CINXE.COM

Search results for: sickle cell anemia

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sickle cell anemia</title> <meta name="description" content="Search results for: sickle cell anemia"> <meta name="keywords" content="sickle cell anemia"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sickle cell anemia" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sickle cell anemia"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3777</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sickle cell anemia</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3717</span> Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahfuzur%20Rahman">Mahfuzur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interdigitated" title="interdigitated">interdigitated</a>, <a href="https://publications.waset.org/abstracts/search?q=shading" title=" shading"> shading</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination%20loss" title=" recombination loss"> recombination loss</a>, <a href="https://publications.waset.org/abstracts/search?q=incident-plane" title=" incident-plane"> incident-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=drift-diffusion" title=" drift-diffusion"> drift-diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=luminous" title=" luminous"> luminous</a>, <a href="https://publications.waset.org/abstracts/search?q=SILVACO" title=" SILVACO"> SILVACO</a> </p> <a href="https://publications.waset.org/abstracts/146112/modelling-and-simulation-of-light-and-temperature-efficient-interdigitated-back-surface-contact-solar-cell-with-2881-efficiency-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3716</span> Cell Elevator: A Novel Technique for Cell Sorting and Circulating Tumor Cell Detection and Discrimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Zhao">Kevin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20J.%20Horing"> Norman J. Horing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology for cells sorting and circulating tumor cell detection and discrimination is presented in this paper. The technique is based on Dielectrophoresis and microfluidic device theory. Specifically, the sorting of the cells is realized by adjusting the relation among the sedimentation forces, the drag force provided by the fluid, and the Dielectrophortic force that is relevant to the bias voltage applied on the device. The relation leads to manipulation of the elevation of the cells of the same kind to a height by controlling the bias voltage. Once the cells have been lifted to a position next to the bottom of the cell collection channel, the buffer fluid flashes them into the cell collection channel. Repeated elevation of the cells leads to a complete sorting of the cells in the sample chamber. A proof-of-principle example is presented which verifies the feasibility of the methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20sorter" title="cell sorter">cell sorter</a>, <a href="https://publications.waset.org/abstracts/search?q=CTC%20cell" title=" CTC cell"> CTC cell</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20and%20discrimination" title=" detection and discrimination"> detection and discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectrophoresisords" title=" dielectrophoresisords"> dielectrophoresisords</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/40753/cell-elevator-a-novel-technique-for-cell-sorting-and-circulating-tumor-cell-detection-and-discrimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3715</span> Adaptive Discharge Time Control for Battery Operation Time Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Bae%20Lee">Jong-Bae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee"> Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20effect" title=" recovery effect"> recovery effect</a>, <a href="https://publications.waset.org/abstracts/search?q=low-power" title=" low-power"> low-power</a>, <a href="https://publications.waset.org/abstracts/search?q=alternating%20battery%20cell%20discharging" title=" alternating battery cell discharging"> alternating battery cell discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20discharge%20time%20control" title=" adaptive discharge time control"> adaptive discharge time control</a> </p> <a href="https://publications.waset.org/abstracts/2374/adaptive-discharge-time-control-for-battery-operation-time-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3714</span> An Approach on the Design of a Solar Cell Characterization Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Mayer">Christoph Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Holzmann"> Dominik Holzmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=PV" title=" PV"> PV</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/39321/an-approach-on-the-design-of-a-solar-cell-characterization-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3713</span> Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrol%20%C3%96nal">Gürol Önal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Din%C3%A7er"> Kevser Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Yayla"> Salih Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Polymer%20Electrolyte%20Membrane%20%28PEM%29" title=" Polymer Electrolyte Membrane (PEM)"> Polymer Electrolyte Membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/8063/experimental-investigation-of-performance-anode-side-of-pem-fuel-cell-with-spin-method-coated-with-yszsdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3712</span> Entry Inhibitors Are Less Effective at Preventing Cell-Associated HIV-2 Infection than HIV-1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Diniz">A. R. Diniz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Borrego"> P. Borrego</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20B%C3%A1rtolo"> I. Bártolo</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Taveira"> N. Taveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-to-cell transmission plays a critical role in the spread of HIV-1 infection in vitro and in vivo. Inhibition of HIV-1 cell-associated infection by antiretroviral drugs and neutralizing antibodies (NAbs) is more difficult compared to cell-free infection. Limited data exists on cell-associated infection by HIV-2 and its inhibition. In this work, we determined the ability of entry inhibitors to inhibit HIV-1 and HIV-2 cell-to cell fusion as a proxy to cell-associated infection. We developed a method in which Hela-CD4-cells are first transfected with a Tat expressing plasmid (pcDNA3.1+/Tat101) and infected with recombinant vaccinia viruses expressing either the HIV-1 (vPE16: from isolate HTLV-IIIB, clone BH8, X4 tropism) or HIV-2 (vSC50: from HIV-2SBL/ISY, R5 and X4 tropism) envelope glycoproteins (M.O.I.