CINXE.COM
Search results for: KEGG
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: KEGG</title> <meta name="description" content="Search results for: KEGG"> <meta name="keywords" content="KEGG"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="KEGG" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="KEGG"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 26</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: KEGG</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Identification of miRNA-miRNA Interactions between Virus and Host in Human Cytomegalovirus Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Yao%20Huang">Kai-Yao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Yi%20Lee"> Tzong-Yi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-Hao%20Ho"> Pin-Hao Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Hao%20Chang"> Tzu-Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Wei%20Chang"> Cheng-Wei Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Human cytomegalovirus (HCMV) infects much people around the world, and there were many researches mention that many diseases were caused by HCMV. To understand the mechanism of HCMV lead to diseases during infection. We observe a microRNA (miRNA) – miRNA interaction between HCMV and host during infection. We found HCMV miRNA sequence component complementary with host miRNA precursors, and we also found that the host miRNA abundances were decrease in HCMV infection. Hence, we focus on the host miRNA which may target by the other HCMV miRNA to find theirs target mRNAs expression and analysis these mRNAs affect what kind of signaling pathway. Interestingly, we found the affected mRNA play an important role in some diseases related pathways, and these diseases had been annotated by HCMV infection. Results: From our analysis procedure, we found 464 human miRNAs might be targeted by 26 HCMV miRNAs and there were 291 human miRNAs shows the concordant decrease trend during HCMV infection. For case study, we found hcmv-miR-US22-5p may regulate hsa-mir-877 and we analysis the KEGG pathway which built by hsa-mir-877 validate target mRNA. Additionally, through survey KEGG Disease database found that these mRNA co-regulate some disease related pathway for instance cancer, nerve disease. However, there were studies annotated that HCMV infection casuse cancer and Alzheimer. Conclusions: This work supply a different scenario of miRNA target interactions(MTIs). In previous study assume miRNA only target to other mRNA. Here we wonder there is possibility that miRNAs might regulate non-mRNA targets, like other miRNAs. In this study, we not only consider the sequence similarity with HCMV miRNAs and human miRNA precursors but also the expression trend of these miRNAs. Then we analysis the human miRNAs validate target mRNAs and its associated KEGG pathway. Finally, we survey related works to validate our investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20cytomegalovirus" title="human cytomegalovirus">human cytomegalovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=HCMV" title=" HCMV"> HCMV</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a> </p> <a href="https://publications.waset.org/abstracts/43139/identification-of-mirna-mirna-interactions-between-virus-and-host-in-human-cytomegalovirus-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Transcriptomic Analyses of Kappaphycus alvarezii under Different Wavelengths of Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vun%20Yee%20Thien">Vun Yee Thien</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Francis%20Rodrigues"> Kenneth Francis Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Clemente%20Michael%20Vui%20Ling%20Wong"> Clemente Michael Vui Ling Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilson%20Thau%20Lym%20Yong"> Wilson Thau Lym Yong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transcriptomes associated with the process of photosynthesis have offered insights into the mechanism of gene regulation in terrestrial plants; however, limited information is available as far as macroalgae are concerned. This investigation aims to decipher the underlying mechanisms associated with photosynthesis in the red alga, Kappaphycus alvarezii, by performing a differential expression analysis on a de novo assembled transcriptomes. Comparative analysis of gene expression was designed to examine the alteration of light qualities and its effect on physiological mechanisms in the red alga. High-throughput paired-end RNA-sequencing was applied to profile the transcriptome of K. alvarezii irradiated with different wavelengths of light (blue 492-455 nm, green 577-492 nm and red 780-622 nm) as compared to the full light spectrum, resulted in more than 60 million reads individually and assembled using Trinity and SOAPdenovo-Trans. The transcripts were annotated in the NCBI non-redundant (nr) protein, SwissProt, KEGG and COG databases with a cutoff E-value of 1e-5 and nearly 30% of transcripts were assigned to functional annotation by Blast searches. Differential expression analysis was performed using edgeR. The DEGs were designated to six categories: BL (blue light) regulated, GL (green light) regulated, RL (red light) regulated, BL or GL regulated, BL or RL regulated, GL or RL regulated, and either BL, GL or RL regulated. These DEGs were mapped to terms in KEGG database and compared with the whole transcriptome background to search for genes that regulated by light quality. The outcomes of this study will enhance our understanding of molecular mechanisms underlying light-induced responses in red algae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=de%20novo%20transcriptome%20sequencing" title="de novo transcriptome sequencing">de novo transcriptome sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20gene%20expression" title=" differential gene expression"> differential gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=Kappaphycus%20alvareziired" title=" Kappaphycus alvareziired"> Kappaphycus alvareziired</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20alga" title=" red alga"> red alga</a> </p> <a href="https://publications.waset.org/abstracts/30147/transcriptomic-analyses-of-kappaphycus-alvarezii-under-different-wavelengths-of-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Identification of Significant Genes in Rheumatoid Arthritis, Melanoma Metastasis, Ulcerative Colitis and Crohn’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Pal%20Singh">Krishna Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Kumar%20Gupta"> Shailendra Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaf%20Wolkenhauer"> Olaf Wolkenhauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Our study aimed to identify common genes and potential targets across the four diseases, which include rheumatoid arthritis, melanoma metastasis, ulcerative