CINXE.COM

Search results for: phytophthora

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phytophthora</title> <meta name="description" content="Search results for: phytophthora"> <meta name="keywords" content="phytophthora"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phytophthora" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phytophthora"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phytophthora</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Characteristics of Phytophthora infestans: The Causal Fungus of Potato Late Blight Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Elkorany">A. E. Elkorany</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Elsrgawy"> Eman Elsrgawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eighty six isolates of Phytophthora infestans dating back to 2006 were recovered from potato tubers that were on sale in Alexandria markets, Egypt. The isolates were characterized for mating type and colony morphology. Both A1 and A2 mating types were detected in the isolate collection, however, the A2 constituted 5.8% of the total isolates made while the A1 mating type isolates constituted 91.9%. The self-fertile phenotype was also detected but at a lower percentage of 2.3% of the total isolates. This indicated that Mexico, the probable origin of the disease, is no longer the only place where A2 mating type ever exists. The lumpy phenotype was the only trait observed linked to the A2 mating type isolates on rye A agar medium. The self-fertile isolates, however, exhibited colonies of a waxy appearance with little aerial hyphae and the culture were backed full with oospores. The A1 mating colonies were of smooth white abundant aerial hyphae. The metalaxyl resistant isolates were also detected among the analyzed isolates and constituted 4.6% of the total (86) isolates investigated. The appearance of the A2 mating type outside Mexico and the variation revealed in the population of Phytophthora infestans investigated supported the hypothesis of a second worldwide migration of the fungus from its origin which could constitute a threat to potato cultivation around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phytophthora%20infestans" title="Phytophthora infestans">Phytophthora infestans</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=fungus" title=" fungus"> fungus</a> </p> <a href="https://publications.waset.org/abstracts/8845/characteristics-of-phytophthora-infestans-the-causal-fungus-of-potato-late-blight-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Encapsulated Western Red Cedar (Thuja Plicata) Essential Oil as a Prospective Biopesticide against Phytophthora Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20M.%20Radojkovi%C4%87">Aleksandar M. Radojković</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20M.%20%C4%86irkovi%C4%87"> Jovana M. Ćirković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Z.%20Pera%C4%87"> Sanja Z. Perać</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20N.%20Jovanovi%C4%87"> Jelena N. Jovanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Zorica%20M.%20Brankovi%C4%87"> Zorica M. Branković</a>, <a href="https://publications.waset.org/abstracts/search?q=Slobodan%20D.%20Milanovi%C4%87"> Slobodan D. Milanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Lj.%20Milenkovi%C4%87"> Ivan Lj. Milenković</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovan%20N.%20Dobrosavljevi%C4%87"> Jovan N. Dobrosavljević</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20V.%20Simovi%C4%87"> Nemanja V. Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanja%20M.%20Tadi%C4%87"> Vanja M. Tadić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20R.%20%C5%BDugi%C4%87"> Ana R. Žugić</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20O.%20Brankovi%C4%87"> Goran O. Branković</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many parts of the world, various Phytophthora species pose a serious threat to forests and crops. With the rapidly growing international trade in plants and the ongoing impacts of climate change, the harmful effects of plant pathogens of the genus Phytophthora are increasing, damaging the biodiversity and sustainability of forest ecosystems. This genus is one of the most destructive plant pathogens, causing the majority of fine root (66%) and collar rot diseases (90%) of woody plant species worldwide. Eco-friendly biopesticides, based on plant-derived products, such as essential oils (EOs), are one of the promising solutions to this problem. In this study, among three different EOs investigated (Chamaecyparis lawsoniana (A. Murr.) Parl., Thuja plicata Donn ex D.Don and Juniperus communis L.), western red cedar (Thuja plicata) essential oil almost completely inhibited the growth of three Phytophthora species (P. plurivora Jung and Burgess, P. quercina Jung, and P. ×cambivora (Petri) Buisman) during seven days of exposure for the EO concentrations of 0.1% and 0.5% (v/v). To