=1 PFU/cell).These cells are added to TZM-bl cells. When cell-to-cell fusion (syncytia) occurs the Tat protein diffuses to the TZM-bl cells activating the expression of a reporter gene (luciferase). We tested several entry inhibitors including the fusion inhibitors T1249, T20 and P3, the CCR5 antagonists MVC and TAK-779, the CXCR4 antagonist AMD3100 and several HIV-2 neutralizing antibodies (Nabs). All compounds inhibited HIV-1 and HIV-2 cell fusion albeit to different levels. Maximum percentage of HIV-2 inhibition (MPI) was higher for fusion inhibitors (T1249- 99.8%; P3- 95%, T20-90%) followed by co-receptor antagonists (MVC- 63%; TAK-779- 55%; AMD3100- 45%). NAbs from HIV-2 infected patients did not prevent cell fusion up to the tested concentration of 4μg/ml. As for HIV-1, MPI reached 100% with TAK-779 and T1249. For the other antivirals, MPIs were: P3-79%; T20-75%; AMD3100-61%; MVC-65%.These results are consistent with published data. Maraviroc had the lowest IC50 both for HIV-2 and HIV-1 (IC50 HIV-2= 0.06 μM; HIV-1=0.0076μM). Highest IC50 were observed with T20 for HIV-2 (3.86μM) and with TAK-779 for HIV-1 (12.64μM). Overall, our results show that entry inhibitors in clinical use are less effective at preventing Env mediated cell-to-cell-fusion in HIV-2 than in HIV-1 which suggests that cell-associated HIV-2 infection will be more difficult to inhibit compared to HIV-1. The method described here will be useful to screen for new HIV entry inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20fusion" title="cell-to-cell fusion">cell-to-cell fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=entry%20inhibitors" title=" entry inhibitors"> entry inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=NAbs" title=" NAbs"> NAbs</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccinia%20virus" title=" vaccinia virus"> vaccinia virus</a> </p> <a href="https://publications.waset.org/abstracts/42899/entry-inhibitors-are-less-effective-at-preventing-cell-associated-hiv-2-infection-than-hiv-1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3711</span> The Current Use of Cell Phone in Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20A.%20Alsadoon">Elham A. Alsadoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamadah%20B.%20Alsadoon"> Hamadah B. Alsadoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Educators try to design learning environments that are preferred by their students. With the wide-spread adoption of cell phones surpassing any other technology, educators should not fail to invest in the power of such technology. This study aimed to explore the current use of cell phones in education among Saudi students in Saudi universities and how students perceive such use. Data was collected from 237 students at King Saud University. Descriptive analysis was used to analyze the data. A T-test for independent groups was used to examine whether there was a significant difference between males and females in their perception of using cell phones in education. Findings suggested that students have a positive attitude toward the use of cell phones in education. The most accepted use was for sending notification to students, which has already been experienced through the Twasel system provided by King Saud University. This electronic system allows instructors to easily send any SMS or email to their students. The use of cell phone applications came in the second rank of using cell phones in education. Students have already experienced the benefits of having these applications handy wherever they go. On the other hand, they did not perceive using cell phones for assessment as practical educational usage. No gender difference was detected in terms of students’ perceptions toward using cell phones in education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20phone" title="cell phone">cell phone</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20learning" title=" mobile learning"> mobile learning</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20sciences" title=" educational sciences"> educational sciences</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a> </p> <a href="https://publications.waset.org/abstracts/27787/the-current-use-of-cell-phone-in-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3710</span> Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mads%20H.%20Clausen">Mads H. Clausen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oligosaccharides" title="oligosaccharides">oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate%20chemistry" title=" carbohydrate chemistry"> carbohydrate chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cell%20walls" title=" plant cell walls"> plant cell walls</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate-acting%20enzymes" title=" carbohydrate-acting enzymes"> carbohydrate-acting enzymes</a> </p> <a href="https://publications.waset.org/abstracts/13547/synthesis-and-application-of-oligosaccharides-representing-plant-cell-wall-polysaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3709</span> Structural Evaluation of Cell-Filled Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subrat%20Roy">Subrat Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-filled%20pavement" title="cell-filled pavement">cell-filled pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=WBM" title=" WBM"> WBM</a>, <a href="https://publications.waset.org/abstracts/search?q=FWD" title=" FWD"> FWD</a>, <a