colitis, and Crohn’s disease. We used a network and systems biology approach to identify the hub gene, which can act as a potential target for all four disease conditions. The regulatory network was extracted from the PPI using the MCODE module present in Cytoscape. Our objective was to investigate the significance of hub genes in these diseases using gene ontology and KEGG pathway enrichment analysis. Methods: Our methodology involved collecting disease gene-related information from DisGeNET databases and performing protein-protein interaction (PPI) network and core genes screening. We then conducted gene ontology and KEGG pathway enrichment analysis. Results: We found that IL6 plays a critical role in all disease conditions and in different pathways that can be associated with the development of all four diseases. Conclusions: The theoretical importance of our research is that we employed various systems and structural biology techniques to identify a crucial protein that could serve as a promising target for treating multiple diseases. Our data collection and analysis procedures involved rigorous scrutiny, ensuring high-quality results. Our conclusion is that IL6 plays a significant role in all four diseases, and it can act as a potential target for treating them. Our findings may have important implications for the development of novel therapeutic interventions for these diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma%20metastasis" title="melanoma metastasis">melanoma metastasis</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20bowel%20diseases" title=" inflammatory bowel diseases"> inflammatory bowel diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20bioinformatics%20analysis" title=" integrated bioinformatics analysis"> integrated bioinformatics analysis</a> </p> <a href="https://publications.waset.org/abstracts/168255/identification-of-significant-genes-in-rheumatoid-arthritis-melanoma-metastasis-ulcerative-colitis-and-crohns-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agustyas%20Tjiptaningrum">Agustyas Tjiptaningrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Intanri%20Kurniati"> Intanri Kurniati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadilah%20Fadilah"> Fadilah Fadilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Erlina"> Linda Erlina</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiwuk%20Susantiningsih"> Tiwuk Susantiningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiinflammation" title="antiinflammation">antiinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokine%20storm" title=" cytokine storm"> cytokine storm</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-%CE%BA%CE%B2" title=" NF-κβ"> NF-κβ</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20cajuputi" title=" M. cajuputi"> M. cajuputi</a> </p> <a href="https://publications.waset.org/abstracts/165831/the-prediction-mechanism-of-m-cajuputi-extract-from-lampung-indonesia-as-an-anti-inflammatory-agent-for-covid-19-by-nfkv-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hala%20Raslan">Hala Raslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20Eltaweel"> Noha Eltaweel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Rasmi"> Hanaa Rasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Solaf%20Kamel"> Solaf Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=May%20Magdy"> May Magdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ismail"> Sherif Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalda%20Amr"> Khalda Amr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MiRNAs" title="MiRNAs">MiRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=expression" title=" expression"> expression</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarthritis" title=" osteoarthritis"> osteoarthritis</a> </p> <a href="https://publications.waset.org/abstracts/172236/identification-of-the-expression-of-top-deregulated-mirnas-in-rheumatoid-arthritis-and-osteoarthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivian%20A.%20Panes">Vivian A. Panes</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20John%20S.%20Rebong"> Raymond John S. Rebong</a>, <a href="https://publications.waset.org/abstracts/search?q=Miel%20Q.%20Diaz"> Miel Q. Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20response" title="stress response">stress response</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a> </p> <a href="https://publications.waset.org/abstracts/103181/unzipping-the-stress-response-genes-in-moringa-oleifera-lam-through-transcriptomics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Potential Serological Biomarker for Early Detection of Pregnancy in Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shveta%20Bathla">Shveta Bathla</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Rawat"> Preeti Rawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Kumar"> Sudarshan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubina%20Baithalu"> Rubina Baithalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jogender%20Singh%20Rana"> Jogender Singh Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Tushar%20Kumar%20Mohanty"> Tushar Kumar Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Mohanty"> Ashok Kumar Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pregnancy is a complex process which includes series of events such as fertilization, formation of blastocyst, implantation of embryo, placental formation and development of fetus. The success of these events depends on various interactions which are synchronized by endocrine interaction between a receptive dam and competent embryo. These interactions lead to change in expression of hormones and proteins. But till date no protein biomarker is available which can be used to detect successful completion of these events. We employed quantitative proteomics approach to develop putative serological biomarker which has diagnostic applicability for early detection of pregnancy in cows. For this study, sera were collected from control (non-pregnant, n=6) and pregnant animals on successive days of pregnancy (7, 19, 45, n=6). The sera were subjected to depletion for removal of albumin using Norgen depletion kit. The tryptic peptides were labeled with iTRAQ. The peptides were pooled and fractionated using bRPLC over 80 min gradient. Then 12 fractions were injected to nLC for identification and quantitation in DDA mode using ESI. Identification using Mascot search revealed 2056 proteins out of which 352 proteins were differentially expressed. Twenty proteins were upregulated and twelve proteins were down-regulated with fold change > 1.5 and < 0.6 respectively (p < 0.05). The gene ontology studies of DEPs using Panther software revealed that majority of proteins are actively involved in catalytic activities, binding and enzyme regulatory activities. The DEP'S such as