prolong the inhibiting effect, Thuja plicata EO was encapsulated into a biopolymer matrix consisting of a chitosan-gelatin mixture to form a water-in-oil emulsion. This approach allowed the prolonged effect of the essential oil by its slow release from the biopolymer matrix and protection of the active components from atmospheric influences. Thus, it was demonstrated that encapsulated Thuja plicata EO consisting of sustainable bioproducts is efficient in controlling of Phytophthora species and can be considered a means of protection in natural and semi-natural ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsions" title="emulsions">emulsions</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=phytophthora" title=" phytophthora"> phytophthora</a>, <a href="https://publications.waset.org/abstracts/search?q=thuja%20plicata" title=" thuja plicata"> thuja plicata</a> </p> <a href="https://publications.waset.org/abstracts/171742/encapsulated-western-red-cedar-thuja-plicata-essential-oil-as-a-prospective-biopesticide-against-phytophthora-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Influence of Substrate and Temperature on the Growth of Phytophthora palmivora of Cocoa Black Pod Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaida%20Salleh">Suhaida Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tee%20Yei%20Kheng"> Tee Yei Kheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black pod is the most commonly destructive disease of cacao (Theobroma cacao) which cause major losses to global production of cocoa beans. The genus of Phytophthora is the important pathogen of this disease worldwide. The species of P. megakarya causes black pod disease in West Africa, whereas P. capsici and P. citrophthora cause the incident in Central and South America. In Malaysia, this disease is caused by P. palmivora which infect all stages of pod development including flower cushion, cherelle, immature and mature pods. This pathogen destroys up to 10% of trees yearly through stem cankers and causes 20 to 30% pod damages through black pod rot. Since P. palmivora has a high impact on cocoa yield, it is crucial to identify some of the abiotic factors that can constrain their growth. In an effort to evaluate the effect of different substrates and temperatures to the growth of P. palmivora, a laboratory study was done under a different range of temperatures. Different substrate for the growth of P. palmivora were used which are corn meal agar (CMA) media and detached pod of cocoa. An agar plug of seven days old of P. palmivora growth was transferred on both substrates and incubated at 24, 27, 30, 33 and 36ᵒC, respectively. The diameter of lesion on pod and the cultural growth of pathogen was recorded for 7 consecutive days. The optimum incubation temperature of P. palmivora on both substrates is at 27ᵒC. However, the growth tends to be inhibited as the temperature increases. No lesion developed on pod surface incubated at 36ᵒC and only a small lesion observed at 33ᵒC. The sporulation with the formation of white mycelial growth on pod surface was only visible at optimum temperature, 27ᵒC. On CMA, the pathogen grew over the entire range of temperatures tested. The study is, therefore, concluded that P. palmivora grow the best at temperature of 27ᵒC on both substrates and their growth begin to inhibit when the temperature rises to more than 27ᵒC. The growth pattern of this pathogen is similar on both pod surface and cultural media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa" title="cocoa">cocoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Phytophthora%20palmivora" title=" Phytophthora palmivora"> Phytophthora palmivora</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/96838/the-influence-of-substrate-and-temperature-on-the-growth-of-phytophthora-palmivora-of-cocoa-black-pod-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Efficacy of Different Soil-Applied Fungicides to Manage Phytophthora Root Rot of Chili (Solanum annum) in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Nawaz">Kiran Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ali%20Shahid"> Ahmad Ali Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehrish%20Iftikhar"> Sehrish Iftikhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Anwar"> Waheed Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nasir%20Subhani"> Muhammad Nasir Subhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chili (Solanum annum L.) attacks by many fungal pathogens, including members of Oomycetes which are responsible for root rot in different chili growing areas of the world. Oomycetes pathogens cause economic losses in different regions of the Pakistan. Most of the plant tissues, including roots, crowns, fruit, and leaves, are vulnerable to Phytophthora capsici. It is very difficult to manage the Phytophthora root rot of chili as many commercial varieties are tremendously vulnerable to P. capsici. The causal agent of the disease was