href="https://publications.waset.org/abstracts/search?q=Moorum" title=" Moorum"> Moorum</a> </p> <a href="https://publications.waset.org/abstracts/19215/structural-evaluation-of-cell-filled-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3708</span> Parental Monitoring of Learners’ Cell Phone Use in the Eastern Cape, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melikhaya%20Skhephe">Melikhaya Skhephe</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Mawuli%20Kwasi%20Boadzo"> Robert Mawuli Kwasi Boadzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zanoxolo%20Berington%20Gobingca"> Zanoxolo Berington Gobingca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study sought to examine parental monitoring of learners’ cell phone use in the Eastern Cape, South Africa. To this end, the researchers employed a quantitative approach. Data were obtained through questionnaires, with a sample of 15 parents having been purposively selected. The findings revealed that parents are unaware that they have to monitor the learner’s cell phone. Another finding was that parents in the 21-century did not support the use of mobile phones in education. The researchers recommend that parent’s discussion forums be created to educate parents on how a cell phone can be used in education. Cellphone companies need to be encouraged to educate parents on how they monitor cell phones used by learners. Another recommendation was that network providers need to restrict access to searching on the internet according to age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parental%20monitoring" title="parental monitoring">parental monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=app%20blocking%20services" title=" app blocking services"> app blocking services</a>, <a href="https://publications.waset.org/abstracts/search?q=learner%E2%80%99s%20cell%20phone%20use" title=" learner’s cell phone use"> learner’s cell phone use</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20phone" title=" cell phone"> cell phone</a> </p> <a href="https://publications.waset.org/abstracts/130742/parental-monitoring-of-learners-cell-phone-use-in-the-eastern-cape-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3707</span> Mathematical Modeling of Cell Volume Alterations under Different Osmotic Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20A.%20Knocikova">Juliana A. Knocikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Bouret"> Yann Bouret</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A9d%C3%A9ric%20Argentina"> Médéric Argentina</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Counillon"> Laurent Counillon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell volume, together with membrane potential and intracellular hydrogen ion concentration, is an essential biophysical parameter for normal cellular activity. Cell volumes can be altered by osmotically active compounds and extracellular tonicity. In this study, a simple mathematical model of osmotically induced cell swelling and shrinking is presented. Emphasis is given to water diffusion across the membrane. The mathematical description of the cellular behavior consists in a system of coupled ordinary differential equations. We compare experimental data of cell volume alterations driven by differences in osmotic pressure with mathematical simulations under hypotonic and hypertonic conditions. Implications for a future model are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eukaryotic%20cell" title="eukaryotic cell">eukaryotic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=osmosis" title=" osmosis"> osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20alterations" title=" volume alterations"> volume alterations</a> </p> <a href="https://publications.waset.org/abstracts/13267/mathematical-modeling-of-cell-volume-alterations-under-different-osmotic-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3706</span> Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Avila%20Lopez">Marco Avila Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnae%20Ait-Douchi"> Hasnae Ait-Douchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20De%20Los%20Santos"> Silvia De Los Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Badr%20Eddine%20Lebrouhi"> Badr Eddine Lebrouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Ram%C3%ADrez%20Vidal"> Pamela Ramírez Vidal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20model" title=" thermal model"> thermal model</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title=" PEMFC"> PEMFC</a> </p> <a href="https://publications.waset.org/abstracts/176646/dynamic-thermal-modelling-of-a-pemfc-type-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3705</span> Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misa%20Nakao">Misa Nakao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Kurashina"> Yuta Kurashina</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikahiro%20Imashiro"> Chikahiro Imashiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenjiro%20Takemura"> Kenjiro Takemura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20radiation%20force" title="acoustic radiation force">acoustic radiation force</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20vibration" title=" resonance vibration"> resonance vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20cell%20sorter" title=" single cell sorter"> single cell sorter</a> </p> <a href="https://publications.waset.org/abstracts/61220/single-cell-sorter-driven-by-resonance-vibration-of-cell-culture-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3704</span> Social Marketing – An Integrated and Comprehensive Nutrition Communication Strategy to Improve the Iron Nutriture among Preschool Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjula%20Kola">Manjula Kola</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chandralekha"> K. Chandralekha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anaemia is one of the world’s most widespread health problems. Prevalence of anemia in south Asia is among the highest in the world. Iron deficiency anemia accounts for almost 85 percent of all types of anemia in India and