NF2, MAPK, GRIPI, UGT1A1, PARP, CD68 were further subjected to pathway analysis using KEGG and Cytoscape plugin Cluego that showed involvement of proteins in successful implantation, maintenance of pluripotency, regulation of luteal function, differentiation of endometrial macrophages, protection from oxidative stress and developmental pathways such as Hippo. Further efforts are continuing for targeted proteomics, western blot to validate potential biomarkers and development of diagnostic kit for early pregnancy diagnosis in cows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bRPLC" title="bRPLC">bRPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Cluego" title=" Cluego"> Cluego</a>, <a href="https://publications.waset.org/abstracts/search?q=ESI" title=" ESI"> ESI</a>, <a href="https://publications.waset.org/abstracts/search?q=iTRAQ" title=" iTRAQ"> iTRAQ</a>, <a href="https://publications.waset.org/abstracts/search?q=KEGG" title=" KEGG"> KEGG</a>, <a href="https://publications.waset.org/abstracts/search?q=Panther" title=" Panther"> Panther</a> </p> <a href="https://publications.waset.org/abstracts/61600/potential-serological-biomarker-for-early-detection-of-pregnancy-in-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Differentially Expressed Genes in Atopic Dermatitis: Bioinformatics Analysis Of Pooled Microarray Gene Expression Datasets In Gene Expression Omnibus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danna%20Jia">Danna Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Li"> Bin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Atopic dermatitis (AD) is a chronic and refractory inflammatory skin disease characterized by relapsing eczematous and pruritic skin lesions. The global prevalence of AD ranges from 1~ 20%, and its incidence rates are increasing. It affects individuals from infancy to adulthood, significantly impacting their daily lives and social activities. Despite its major health burden, the precise mechanisms underlying AD remain unknown. Understanding the genetic differences associated with AD is crucial for advancing diagnosis and targeted treatment development. This study aims to identify candidate genes of AD by using bioinformatics analysis. Methods: We conducted a comprehensive analysis of four pooled transcriptomic datasets (GSE16161, GSE32924, GSE130588, and GSE120721) obtained from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed using the R statistical language. The differentially expressed genes (DEGs) between AD patients and normal individuals were functionally analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, a protein-protein interaction (PPI) network was constructed to identify candidate genes. Results: Among the patient-level gene expression datasets, we identified 114 shared DEGs, consisting of 53 upregulated genes and 61 downregulated genes. Functional analysis using GO and KEGG revealed that the DEGs were mainly associated with the negative regulation of transcription from RNA polymerase II promoter, membrane-related functions, protein binding, and the Human papillomavirus infection pathway. Through the PPI network analysis, we identified eight core genes: CD44, STAT1, HMMR, AURKA, MKI67, and SMARCA4. Conclusion: This study elucidates key genes associated with AD, providing potential targets for diagnosis and treatment. The identified genes have the potential to contribute to the understanding and management of AD. The bioinformatics analysis conducted in this study offers new insights and directions for further research on AD. Future studies can focus on validating the functional roles of these genes and exploring their therapeutic potential in AD. While these findings will require further verification as achieved with experiments involving in vivo and in vitro models, these results provided some initial insights into dysfunctional inflammatory and immune responses associated with AD. Such information offers the potential to develop novel therapeutic targets for use in preventing and treating AD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atopic%20dermatitis" title="atopic dermatitis">atopic dermatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a> </p> <a href="https://publications.waset.org/abstracts/168004/differentially-expressed-genes-in-atopic-dermatitis-bioinformatics-analysis-of-pooled-microarray-gene-expression-datasets-in-gene-expression-omnibus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahaba%20Marima">Rahaba Marima</a>, <a href="https://publications.waset.org/abstracts/search?q=Clement%20Penny"> Clement Penny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-cycle" title="cell-cycle">cell-cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20response" title=" DNA damage response"> DNA damage response</a>, <a href="https://publications.waset.org/abstracts/search?q=Efavirenz" title=" Efavirenz"> Efavirenz</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer "> lung cancer </a> </p> <a href="https://publications.waset.org/abstracts/106125/profiling-of-the-cell-cycle-related-genes-in-response-to-efavirenz-a-non-nucleoside-reverse-transcriptase-inhibitor-in-human-lung-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> De Novo Assembly and Characterization of the Transcriptome during Seed Development, and Generation of Genic-SSR Markers in Pomegranate (Punica granatum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozhan%20Simsek">Ozhan Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Dicle%20Donmez"> Dicle Donmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Burhanettin%20Imrak"> Burhanettin Imrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsen%20Isik%20Ozguven"> Ahsen Isik Ozguven</a>, <a href="https://publications.waset.org/abstracts/search?q=Yildiz%20Aka%20Kacar"> Yildiz Aka Kacar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pomegranate (Punica granatum L.) is known to be one of the oldest edible fruit tree species, with a wide geographical global distribution. Fruits from the two defined varieties (Hicaznar and 33N26) were taken at intervals after pollination and fertilization at different sizes. Seed samples were used for transcriptome sequencing. Primary sequencing was produced by Illumina Hi-Seq™ 2000. Firstly, we had raw reads, and it was subjected to quality control (QC). Raw reads were filtered into clean reads and aligned to the reference sequences. De novo analysis was performed to detect genes expressed in seeds of pomegranate varieties. We performed downstream analysis to determine differentially expressed genes. We generated about 27.09 gb bases in total after Illumina Hi-Seq sequencing. All samples were assembled together, we got 59,264 Unigenes, the total length, average length, N50, and GC content of Unigenes are 84.547.276 bp, 1.426 bp, 2,137 bp, and 46.20 %, respectively. Unigenes were annotated with 7 functional databases, finally, 