isolated on corn meal agar (CMA) and identified on a morphological basis by using available taxonomic keys. The pathogen was also confirmed on the molecular basis through internal transcribed spacer region and with other molecular markers.The Blastn results showed 100% homology with already reported sequences of P. capsici in NCBI database. Most of the farmers have conventionally relied on foliar fungicide applications to control Phytophthora root rot in spite of their incomplete effectiveness. In this study, in vitro plate assay, seed soaking and foliar applications of 6 fungicides were evaluated against root rot of chili. In vitro assay revealed that significant inhibition of linear growth was obtained with Triflumizole at 7.0%, followed by Thiophanate methyl (8.9%), Etridiazole (6.0%), Propamocarb (5.9%) and 7.5% with Mefenoxam and Iprodione for P. capsici. The promising treatments of in vitro plate bioassay were evaluated in pot experiments under controlled conditions in the greenhouse. All fungicides were applied after at 6-day intervals. Results of pot experiment showed that all treatments considerably inhibited the percentage of P. capsici root rot incidence. In addition, application of seed soaking with all six fungicides combined with the foliar spray of the same components showed the significant reduction in root rot incidence. The combine treatments of all fungicides as in vitro bioassay, seed soaking followed by foliar spray is considered non-harmful control methods which have advantages and limitation. Hence, these applications proved effective and harmless for the management of soil-borne plant pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blastn" title="blastn">blastn</a>, <a href="https://publications.waset.org/abstracts/search?q=bioassay" title=" bioassay"> bioassay</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20meal%20agar%28CMA%29" title="corn meal agar(CMA)">corn meal agar(CMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=oomycetes" title=" oomycetes"> oomycetes</a> </p> <a href="https://publications.waset.org/abstracts/70383/efficacy-of-different-soil-applied-fungicides-to-manage-phytophthora-root-rot-of-chili-solanum-annum-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Bio-Genetic Activities Associated with Resistant in Peppers to Phytophthora capsici</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Nasr-Esfahani">Mehdi Nasr-Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Mohammad%20Bagheri"> Leila Mohammad Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ava%20Nasr-Esfahani"> Ava Nasr-Esfahani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. In this study, a diverse collection of 37 commercial edible and ornamental pepper genotypes infected with P. capsici were investigated for biomass parameters and enzymatic activity of peroxidase or peroxide reductases (EC), superoxide dismutase (SOD), polyphenol oxidase (PPOs), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Seven candidate DEG genes were also evaluated on resistant and susceptible pepper cultivars, through measuring product formation, using spectrophotometry and real-time polymerase chain reaction. All the five enzymes and seven defense-gene candidates were up-regulated in all inoculated pepper accessions to P. capsici. But, the enzymes and DEG genes were highly expressed in resistant cv. 19OrnP-PBI, 37ChillP-Paleo, and “23CherryP-Orsh". The expression level of enzymes were 1.5 to 5.6-fold higher in the resistant peppers, than the control non-inoculated genotypes. Also, the transcriptional levels of related candidate DEG genes were 3.16 to 5.90-fold higher in the resistant genotypes. There was a direct and high correlation coefficient between resistance, bio-mass parameters, enzymatic activity, and resistance gene expression. The related enzymes and candidate genes expressed herein will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AP2%2FERF" title="AP2/ERF">AP2/ERF</a>, <a href="https://publications.waset.org/abstracts/search?q=cDNA" title=" cDNA"> cDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=MIP%20gene" title=" MIP gene"> MIP gene</a>, <a href="https://publications.waset.org/abstracts/search?q=q-RTPCR" title=" q-RTPCR"> q-RTPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=XLOC" title=" XLOC"> XLOC</a> </p> <a href="https://publications.waset.org/abstracts/119322/bio-genetic-activities-associated-with-resistant-in-peppers-to-phytophthora-capsici" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Determination of Metalaxyl Efficacy in Controlling Phytophthora palmivora Infection of Durian Using Bioassay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supawadee%20Phetkhajone">Supawadee Phetkhajone</a>, <a href="https://publications.waset.org/abstracts/search?q=Wisuwat%20Songnuan"> Wisuwat Songnuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metalaxyl is one of the most common and effective fungicides used to control Phytophthora palmivora