affects more than half of the total population. Women of childbearing age particularly pregnant women, infants, preschool children and adolescents are at greatest risk of developing iron deficiency anemia. In India, 74 percent children between 6-35 months of age are anemic. Children between 1-6 years in major cities are found with a high prevalence rate of 64.8 percent. Iron deficiency anemia is not only a public health problem, but also a development problem. Its prevention and reduction must be viewed as investment in human capital that will enhance development and reduce poverty. Ending this hidden hunger in the form of iron deficiency is the most important achievable international health goal. Eliminating the underlying problem is essential to the sustained elimination of the iron deficiency anemia. The intervention programmes toward the sustained elimination need to be broadly based so that interventions become accepted community practices. Hence, intervention strategies need to go well beyond traditional health and nutrition systems and based upon empowering people and communities so that they will be capable of arranging for and sustaining an adequate intake of foods with respect to iron, independent of external support. Such strategies must necessarily be multisectoral and integrate interventions with social communications, evaluation and surveillance. The main objective of the study was to design a community based Nutrition intervention using theoretical framework of social marketing to sustain improvement of iron nutriture among preschool children. In order to carryout the study eight rural communities In Chittoor district of Andhra Pradesh, India were selected. A formative research was carryout for situational analysis and baseline data was generated with regard to demographic and socioeconomic status, dietary intakes, Knowledge, Attitude and Practices of the mothers of preschool children, clinical and hemoglobin status of the target group. Based on the formative research results, the research area was divides into four groups as experimental area I,II,III and control area. A community based, integrated and comprehensive social marketing intervention was designed based on various theories and models of nutrition education/ communication. In Experimental area I, Nutrition intervention using social marketing and a weekly iron folic acid supplementation was given to improve iron nutriture of preschool children. In experimental area II, Social marketing alone was implemented and in experimental area III Iron supplementation alone was given. No intervention was given in control area. The Impact evaluation revealed that among different interventions tested, the integrated social marketing intervention resulted best outcomes. The overall observations of the study state that social marketing, an integrated and functional strategy for nutrition communication to prevent and control iron deficiency. Various theoretical frame works / models for nutrition communication facilitate to design culturally appropriate interventions thus achieved improvements in the knowledge, attitude and practices there by resulting successful impact on nutritional status of the target groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anemia" title="anemia">anemia</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20deficiency" title=" iron deficiency"> iron deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20marketing" title=" social marketing"> social marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20framework" title=" theoretical framework"> theoretical framework</a> </p> <a href="https://publications.waset.org/abstracts/28586/social-marketing-an-integrated-and-comprehensive-nutrition-communication-strategy-to-improve-the-iron-nutriture-among-preschool-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3703</span> Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration and Cell Viability in NIH/3T3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celso%20Afonso%20Klein%20Jr.">Celso Afonso Klein Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrique%20Cantarelli"> Henrique Cantarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Portella"> Fernando Portella</a>, <a href="https://publications.waset.org/abstracts/search?q=Keiichi%20Hosaka"> Keiichi Hosaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Reston"> Eduardo Reston</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabricio%20Collares"> Fabricio Collares</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Zimmer"> Roberto Zimmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TTo evaluate the influence of preheating self-adhesive cement at 39ºC on cell migration, cytotoxicity and degree of conversion. RelyX U200, Set PP and MaxCem Elite were subjected to a degree of conversion analysis (FTIR-ATR). For the cytotoxicity analysis, extracts (24 h and 7 days) were placed in contact with NIH/3T3 cells. For cell migration, images were captured of each sample until the possible closure of the cleft occurred. In the results of the degree of conversion, preheating did not improve the conversion of cement. For the MTT, preheating did not improve the results within 24 hours. However, it generated positive results within 7 days for the Set PP resin cement. For cell migration, high rates of cell death were found in all groups. It is concluded that preheating at 39ºC caused a positive effect only in increasing the cell viability of the Set PP resin cement and that both materials analyzed are highly cytotoxic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20cements" title="dental cements">dental cements</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20cements" title=" resin cements"> resin cements</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20conversion" title=" degree of conversion"> degree of conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20migration%20assays" title=" cell migration assays"> cell migration assays</a> </p> <a href="https://publications.waset.org/abstracts/179105/influence-of-preheating-self-adhesive-cements-on-the-degree-of-conversion-cell-migration-and-cell-viability-in-nih3t3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3702</span> Rauvolfine