42.681(NR: 72.02%), 39.660 (NT: 66.92%), 30.790 (Swissprot: 51.95%), 20.212 (COG: 34.11%), 27.689 (KEGG: 46.72%), 12.328 (GO: 20.80%), and 33,833 (Interpro: 57.09%) Unigenes were annotated. With functional annotation results, we detected 42.376 CDS, and 4.999 SSR distribute on 16.143 Unigenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title="next generation sequencing">next generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=SSR" title=" SSR"> SSR</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-Seq" title=" RNA-Seq"> RNA-Seq</a>, <a href="https://publications.waset.org/abstracts/search?q=Illumina" title=" Illumina"> Illumina</a> </p> <a href="https://publications.waset.org/abstracts/75369/de-novo-assembly-and-characterization-of-the-transcriptome-during-seed-development-and-generation-of-genic-ssr-markers-in-pomegranate-punica-granatum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Musaweer%20Habib">Abdul Musaweer Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Habibul%20Hasan%20Mazumder"> Habibul Hasan Mazumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Islam"> Saiful Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohel%20Sikder"> Sohel Sikder</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Faruk%20Sikder"> Omar Faruk Sikder </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20target" title=" drug target"> drug target</a>, <a href="https://publications.waset.org/abstracts/search?q=Fusobacterium%20nucleatum" title=" Fusobacterium nucleatum"> Fusobacterium nucleatum</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ligands" title=" ligands"> ligands</a> </p> <a href="https://publications.waset.org/abstracts/16273/mining-the-proteome-of-fusobacterium-nucleatum-for-potential-therapeutics-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Next Generation Sequencing Analysis of Circulating MiRNAs in Rheumatoid Arthritis and Osteoarthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalda%20Amr">Khalda Amr</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20Eltaweel"> Noha Eltaweel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ismail"> Sherif Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Raslan"> Hala Raslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Osteoarthritis is the most common form of arthritis that involves the wearing away of the cartilage that caps the bones in the joints. While rheumatoid arthritis is an autoimmune disease in which the immune system attacks the joints, beginning with the lining of joints. In this study, we aimed to study the top deregulated miRNAs that might be the cause of pathogenesis in both diseases. Methods: Eight cases were recruited in this study: 4 rheumatoid arthritis (RA), 2 osteoarthritis (OA) patients, as well as 2 healthy controls. Total RNA was isolated from plasma to be subjected to miRNA profiling by NGS. Sequencing libraries were constructed and generated using the NEBNextR UltraTM small RNA Sample Prep Kit for Illumina R (NEB, USA), according to the manufacturer’s instructions. The quality of samples were checked using fastqc and multiQC. Results were compared RA vs Controls and OA vs. Controls. Target gene prediction and functional annotation of the deregulated miRNAs were done using Mienturnet. The top deregulated miRNAs in each disease were selected for further validation using qRT-PCR. Results: The average number of sequencing reads per sample exceeded 2.2 million, of which approximately 57% were mapped to the human reference genome. The top DEMs in RA vs controls were miR-6724-5p, miR-1469, miR-194-3p (up), miR-1468-5p, miR-486-3p (down). In comparison, the top DEMs in OA vs controls were miR-1908-3p, miR-122b-3p, miR-3960 (up), miR-1468-5p, miR-15b-3p (down). The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Six of the deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis. Conclusion: Six of our studied deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) might be highly involved in the disease pathogenesis. Further functional studies are crucial to assess their functions and actual target genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=next%20generation%20sequencing" title="next generation sequencing">next generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=mirnas" title=" mirnas"> mirnas</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarthritis" title=" osteoarthritis"> osteoarthritis</a> </p> <a href="https://publications.waset.org/abstracts/172228/next-generation-sequencing-analysis-of-circulating-mirnas-in-rheumatoid-arthritis-and-osteoarthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Ching%20Lee">Chi-Ching Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Jung%20Huang"> Po-Jung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Yang%20Huang"> Kuo-Yang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Petrus%20Tang"> Petrus Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20annotation" title=" functional annotation"> functional annotation</a> </p> <a href="https://publications.waset.org/abstracts/16079/c-express-a-web-based-analysis-platform-for-comparative-functional-genomics-and-proteomics-in-human-cancer-cell-line-nci-60-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farideh%20Halakou">Farideh Halakou</a>, <a href="https://publications.waset.org/abstracts/search?q=Emel%20Sen"> Emel Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20Gursoy"> Attila Gursoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Keskin"> Ozlem Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a>, <a href="https://publications.waset.org/abstracts/search?q=PPI%20networks" title=" PPI networks"> PPI networks</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20conformational%20changes" title=" protein conformational changes"> protein conformational changes</a> </p> <a href="https://publications.waset.org/abstracts/51346/structural-protein-protein-interactions-network-of-breast-cancer-lung-and-brain-metastasis-corroborates-conformational-changes-of-proteins-lead-to-different-signaling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Habitat-Specific Divergences in the Gene Repertoire among the Reference Prevotella Genomes of the Human Microbiome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Gupta">Vinod Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendrakumar%20M.%20Chaudhari"> Narendrakumar M. Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchismitha%20Iskepalli"> Suchismitha Iskepalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Chitra%20Dutta"> Chitra Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background-The community composition of the human microbiome is known to vary at distinct anatomical niches. But little is known about the nature of variations if any, at the genome/sub-genome levels of a specific microbial community across different niches. The present report aims to explore, as a case study, the variations in gene repertoire of 28 Prevotella reference draft genomes derived from different body-sites of human, as reported earlier by the Human Microbiome Consortium. Results-The analysis reveals the exclusive presence of 11798, 3673, 3348 and 934 gene families and exclusive absence of 17, 221, 115 and 645 gene families in Prevotella genomes derived from the human oral cavity, gastro-intestinal tracts (GIT), urogenital tract (UGT) and skin, respectively. The pan-genome for Prevotella remains “open”. Distribution of various functional COG categories differs appreciably among the habitat-specific genes, within Prevotella pan-genome and between the GIT-derived Bacteroides and Prevotella. The skin and GIT isolates of Prevotella are enriched in singletons involved in Signal transduction mechanisms, while the UGT and oral isolates show higher representation of the Defense mechanisms category. No niche-specific variations could be observed in the distribution of KEGG pathways. Conclusion-Prevotella may have developed distinct genetic strategies for adaptation to different anatomical habitats through selective, niche-specific acquisition and elimination of suitable gene-families. In addition, individual microorganisms tend to develop their own distinctive adaptive stratagems through large repertoires of singletons. Such in situ, habitat-driven refurbishment of the genetic makeup can impart substantial intra-lineage genome diversity within the microbes without perturbing their general taxonomic heritage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20niche%20adaptation" title="body niche adaptation">body niche adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20microbiome" title=" human microbiome"> human microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=pangenome" title=" pangenome"> pangenome</a>, <a href="https://publications.waset.org/abstracts/search?q=Prevotella" title=" Prevotella"> Prevotella</a> </p> <a href="https://publications.waset.org/abstracts/43428/habitat-specific-divergences-in-the-gene-repertoire-among-the-reference-prevotella-genomes-of-the-human-microbiome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Transcriptome Analysis of Saffron (crocus sativus L.) Stigma Focusing on Identification Genes Involved in the Biosynthesis of Crocin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvaneh%20Mahmoudi">Parvaneh Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Moeni"> Ahmad Moeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mojtaba%20Khayam%20Nekoei"> Seyed Mojtaba Khayam Nekoei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mardi"> Mohsen Mardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrshad%20Zeinolabedini"> Mehrshad Zeinolabedini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghasem%20Hosseini%20Salekdeh"> Ghasem Hosseini Salekdeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saffron (Crocus sativus L.) is one of the most important spice and medicinal plants. The three-branch style of C. sativus flowers are the most important economic part of the plant and known as saffron, which has several medicinal properties. Despite the economic and biological significance of this plant, knowledge about its molecular characteristics is very limited. In the present study, we, for the first time, constructed a comprehensive dataset for C. sativus stigma through de novo transcriptome sequencing. We performed de novo transcriptome sequencing of C. sativus stigma using the Illumina paired-end sequencing technology. A total of 52075128 reads were generated and assembled into 118075 unigenes, with an average length of 629 bp and an N50 of 951 bp. A total of 66171unigenes were identified, among them, 66171 (56%) were annotated in the non-redundant National Center for Biotechnology Information (NCBI) database, 30938 (26%) were annotated in the Swiss-Prot database, 10273 (8.7%) unigenes were mapped to 141 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, while 52560 (44%) and 40756 (34%) unigenes were assigned to Gen Ontology (GO) categories and Eukaryotic Orthologous Groups of proteins (KOG), respectively. In addition, 65 candidate genes involved in three stages of crocin biosynthesis were identified. Finally, transcriptome sequencing of saffron stigma was used to identify 6779 potential microsatellites (SSRs) molecular markers. High-throughput de novo transcriptome sequencing provided a valuable resource of transcript sequences of C. sativus in public databases. In addition, most of candidate genes potentially involved in crocin biosynthesis were identified which could be further utilized in functional genomics studies. Furthermore, numerous obtained SSRs might contribute to address open questions about the origin of this amphiploid spices with probable little genetic diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saffron" title="saffron">saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptome" title=" transcriptome"> transcriptome</a>, <a href="https://publications.waset.org/abstracts/search?q=NGS" title=" NGS"> NGS</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatic" title=" bioinformatic"> bioinformatic</a> </p> <a href="https://publications.waset.org/abstracts/171689/transcriptome-analysis-of-saffron-crocus-sativus-l-stigma-focusing-on-identification-genes-involved-in-the-biosynthesis-of-crocin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tai%20Chen">Tai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Caihuan%20Tian"> Caihuan Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuxia%20Ren"> Xiuxia Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingqi%20Xue"> Jingqi Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuxin%20Zhang"> Xiuxin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cut%20peony" title="cut peony">cut peony</a>, <a href="https://publications.waset.org/abstracts/search?q=melatonin" title=" melatonin"> melatonin</a>, <a href="https://publications.waset.org/abstracts/search?q=vase%20life" title=" vase life"> vase life</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20reaction" title=" oxidation reaction"> oxidation reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20supply" title=" energy supply"> energy supply</a>, <a href="https://publications.waset.org/abstracts/search?q=differentially%20expressed%20genes" title=" differentially expressed genes"> differentially expressed genes</a> </p> <a href="https://publications.waset.org/abstracts/186344/melatonin-improved-vase-quality-by-delaying-oxidation-reaction-and-supplying-more-energies-in-cut-peony-paeonia-lactiflora-cv-sarah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Smoktunowicz">Magdalena Smoktunowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Wawrzyniak"> Renata Wawrzyniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Waleron"> Malgorzata