infection in durian (Durio zibethinus L.). The efficacy of metalaxyl residue in durian under greenhouse condition was evaluated using bioassay. Durian seedlings were treated with 2 methods of application, spraying, and soil drenching of metalaxyl, at recommended concentration (1000 mg/L). Mock treated samples were treated with 0.1% Tween20 and water for spraying and soil drenching methods, respectively. The experiment was performed in triplicates. Leaves were detached from treated plants at 0, 1, 7, 15, 20, 30, and 60 days after application, inoculated with metalaxyl-resistant and metalaxyl-sensitive isolates of P. palmivora, and incubated in a high humidity chamber for 5 days at room temperature. Metalaxyl efficacy was determined by measuring the lesion size on metalaxyl treated and mock treated samples. The results showed that metalaxyl can control metalaxyl-sensitive isolate of P. palmivora for at least 30 days after application in both methods of application. The metalaxyl-resistant isolate was not inhibited in all treatments. Leaf samples from spraying method showed larger lesions compared to soil drench method. These results demonstrated that metalaxyl applications, especially soil drenching methods showed high efficacy to control metalaxyl-sensitive isolates of P. palmivora, although it cannot control metalaxyl-resistant isolates of P. palmivora in all treatments. These qualitative data indicate that metalaxyl may suitable to control metalaxyl-sensitive isolates of P. palmivora infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioassay" title="bioassay">bioassay</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=durian" title=" durian"> durian</a>, <a href="https://publications.waset.org/abstracts/search?q=metalaxyl" title=" metalaxyl"> metalaxyl</a> </p> <a href="https://publications.waset.org/abstracts/121600/determination-of-metalaxyl-efficacy-in-controlling-phytophthora-palmivora-infection-of-durian-using-bioassay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Nawaz">Kiran Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Anwar"> Waheed Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehrish%20Iftikhar"> Sehrish Iftikhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nasir%20Subhani"> Muhammad Nasir Subhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ali%20Shahid"> Ahmad Ali Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizobacteria" title="rhizobacteria">rhizobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=chili" title=" chili"> chili</a>, <a href="https://publications.waset.org/abstracts/search?q=phytophthora" title=" phytophthora"> phytophthora</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20rot" title=" root rot"> root rot</a> </p> <a href="https://publications.waset.org/abstracts/66513/biocontrol-potential-of-growth-promoting-rhizobacteria-against-root-rot-of-chili-and-enhancement-of-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Isolation and Identification of Fungal Pathogens in Palm Groves of Oued Righ </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakhdari%20Wassima">Lakhdari Wassima</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouffroukh%20Ammar"> Ouffroukh Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahliz%20Abderrahm%C3%A8ne"> Dahliz Abderrahmène</a>, <a href="https://publications.waset.org/abstracts/search?q=Soud%20Adila"> Soud Adila</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammi%20Hamida"> Hammi Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99lik%20Randa"> M’lik Randa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prospected palm groves of Oued Righ regions (Ouargla, Algeria) allowed us to observe sudden death of palm trees aged between 05 and 70 years. Field examinations revealed abnormal clinical signs with sometimes a quick death of affected trees. Entomologic investigations have confirmed the absence of phytophagous insects on dead trees. Further investigations by questioning farmers on the global management of palm groves visited (Irrigation, water quality used, soil type, etc.) did not establish any relationship between these aspects and the death of palm trees, which naturally pushed us to focus our investigations for research on fungal pathogens. Thus, laboratory studies were conducted to know the real causes of this phenomenon, 13 fungi were found on different parts of the dead palm trees. The flowing fungal types were identified: 1-Diplodia phoenicum, 2-Theilaviopsis paradoxa, 3-Phytophthora sp, 4-Helminthosporium sp, 5-Stemphylium botryosum, 6-Alternaria sp, 7-Aspergillus niger, 8-Aspergillus sp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20tree" title="palm tree">palm tree</a>, <a href="https://publications.waset.org/abstracts/search?q=death" title=" death"> death</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20pathogens" title=" fungal pathogens"> fungal pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=Oued%20Righ" title=" Oued Righ "> Oued Righ </a> </p> <a href="https://publications.waset.org/abstracts/14128/isolation-and-identification-of-fungal-pathogens-in-palm-groves-of-oued-righ" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Zaffar">Nazia Zaffar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alam%20Khan"> Alam Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Haq"> Abdul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Badshah"> Malik Badshah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestate" title="anaerobic digestate">anaerobic digestate</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=MIC" title=" MIC"> MIC</a>, <a href="https://publications.waset.org/abstracts/search?q=phytopathogens" title=" phytopathogens"> phytopathogens</a> </p> <a href="https://publications.waset.org/abstracts/105304/investigation-of-the-effect-of-anaerobic-digestate-on-antifungal-activity-and-in-different-parameters-of-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debit%20Datta">Debit Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20J.%20Coleman"> Jeffrey J. Coleman</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20A.%20Enebak"> Scott A. Enebak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20G.%20Eckhardt"> Lori G. Eckhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown-spot%20needle%20blight" title="brown-spot needle blight">brown-spot needle blight</a>, <a href="https://publications.waset.org/abstracts/search?q=loblolly%20pine" title=" loblolly pine"> loblolly pine</a>, <a href="https://publications.waset.org/abstracts/search?q=needle%20defoliation" title=" needle defoliation"> needle defoliation</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forestry" title=" plantation forestry"> plantation forestry</a> </p> <a href="https://publications.waset.org/abstracts/134448/brown-spot-needle-blight-an-emerging-threat-causing-loblolly-pine-needle-defoliation-in-alabama-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Anaerobic Soil Disinfestation: Feasible Alternative to Soil Chemical Fumigants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Serrano-P%C3%A9rez">P. Serrano-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Rodr%C3%ADguez-Molina"> M. C. Rodríguez-Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Palo"> C. Palo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Palo"> E. Palo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lacasa"> A. Lacasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytophthora nicotianae is the principal causal agent of root and crown rot disease of red pepper plants in Extremadura (Western Spain). There is a need to develop a biologically-based method of soil disinfestation that facilitates profitable and sustainable production without the use of chemical fumigants. Anaerobic Soil Disinfestation (ASD), as well know as biodisinfestation, has been shown to control a wide range of soil-borne pathogens and nematodes in numerous crop production systems. This method implies soil wetting, incorporation of a easily decomposable carbon-rich organic amendment and covering with plastic film for several weeks. ASD with rapeseed cake (var. Tocatta, a glucosinolates-free variety) used as C-source was assayed in spring 2014, before the pepper crop establishment. The field experiment was conducted at the Agricultural Research Centre Finca La Orden (Southwestern Spain) and the treatments were: rapeseed cake (RCP); rapeseed cake without plastic cover (RC); control non-amendment (CP) and control non-amendment without plastic cover (C). The experimental design was a randomized complete block design with four replicates and a plot size of 5 x 5 m. On 26 March, rapeseed cake (1 kg·m-2) was incorporated into the soil with a rotovator. Biological probes with the inoculum were buried at 15 and 30-cm depth (biological probes were previously prepared with 100 g of disinfected soil inoculated with chlamydospores (chlam) of P. nicotianae P13 isolate [100 chlam·g-1 of soil] and wrapped in agryl cloth). Sprinkler irrigation was run until field capacity and the corresponding plots were covered with transparent plastic (PE 0.05 mm). On 6 May plastics were removed, the biological probes were dug out and a bioassay was established. One pepper seedling at the 2 to 4 true-leaves stage was transplanted in the soil from each biological probe. Plants were grown in a climatic chamber and disease symptoms were recorded every week during 2 months. Fragments of roots and crown of symptomatic plants were analyzed on NARPH media and soil from rizospheres was analyzed using carnation petals as baits. Results of “survival” were expressed as the percentage of soil samples where P. nicotianae was detected and results of “infectivity” were expressed as the percentage of diseased plants. No differences were detected in deep effect. Infectivity of P. nicotianae chlamydospores was successfully reduced in RCP treatment (4.2% of infectivity) compared with the controls (41.7% of infectivity). The