B Isolated from the Bark of Rauvolfia reflexa (Apocynaceae) Induces Apoptosis through Activation of Caspase-9 Coupled with S Phase Cell Cycle Arrest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Fadaeinasab">Mehran Fadaeinasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Karimian"> Hamed Karimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Najihah%20Mohd%20Hashim"> Najihah Mohd Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, three indole alkaloids namely; rauvolfine B, macusine B, and isoreserpiline have been isolated from the dichloromethane crude extract of Rauvolfia reflexa bark (Apocynaceae). The structural elucidation of the isolated compounds has been performed using spectral methods such as UV, IR, MS, 1D, and 2D NMR. Rauvolfine B showed anti proliferation activity on HCT-116 cancer cell line, its cytotoxicity induction was observed using MTT assay in eight different cell lines. Annexin-V is serving as a marker for apoptotic cells and the Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS). Apoptosis was confirmed by using caspase-8 and -9 assays. Cell cycle arrest was also investigated using flowcytometric analysis. rauvolfine B had exhibited significantly higher cytotoxicity against HCT-116 cell line. The treatment significantly arrested HCT-116 cells in the S phase. Together, the results presented in this study demonstrated that rauvolfine B inhibited the proliferation of HCT-116 cells and programmed cell death followed by cell cycle arrest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apocynacea" title="apocynacea">apocynacea</a>, <a href="https://publications.waset.org/abstracts/search?q=indole%20alkaloid" title=" indole alkaloid"> indole alkaloid</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle%20arrest" title=" cell cycle arrest"> cell cycle arrest</a> </p> <a href="https://publications.waset.org/abstracts/13403/rauvolfine-b-isolated-from-the-bark-of-rauvolfia-reflexa-apocynaceae-induces-apoptosis-through-activation-of-caspase-9-coupled-with-s-phase-cell-cycle-arrest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3701</span> Observation of the Effect of Yingyangbao Intervention on Infants and Young Children Aged 6 to 23 Months in Poor Rural Areas of China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Li">Jin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Sun"> Jing Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangkun%20Cai"> Xiangkun Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lijuanwang"> Lijuanwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanbin%20Tang"> Yanbin Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junsheng%20Huo"> Junsheng Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve the malnutrition of infants and young children in poor rural areas of China, Chinese government implement a project on improvement of children's nutrition in poor rural areas. Each infant or young child aged 6 to 23 months in selected poor rural areas of China was provided a package of Yingyangbao (YYB) per day, which is a full fat soy powder mixed with multiple micronutrient powders. A technical direction to implement this project comprehensively in poor rural areas of China will be provided by assessing the nutritional status of infants and feeding practices of caregiver. The nutritional intervention was conducted using Yingyangbao for infants aged 6 to 23 months in six poor counties of Shanxi, Yunnan and Hubei Provinces. The caregiver or parents of infants were educated on feeding knowledge and practice. A total of 1840 infants were assessed before the intervention and 1789 infants one year later. The length, weight, hemoglobin concentration of infants were measured to evaluate nutritional status before and after the intervention respectively. The questionnaires were designed to collect data for the basic demographic information and feeding practices. The average weight of infants aged 6 to 23 months increased from 9.59 ± 1.54kg to 9.73 ± 1.61kg one years later (p<0.01), and the average length from 76.0±6.0 to 77.0±6.1(p<0.01). The weight and length of infants aged 12 to 17 months had most obviously improving effect among the three age groups. Before the intervention, the hemoglobin concentration value of infants was 11.7±1.2g/L, and the anemia prevalence was 32.9%. One year later, the hemoglobin concentration value of the infants was increased to 12.0±1.1g/dL, and the anemia prevalence was decreased to 26.0%. There were both statistically significant (p <0.01). The anemia prevalence of infants aged 18 to 23 months had most obviously improving effect,which decreased from 25.0% to 17.2%(p<0.01). The proportion of infants aged 6 to 8 months who received solid, semi-solid or soft foods in time was increased from 89.4% to 91.6%, while there was no statistically significant. The proportion of 6-23 month-old infants who received minimum dietary diversity increased from 55.6% to 60.3%(p <0.01). The differences of the proportion of infants who received minimum meal frequency was no statistically significant between before and after the intervention. The nutritional intervention using Yingyangbao showed the significant effect for improving infants aged 6 to 23 months anemia status, weight and length. The feeding practices were improved through education in the process of nutritional intervention, while the effect is not significant. It is need for Chinese government to explore new publicity pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutritional%20intervention" title="nutritional intervention">nutritional intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=infants" title=" infants"> infants</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20status" title=" nutritional status"> nutritional status</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20practice" title=" feeding practice"> feeding practice</a> </p> <a href="https://publications.waset.org/abstracts/29784/observation-of-the-effect-of-yingyangbao-intervention-on-infants-and-young-children-aged-6-to-23-months-in-poor-rural-areas-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3700</span> On