Waleron</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Waleron"> Krzysztof Waleron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20chromatograpfy" title="GC-MS chromatograpfy">GC-MS chromatograpfy</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=pectobacterium%20strains" title=" pectobacterium strains"> pectobacterium strains</a>, <a href="https://publications.waset.org/abstracts/search?q=pectobacterium%20betavasculorum" title=" pectobacterium betavasculorum"> pectobacterium betavasculorum</a> </p> <a href="https://publications.waset.org/abstracts/155862/gc-ms-based-untargeted-metabolomics-to-study-the-metabolism-of-pectobacterium-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> MAFB Expression in LPS-Induced Exosomes: Revealing the Connection to sepsis-trigerred Hepatic Injury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gizaw%20Mamo%20Gebeyehu">Gizaw Mamo Gebeyehu</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Pap"> Marianna Pap</a>, <a href="https://publications.waset.org/abstracts/search?q=Geza%20Makkai"> Geza Makkai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Z.%20Janosi"> Tibor Z. Janosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Rashidian"> Shima Rashidian</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20A.%20Rauch"> Tibor A. Rauch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sepsis poses a significant global health threat, necessitating extensive exploration of indicators tied to its pathological mechanisms and multi-organ dysfunction. While murine studies have shed light on sepsis, the intricate cellular and molecular landscape in human sepsis remains enigmatic. Exploring the influence of activated monocyte-derived exosomes in sepsis sheds light on a promising pathway for understanding the intricate cellular and molecular mechanisms involved in this condition in humans. In sepsis, exosome-borne mRNA and miRNA orchestrate immune response gene expression in recipient cells. Yet, the specifics of exosome-mediated cell-to-cell communication, especially how mRNA cargoes modulate gene expression in recipient cells, remain poorly understood. This study aims to elucidate the precise molecular pathways through which exosomal mRNA cargo, particularly MAFB, contributes to the developing sepsis-induced molecular aberrations in liver tissues, employing rigorously defined cell culture conditions. THP-1 cells were treated with LPS to induce changes in exosomal RNA profiles. Exosomes were isolated and characterized using microscopy and mass spectrometry. RNA was extracted from exosomes and sequenced. The most abundant exosomal mRNAs were subjected to GO analysis for functional annotation analysis and KEGG database analysis to identify the involved enriched pathways. PCR (Polymerase Chain Reaction), RNA sequencing, and Western blotting were involved to analyze changes in gene expression, protein levels, and signaling pathways within the liver cells( HepG2) after exposure to exosomal MAFB. This study pinpoints exosomal MAFB as a potential key regulator linked to liver cell damage during sepsis, along with associated genes (miR155HG, H3F3A, and possibly JARD2) forming a crucial molecular pathway contributing to liver cell injury, Together, these elements indicate a vital molecular pathway that plays a significant role in the emergence of liver cell injury during sepsis.. These findings suggest the importance of further research on these components for potential therapeutic interventions in managing acute liver damage in sepsis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sepsis" title="sepsis">sepsis</a>, <a href="https://publications.waset.org/abstracts/search?q=exososome" title=" exososome"> exososome</a>, <a href="https://publications.waset.org/abstracts/search?q=exosomal%20MAFB" title=" exosomal MAFB"> exosomal MAFB</a>, <a href="https://publications.waset.org/abstracts/search?q=LPS-induced%20THP-1%20cells" title=" LPS-induced THP-1 cells"> LPS-induced THP-1 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20profiles" title=" RNA profiles"> RNA profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=sepsis-triggered%20liver%20injury" title=" sepsis-triggered liver injury"> sepsis-triggered liver injury</a> </p> <a href="https://publications.waset.org/abstracts/179772/mafb-expression-in-lps-induced-exosomes-revealing-the-connection-to-sepsis-trigerred-hepatic-injury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> De novo Transcriptome Assembly of Lumpfish (Cyclopterus lumpus L.) Brain Towards Understanding their Social and Cognitive Behavioural Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Likith%20Reddy%20Pinninti">Likith Reddy Pinninti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredrik%20Ribsskog%20Staven"> Fredrik Ribsskog Staven</a>, <a href="https://publications.waset.org/abstracts/search?q=Leslie%20Robert%20Noble"> Leslie Robert Noble</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Manuel%20de%20Oliveira%20Fernandes"> Jorge Manuel de Oliveira Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Manjari%20Patel"> Deepti Manjari Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Torstein%20Kristensen"> Torstein Kristensen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding fish behavior is essential to improve animal welfare in aquaculture research. Behavioral traits can have a strong influence on fish health and habituation. To identify the genes and biological pathways responsible for lumpfish behavior, we performed an experiment to understand the interspecies relationship (mutualism) between the lumpfish and salmon. Also, we tested the correlation between the gene expression data vs. observational/physiological data to know the essential genes that trigger stress and swimming behavior in lumpfish. After the de novo assembly of the brain transcriptome, all the samples were individually mapped to the available lumpfish (Cyclopterus lumpus L.) primary genome assembly (fCycLum1.pri, GCF_009769545.1). Out of ~16749 genes expressed in brain samples, we found 267 genes to be statistically significant (P > 0.05) found only in odor and control (1), model and control (41) and salmon and control (225) groups. However, genes with |LogFC| ≥0.5 were found to be only eight; these are considered as differentially expressed genes (DEG’s). Though, we are unable to find the differential genes related to the behavioral traits from RNA-Seq data analysis. From the correlation analysis, between the gene expression data vs. observational/physiological data (serotonin (5HT), dopamine (DA), 3,4-Dihydroxyphenylacetic acid (DOPAC), 5-hydroxy indole acetic acid (5-HIAA), Noradrenaline (NORAD)). We found 2495 genes found to be significant (P > 0.05) and among these, 1587 genes are positively correlated with the Noradrenaline (NORAD) hormone group. This suggests that Noradrenaline is triggering the change in