imaging data to networks, where each node represents a specific area of the brain, has enabled an objective graph-theoretic analysis of human connectome. However, the latent structure on higher-order connections remains unexplored, where many brain regions acting in synergy perform complex functions. Here we analyse this hidden structure using the simplicial complexes parametrisa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03399v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03399v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03399v1-abstract-full" style="display: none;"> Mapping the brain imaging data to networks, where each node represents a specific area of the brain, has enabled an objective graph-theoretic analysis of human connectome. However, the latent structure on higher-order connections remains unexplored, where many brain regions acting in synergy perform complex functions. Here we analyse this hidden structure using the simplicial complexes parametrisation where the shared faces of simplexes encode higher-order relationships between groups of nodes and emerging hyperbolic geometry. Based on data collected within the Human Connectome Project, we perform a systematic analysis of consensus networks of 100 female (F-connectome) and 100 male (M-connectome) subjects by varying the number of fibres launched. Our analysis reveals that the functional geometry of the common F\&M-connectome coincides with the M-connectome and is characterized by a complex architecture of simplexes to the 14th order, which is built in six anatomical communities, and short cycles among them. Furthermore, the F-connectome has additional connections that involve different brain regions, thereby increasing the size of simplexes and introducing new cycles. By providing new insights into the internal organisation of anatomical brain modules as well as into the links between them that are essential to dynamics, these results also highlight the functional gender-related differences <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03399v1-abstract-full').style.display = 'none'; document.getElementById('1904.03399v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.2035">arXiv:1004.2035</a> <span> [<a href="https://arxiv.org/pdf/1004.2035">pdf</a>, <a href="https://arxiv.org/ps/1004.2035">ps</a>, <a href="https://arxiv.org/format/1004.2035">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1478-3975/7/3/036001">10.1088/1478-3975/7/3/036001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coarse Graining RNA Nanostructures for Molecular Dynamics Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Paliy%2C+M">Maxim Paliy</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R">Roderick Melnik</a>, <a href="/search/q-bio?searchtype=author&query=Shapiro%2C+B+A">Bruce A. Shapiro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.2035v1-abstract-short" style="display: inline;"> A series of coarse-grained models have been developed for the study of the molecular dynamics of RNA nanostructures. The models in the series have one to three beads per nucleotide and include different amounts of detailed structural information. Such a treatment allows us to reach, for the systems of thousands of nucleotides, a time scale of microseconds (i.e. by three orders of magnitude longer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.2035v1-abstract-full').style.display = 'inline'; document.getElementById('1004.2035v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.2035v1-abstract-full" style="display: none;"> A series of coarse-grained models have been developed for the study of the molecular dynamics of RNA nanostructures. The models in the series have one to three beads per nucleotide and include different amounts of detailed structural information. Such a treatment allows us to reach, for the systems of thousands of nucleotides, a time scale of microseconds (i.e. by three orders of magnitude longer than in the full atomistic modelling) and thus to enable simulations of large RNA polymers in the context of bionanotechnology. We find that the 3-beads-per-nucleotide models, described by a set of just a few universal parameters, are able to describe different RNA conformations and are comparable in structural precision to the models where detailed values of the backbone P-C4' dihedrals taken from a reference structure are included. These findings are discussed in the context of the RNA conformation classes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.2035v1-abstract-full').style.display = 'none'; document.getElementById('1004.2035v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/q-bio/0703003">arXiv:q-bio/0703003</a> <span> [<a href="https://arxiv.org/pdf/q-bio/0703003">pdf</a>, <a href="https://arxiv.org/ps/q-bio/0703003">ps</a>, <a href="https://arxiv.org/format/q-bio/0703003">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Effect of Internal Viscosity on Brownian Dynamics of DNA Molecules in Shear Flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/q-bio?searchtype=author&query=Yang%2C+J">Jack Yang</a>, <a href="/search/q-bio?searchtype=author&query=Melnik%2C+R+V+N">Roderick V. N. Melnik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="q-bio/0703003v1-abstract-short" style="display: inline;"> The results of Brownian dynamics simulations of a single DNA molecule in shear flow are presented taking into account the effect of internal viscosity. The dissipative mechanism of internal viscosity is proved necessary in the research of DNA dynamics. A stochastic model is derived on the basis of the balance equation for forces acting on the chain. The Euler method is applied to the solution of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('q-bio/0703003v1-abstract-full').style.display = 'inline'; document.getElementById('q-bio/0703003v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="q-bio/0703003v1-abstract-full" style="display: none;"> The results of Brownian dynamics simulations of a single DNA molecule in shear flow are presented taking into account the effect of internal viscosity. The dissipative mechanism of internal viscosity is proved necessary in the research of DNA dynamics. A stochastic model is derived on the basis of the balance equation for forces acting on the chain. The Euler method is applied to the solution of the model. The extensions of DNA molecules for different Weissenberg numbers are analyzed. Comparison with the experimental results available in the literature is carried out to estimate the contribution of the effect of internal viscosity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('q-bio/0703003v1-abstract-full').style.display = 'none'; document.getElementById('q-bio/0703003v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Keywords: effect of internal viscosity, dumbbell model, Brownian dynamics, DNA molecules in shear flow</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Effect of internal viscosity on Brownian dynamics of DNA molecules in shear flow, Yang, X.D. and Melnik, R.V.N., Computational Biology and Chemistry, 31 (2), 110-114, 2007 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>