the Thermodynamics of Biological Cell Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nadler">Ben Nadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20membrane" title=" cell membrane"> cell membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor-ligand%20interaction" title=" receptor-ligand interaction"> receptor-ligand interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor%20diffusion" title=" receptor diffusion"> receptor diffusion</a> </p> <a href="https://publications.waset.org/abstracts/37546/on-the-thermodynamics-of-biological-cell-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3699</span> Numerical Simulation of a Single Cell Passing through a Narrow Slit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanlan%20Xiao">Lanlan Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Liu"> Yang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Chen"> Shuo Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingmei%20Fu"> Bingmei Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissipative%20particle%20dynamics" title="dissipative particle dynamics">dissipative particle dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=deformability" title=" deformability"> deformability</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20area%20increase" title=" surface area increase"> surface area increase</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20migration" title=" cell migration"> cell migration</a> </p> <a href="https://publications.waset.org/abstracts/40189/numerical-simulation-of-a-single-cell-passing-through-a-narrow-slit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3698</span> Assessment of Barriers to the Clinical Adoption of Cell-Based Therapeutics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Pettitt">David Pettitt</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Davies"> Benjamin Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=Georg%20Holl%C3%A4nder"> Georg Holländer</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Brindley"> David Brindley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular based therapies, whose origins can be traced from the intertwined concepts of tissue engineering and regenerative medicine, have the potential to transform the current medical landscape and offer an approach to managing what were once considered untreatable diseases. However, despite a large increase in basic science activity in the cell therapy arena alongside a growing portfolio of cell therapy trials, the number of industry products available for widespread clinical use correlates poorly with such a magnitude of activity, with the number of cell-based therapeutics in mainstream use remaining comparatively low. This research serves to quantitatively assess the barriers to the clinical adoption of cell-based therapeutics through identification of unique barriers, specific challenges and opportunities facing the development and adoption of such therapies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title="cell therapy">cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20adoption" title=" clinical adoption"> clinical adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=commercialization" title=" commercialization"> commercialization</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/43347/assessment-of-barriers-to-the-clinical-adoption-of-cell-based-therapeutics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3697</span> First-Year Growth and Development of 445 Preterm Infants: A Clinical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Deng">Ying Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang"> Fan Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: To study the growth pattern of preterm infants during the first year of life and explore the association between head circumference (HC) and neurodevelopment sequences and to get a general knowledge of the incidence of anemia in preterm babies in Chengdu, Southwest China. Method: We conducted a prospective longitudinal study, neonates with gestational age < 37 weeks were enrolled this study from 2012.1.1 to 2014.7.9. Anthropometry (weight, height, HC) was obtained at birth, every month before 6 months-old and every 2 months in the next half year. All the infants’ age were corrected to 40 weeks. Growth data presented as Z-scores which was calculated by WHO Anthro software. Z-score defined as (the actual value minus the average value)/standard deviation. Neurodevelopment was assessed at 12 months-old [9-11 months corrected age (CA)] by using “Denver Development Screen Test (DDST)". The hemoglobin (Hb) was examined at 6 months for CA. Result: 445 preterm infants were followed-up 1 year, including 64 very low birth weight infants (VLBW), 246 low birth weight infants (LBW) and 135 normal birth weight infants(NBW). From full-term to 12 months after birth, catch-up growth was observed in most preterm infants. From VLBW to NBW, HCZ was -1.17 (95 % CI: -1.53,-0.80; P value < 0.0001) lower during the first12 months. WAZ was-1.12(95 % CI: -1.47,-0.76; p < 0.0001) lower. WHZ and HAZ were -1.04 (95%CI:-1.38, -0.69; P<0.0001) and -0.69 (95%CI:-1.06,-0.33; P < 0.0001) lower respectively. The peak of WAZ appeared during 0-3 months CA among preterm infants. For VLBW infants, the peak of HAZ and HCZ emerged at 8-11 months CA. However, the trend of HAZ and HCZ is the same as WAZ in LBW and NBW infants. Growth in the small for gestational age (SGA) infants was poorer than appropriate for gestational age (AGA) infants. The rate of DQ < 70 in VLBW and LBW were 29.6%, 7.7%, respectively (P < 0.0001). HCZ < -1SD at 3 months emerged as an independent predictor of DQ scores below 85 at 12 months after birth. The incidence of anemia in preterm infants was 11% at 6 months for CA. Moreover, 7 children (1.7%) diagnosed with Cerebral palsy (CP). Conclusions: The catch-up growth was observed in most preterm infants. VLBW and SGA showed poor growth. There was imbalance between WAZ and HAZ in VLBW infants. The VLBW babies had higher