pigmentation and skin color in lumpfish. Genes related to behavioral traits like rhythmic, locomotory, feeding, visual, pigmentation, stress, response to other organisms, taxis, dopamine synthesis and other neurotransmitter synthesis-related genes were obtained from the correlation analysis. In KEGG pathway enrichment analysis, we find important pathways, like the calcium signaling pathway and adrenergic signaling in cardiomyocytes, both involved in cell signaling, behavior, emotion, and stress. Calcium is an essential signaling molecule in the brain cells; it could affect the behavior of fish. Our results suggest that changes in calcium homeostasis and adrenergic receptor binding activity lead to changes in fish behavior during stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=De%20novo" title=" De novo"> De novo</a>, <a href="https://publications.waset.org/abstracts/search?q=lumpfish" title=" lumpfish"> lumpfish</a>, <a href="https://publications.waset.org/abstracts/search?q=salmon" title=" salmon"> salmon</a> </p> <a href="https://publications.waset.org/abstracts/141908/de-novo-transcriptome-assembly-of-lumpfish-cyclopterus-lumpus-l-brain-towards-understanding-their-social-and-cognitive-behavioural-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carmela%20Nardelli">Carmela Nardelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Iaffaldano"> Laura Iaffaldano</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Capobianco"> Valentina Capobianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonietta%20Tafuto"> Antonietta Tafuto</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddalena%20Ferrigno"> Maddalena Ferrigno</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Capone"> Angela Capone</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Maria%20Maruotti"> Giuseppe Maria Maruotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddalena%20Raia"> Maddalena Raia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Di%20Noto"> Rosa Di Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Del%20Vecchio"> Luigi Del Vecchio</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Martinelli"> Pasquale Martinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucio%20Pastore"> Lucio Pastore</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Sacchetti"> Lucia Sacchetti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hA-MSCs" title="hA-MSCs">hA-MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystem" title=" biosystem "> biosystem </a> </p> <a href="https://publications.waset.org/abstracts/23471/mirna-expression-profile-is-different-in-human-amniotic-mesenchymal-stem-cells-isolated-from-obese-respect-to-normal-weight-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The Gut Microbiome in Cirrhosis and Hepatocellular Carcinoma: Characterization of Disease-Related Microbial Signature and the Possible Impact of Life Style and Nutrition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lena%20Lapidot">Lena Lapidot</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Amnon"> Amir Amnon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nosenko"> Rita Nosenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Veitsman%20Ella"> Veitsman Ella</a>, <a href="https://publications.waset.org/abstracts/search?q=Cohen-Ezra%20Oranit"> Cohen-Ezra Oranit</a>, <a href="https://publications.waset.org/abstracts/search?q=Davidov%20Yana"> Davidov Yana</a>, <a href="https://publications.waset.org/abstracts/search?q=Segev%20Shlomo"> Segev Shlomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Koren%20Omry"> Koren Omry</a>, <a href="https://publications.waset.org/abstracts/search?q=Safran%20Michal"> Safran Michal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben-Ari%20Ziv"> Ben-Ari Ziv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related mortality worldwide. Liver Cirrhosis is the main predisposing risk factor for the development of HCC. The factor(s) influencing disease progression from Cirrhosis to HCC remain unknown. Gut microbiota has recently emerged as a major player in different liver diseases, however its association with HCC is still a mystery. Moreover, there might be an important association between the gut microbiota, nutrition, life style and the progression of Cirrhosis and HCC. The aim of our study was to characterize the gut microbial signature in association with life style and nutrition of patients with Cirrhosis, HCC-Cirrhosis and healthy controls. Design: Stool samples were collected from 95 individuals (30 patients with HCC, 38 patients with Cirrhosis and 27 age, gender and BMI-matched healthy volunteers). All participants answered lifestyle and Food Frequency Questionnaires. 16S rRNA sequencing of fecal DNA was performed (MiSeq Illumina). Results: There was a significant decrease in alpha diversity in patients with Cirrhosis (qvalue=0.033) and in patients with HCC-Cirrhosis (qvalue=0.032) compared to healthy controls. The microbiota of patients with HCC-cirrhosis compared to patients with Cirrhosis, was characterized by a significant overrepresentation of Clostridium (pvalue=0.024) and CF231 (pvalue=0.010) and lower expression of Alphaproteobacteria (pvalue=0.039) and Verrucomicrobia (pvalue=0.036) in several taxonomic levels: Verrucomicrobiae, Verrucomicrobiales, Verrucomicrobiaceae and the genus Akkermansia (pvalue=0.039). Furthermore, we performed an analysis of predicted metabolic pathways (Kegg level 2) that resulted in a significant decrease in the diversity of metabolic pathways in patients with HCC-Cirrhosis (qvalue=0.015) compared to controls, one of which was amino acid metabolism. Furthermore, investigating the life style and nutrition habits of patients with HCC-Cirrhosis, we found significant correlations between intake of artificial sweeteners and Verrucomicrobia (qvalue=0.12), High sugar intake and Synergistetes (qvalue=0.021) and High BMI and the pathogen Campylobacter (qvalue=0.066). Furthermore, overweight in patients with HCC-Cirrhosis modified bacterial diversity (qvalue=0.023) and composition (qvalue=0.033). Conclusions: To the best of the our knowledge, we present the first report of the gut microbial composition in patients with HCC-Cirrhosis, compared with Cirrhotic patients and healthy controls. We have demonstrated in our study that there are significant differences in the gut microbiome of patients with HCC-cirrhosis compared to Cirrhotic patients and healthy controls. Our findings are even more pronounced because the significantly increased bacteria Clostridium and CF231 in HCC-Cirrhosis weren't influenced by diet and lifestyle, implying this change is due to the development of HCC. Further studies are needed to confirm these findings and assess causality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cirrhosis" title="Cirrhosis">Cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Hepatocellular%20carcinoma" title=" Hepatocellular