pattern of survival was similar to infectivity observed by the bioassay: 21% of survival in RCP; 79% in CP; 83% in C and 87% in RC. Although ASD may be an effective alternative to chemical fumigants to pest management, more research is necessary to show their impact on the microbial community and chemistry of the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodisinfestation" title="biodisinfestation">biodisinfestation</a>, <a href="https://publications.waset.org/abstracts/search?q=BSD" title=" BSD"> BSD</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fumigant%20alternatives" title=" soil fumigant alternatives"> soil fumigant alternatives</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendments" title=" organic amendments"> organic amendments</a> </p> <a href="https://publications.waset.org/abstracts/47517/anaerobic-soil-disinfestation-feasible-alternative-to-soil-chemical-fumigants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> C-Coordinated Chitosan Metal Complexes: Design, Synthesis and Antifungal Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weixiang%20Liu">Weixiang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukun%20Qin"> Yukun Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Liu"> Song Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengcheng%20Li"> Pengcheng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant diseases can cause the death of crops with great economic losses. Particularly, those diseases are usually caused by pathogenic fungi. Metal fungicides are a type of pesticide that has advantages of a low-cost, broad antimicrobial spectrum and strong sterilization effect. However, the frequent and wide application of traditional metal fungicides has caused serious problems such as environmental pollution, the outbreak of mites and phytotoxicity. Therefore, it is critically necessary to discover new organic metal fungicides alternatives that have a low metal content, low toxicity, and little influence on mites. Chitosan, the second most abundant natural polysaccharide next to cellulose, was proved to have broad-spectrum antifungal activity against a variety of fungi. However, the use of chitosan was limited due to its poor solubility and weaker antifungal activity compared with commercial fungicide. Therefore, in order to improve the water solubility and antifungal activity, many researchers grafted the active groups onto chitosan. The present work was to combine free metal ions with chitosan, to prepare more potent antifungal chitosan derivatives, thus, based on condensation reaction, chitosan derivative bearing amino pyridine group was prepared and subsequently followed by coordination with cupric ions, zinc ions and nickel ions to synthesize chitosan metal complexes. The calculations by density functional theory (DFT) show that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and all of them are coordinated by the carbon atom in the p-π conjugate group and the oxygen atoms in the acetate ion. The antifungal properties of chitosan metal complexes against Phytophthora capsici (P. capsici), Gibberella zeae (G. zeae), Fusarium oxysporum (F. oxysporum) and Botrytis cinerea (B. cinerea) were also assayed. In addition, a plant toxicity experiment was carried out. The experiments indicated that the derivatives have significantly enhanced antifungal activity after metal ions complexation compared with the original chitosan. It was shown that 0.20 mg/mL of O-CSPX-Cu can 100% inhibit the growth of P. capsici and 0.20 mg/mL of O-CSPX-Ni can 87.5% inhibit the growth of B. cinerea. In general, their activities are better than the positive control oligosaccharides. The combination of the pyridine formyl groups seems to favor biological activity. Additionally, the ligand fashion was precisely analyzed, and the results revealed that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and the carbon atoms of the p-π conjugate group and the oxygen atoms of acetate ion are involved in the coordination of metal ions. The phytotoxicity assay of O-CSPX-M was also conducted, unlike the traditional metal fungicides, the metal complexes were not significantly toxic to the leaves of wheat. O-CSPX-Zn can even increase chlorophyll content in wheat leaves at 0.40 mg/mL. This is mainly because chitosan itself promotes plant growth and counteracts the phytotoxicity of metal ions. The chitosan derivative described here may lend themselves to future applicative studies in crop protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordination" title="coordination">coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20complex" title=" metal complex"> metal complex</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20properties" title=" antifungal properties"> antifungal properties</a> </p> <a href="https://publications.waset.org/abstracts/80291/c-coordinated-chitosan-metal-complexes-design-synthesis-and-antifungal-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10