severe abnormal scores than LBW and NBW, especially in boys. Z score for HC at 3 months < -1SDwas a significant risk factor for abnormal DQ scores at the first year. The iron supplement reduced the morbidity of anemia in preterm infants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=preterm%20infant" title="preterm infant">preterm infant</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20and%20development" title=" growth and development"> growth and development</a>, <a href="https://publications.waset.org/abstracts/search?q=DDST" title=" DDST"> DDST</a>, <a href="https://publications.waset.org/abstracts/search?q=Z-scores" title=" Z-scores"> Z-scores</a> </p> <a href="https://publications.waset.org/abstracts/53256/first-year-growth-and-development-of-445-preterm-infants-a-clinical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3696</span> Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Mehenni"> Salim Mehenni</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahbia%20Leila%20Anes-boulahbal"> Dahbia Leila Anes-boulahbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kherat"> Mohamed Kherat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20electric%20field" title="continuous electric field">continuous electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cancer%20cell%20line" title=" RD cancer cell line"> RD cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage" title=" voltage"> voltage</a> </p> <a href="https://publications.waset.org/abstracts/159144/study-of-the-effect-of-the-continuous-electric-field-on-the-rd-cancer-cell-line-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3695</span> Wireless Backhauling for 5G Small Cell Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20A.%20Al%20Orainy">Abdullah A. Al Orainy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backhaul" title="backhaul">backhaul</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20cells" title=" small cells"> small cells</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless" title=" wireless"> wireless</a>, <a href="https://publications.waset.org/abstracts/search?q=5G" title=" 5G"> 5G</a> </p> <a href="https://publications.waset.org/abstracts/39532/wireless-backhauling-for-5g-small-cell-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3694</span> Prognosis of Patients with COVID-19 and Hematologic Malignancies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20%20Behrens">Elizabeth Behrens</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Timmermann"> Anne Timmermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Yerkan"> Alexander Yerkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Thomas"> Joshua Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Katz"> Deborah Katz</a>, <a href="https://publications.waset.org/abstracts/search?q=Agne%20Paner"> Agne Paner</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Larson"> Melissa Larson</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivi%20Jain"> Shivi Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Seo-Hyun%20Kim"> Seo-Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Celalettin%20Ustun"> Celalettin Ustun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Varma"> Ankur Varma</a>, <a href="https://publications.waset.org/abstracts/search?q=Parameswaran%20Venugopal"> Parameswaran Venugopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamile%20Shammo"> Jamile Shammo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coronavirus Disease-2019 (COVID-19) causes persistent concern for poor outcomes in vulnerable populations. Patients with hematologic malignancies (HM) have been found to have higher COVID-19 case fatality rates compared to those without malignancy. While cytopenias are common in patients with HM, especially in those undergoing chemotherapy treatment, hemoglobin (Hgb) and platelet count have not yet been studied, to our best knowledge, as potential prognostic indicators for patients with HM and COVID-19. The goal of this study is to identify factors that may increase the risk of mortality in patients with HM and COVID-19. In this single-center, retrospective, observational study, 65 patients with HM and laboratory confirmed COVID-19 were identified between March 2020 and January 2021. Information on demographics, laboratory data the day of COVID-19 diagnosis, and prognosis was extracted from the electronic medical record (EMR), chart reviewed, and analyzed using the statistical software SAS version 9.4. Chi-square testing was used for categorical variable analyses. Risk factors associated with mortality were established by logistic regression models. Non-Hodgkin lymphoma (37%), chronic lymphocytic leukemia (20%), and plasma cell dyscrasia (15%) were the most common HM. Higher Hgb level upon COVID-19 diagnosis was related to decreased mortality, odd ratio=0.704 (95% confidence interval [CI]: 0.511-0.969; P = .0263). Platelet count the day of COVID-19 diagnosis was lower in patients who ultimately died (mean 127 ± 72K/uL, n=10) compared to patients who survived (mean 197 ±92K/uL, n=55) (P=.0258). Female sex was related to decreased mortality, odd ratio=0.143 (95% confidence interval [CI]: 0.026-0.785; P = .0353). There was no mortality difference between the patients who were on treatment for HM the day of COVID-19 diagnosis compared to those who were not (P=1.000). Lower Hgb and male sex are independent risk factors associated with increased mortality of HM patients with COVID-19. Clinicians should be especially attentive to patients with HM and COVID-19 who present with cytopenias. Larger multi-center studies are urgently needed to further investigate the impact of anemia, thrombocytopenia, and demographics on outcomes of patients with hematologic malignancies diagnosed with COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anemia" title="anemia">anemia</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=hematologic%20malignancy" title=" hematologic malignancy"> hematologic malignancy</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a> </p> <a href="https://publications.waset.org/abstracts/136094/prognosis-of-patients-with-covid-19-and-hematologic-malignancies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3693</span> Comparative Study Using WEKA for Red Blood Cells Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jameela%20Ali">Jameela Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20A.%20Jalab"> Hamid A. Jalab</a>, <a href="https://publications.waset.org/abstracts/search?q=Loay%20E.%20George"> Loay E. George</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahim%20Ahmad"> Abdul Rahim Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Suliman"> Azizah Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Al-Jashamy"> Karim Al-Jashamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K-nearest%20neighbors%20algorithm" title="K-nearest neighbors algorithm">K-nearest neighbors algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title=" radial basis function neural network"> radial basis function neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cells" title=" red blood cells"> red blood cells</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/11462/comparative-study-using-weka-for-red-blood-cells-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3692</span> Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souhila%20Boukli%20Hacene">Souhila Boukli Hacene</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Kherbouche"> Djamila Kherbouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Chikhaoui"> Abdelhak Chikhaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cell" title="organic solar cell">organic solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%3APCBM" title=" P3HT:PCBM"> P3HT:PCBM</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=SCAPS" title=" SCAPS"> SCAPS</a> </p> <a href="https://publications.waset.org/abstracts/164758/modeling-and-simulation-of-organic-solar-cells-based-on-p3htpcbm-using-scaps-1-d-influence-of-defects-and-temperature-on-the-performance-of-the-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3691</span> Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Ali">Majid Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinfang%20Jin"> Xinfang Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Eniola"> Victor Eniola</a>, <a href="https://publications.waset.org/abstracts/search?q=Henning%20Hoene"> Henning Hoene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane" title=" proton exchange membrane"> proton exchange membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20fluctuation" title=" power fluctuation"> power fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a> </p> <a href="https://publications.waset.org/abstracts/164649/study-on-the-impact-of-power-fluctuation-hydrogen-utilization-and-fuel-cell-stack-orientation-on-the-performance-sensitivity-of-pem-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3690</span> Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Tolj">Ivan Tolj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20fuel%20cell" title="PEM fuel cell">PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20heat%20exchange" title=" passive heat exchange"> passive heat exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a> </p> <a href="https://publications.waset.org/abstracts/104586/passive-heat-exchanger-for-proton-exchange-membrane-fuel-cell-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3689</span> Resistive Switching in TaN/AlNx/TiN Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsin-Ping%20Huang">Hsin-Ping Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyankay%20Jou"> Shyankay Jou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resistive switching of aluminum nitride (AlNx) thin film was demonstrated in a TaN/AlNx/TiN memory cell that was prepared by sputter deposition techniques. The memory cell showed bipolar switching of resistance between +3.5 V and –3.5 V. The resistance ratio of high resistance state (HRS) to low resistance state (HRS), RHRS/RLRS, was about 2 over 100 cycles of endurance test. Both the LRS and HRS of the memory cell exhibited ohmic conduction at low voltages and Poole-Frenkel emission at high voltages. The electrical conduction in the TaN/AlNx/TiN memory cell was possibly attributed to the interactions between charges and defects in the AlNx film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20nitride" title="aluminum nitride">aluminum nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=nonvolatile%20memory" title=" nonvolatile memory"> nonvolatile memory</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20switching" title=" resistive switching"> resistive switching</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/7604/resistive-switching-in-tanalnxtin-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3688</span> A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jameela%20Ali">Jameela Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20A.%20Jalab"> Hamid A. Jalab</a>, <a href="https://publications.waset.org/abstracts/search?q=Loay%20E.%20George"> Loay E. George</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahim%20Ahmad"> Abdul Rahim Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Suliman"> Azizah Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Al-Jashamy"> Karim Al-Jashamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cells" title="red blood cells">red blood cells</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20networks" title=" radial basis function neural networks"> radial basis function neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=suport%20vector%20machine" title=" suport vector machine"> suport vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest%20neighbors%20algorithm" title=" k-nearest neighbors algorithm"> k-nearest neighbors algorithm</a> </p> <a href="https://publications.waset.org/abstracts/15631/a-comparative-study-for-various-techniques-using-weka-for-red-blood-cells-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=2" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=125">125</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sickle%20cell%20anemia&amp;page=4" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10