carcinoma"> Hepatocellular carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20style" title=" life style"> life style</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20disease" title=" liver disease"> liver disease</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a> </p> <a href="https://publications.waset.org/abstracts/96178/the-gut-microbiome-in-cirrhosis-and-hepatocellular-carcinoma-characterization-of-disease-related-microbial-signature-and-the-possible-impact-of-life-style-and-nutrition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankan%20Roy">Ankan Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Niharika"> Niharika</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kumar%20Patra"> Samir Kumar Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hub%20genes" title="hub genes">hub genes</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title=" colon cancer"> colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20methylation" title=" DNA methylation"> DNA methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic%20engineering" title=" epigenetic engineering"> epigenetic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatic%20predictions" title=" bioinformatic predictions"> bioinformatic predictions</a> </p> <a href="https://publications.waset.org/abstracts/152788/bioinformatic-prediction-of-hub-genes-by-analysis-of-signaling-pathways-transcriptional-regulatory-networks-and-dna-methylation-pattern-in-colon-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Expression Profiling of Chlorophyll Biosynthesis Pathways in Chlorophyll B-Lacking Mutants of Rice (Oryza sativa L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khiem%20M.%20Nguyen">Khiem M. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20C.%20Yang"> Ming C. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chloroplast pigments are extremely important during photosynthesis since they play essential roles in light absorption and energy transfer. Therefore, understanding the efficiency of chlorophyll (Chl) biosynthesis could facilitate enhancement in photo-assimilates accumulation, and ultimately, in crop yield. The Chl-deficient mutants have been used extensively to study the Chl biosynthetic pathways and the biogenesis of the photosynthetic apparatus. Rice (Oryza sativa L.) is one of the most leading food crops, serving as staple food for many parts of the world. To author’s best knowledge, Chl b–lacking rice has been found; however the molecular mechanism of Chl biosynthesis still remains unclear compared to wild-type rice. In this study, the ultrastructure analysis, photosynthetic properties, and transcriptome profile of wild-type rice (Norin No.8, N8) and its Chl b-lacking mutant (Chlorina 1, C1) were examined. The finding concluded that total Chl content and Chl b content in the C1 leaves were strongly reduced compared to N8 leaves, suggesting that reduction in the total Chl content contributes to leaf color variation at the physiological level. Plastid ultrastructure of C1 possessed abnormal thylakoid membranes with loss of starch granule, large number of vesicles, and numerous plastoglobuli. The C1 rice also exhibited thinner stacked grana, which was caused by a reduction in the number of thylakoid membranes per granum. Thus, the different Chl a/b ratio of C1 may reflect the abnormal plastid development and function. Transcriptional analysis identified 23 differentially expressed genes (DEGs) and 671 transcription factors (TFs) that were involved in Chl metabolism, chloroplast development, cell division, and photosynthesis. The transcriptome profile and DEGs revealed that the gene encoding PsbR (PSII core protein) was down-regulated, therefore suggesting that the lower in light-harvesting complex proteins are responsible for the lower photosynthetic capacity in C1. In addition, expression level of cell division protein (FtsZ) genes were significantly reduced in C1, causing chloroplast division defect. A total of 19 DEGs were identified based on KEGG pathway assignment involving Chl biosynthesis pathway. Among these DEGs, the GluTR gene was down-regulated, whereas the UROD, CPOX, and MgCH genes were up-regulated. Observation through qPCR suggested that later stages of Chl biosynthesis were enhanced in C1, whereas the early stages were inhibited. Plastid structure analysis together with transcriptomic analysis suggested that the Chl a/b ratio was amplified both by the reduction in Chl contents accumulation, owning to abnormal chloroplast development, and by the enhanced conversion of Chl b to Chl a. Moreover, the results indicated the same Chl-cycle pattern in the wild-type and C1 rice, indicating another Chl b degradation pathway. Furthermore, the results demonstrated that normal grana stacking, along with the absence of Chl b and greatly reduced levels of Chl a in C1, provide evidence to support the conclusion that other factors along with LHCII proteins are involved in grana stacking. The findings of this study provide insight into the molecular mechanisms that underlie different Chl a/b ratios in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chl-deficient%20mutant" title="Chl-deficient mutant">Chl-deficient mutant</a>, <a href="https://publications.waset.org/abstracts/search?q=grana%20stacked" title=" grana stacked"> grana stacked</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis" title=" photosynthesis"> photosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-Seq" title=" RNA-Seq"> RNA-Seq</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomic%20analysis" title=" transcriptomic analysis"> transcriptomic analysis</a> </p> <a href="https://publications.waset.org/abstracts/112205/expression-profiling-of-chlorophyll-biosynthesis-pathways-in-chlorophyll-b-lacking-mutants-of-rice-oryza-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Deciphering Tumor Stroma Interactions in Retinoblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeswari%20Raguraman">Rajeswari Raguraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sowmya%20Parameswaran"> Sowmya Parameswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnakumar%20Subramanian"> Krishnakumar Subramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagat%20Kanwar"> Jagat Kanwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kanwar"> Rupinder Kanwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Tumor microenvironment has been implicated in several cancers to regulate cell growth, invasion and metastasis culminating in outcome of therapy. Tumor stroma consists of multiple cell types that are in constant cross-talk with the tumor cells to favour a pro-tumorigenic environment. Not much is known about the existence of tumor microenvironment in the pediatric intraocular malignancy, Retinoblastoma (RB). In the present study, we aim to understand the multiple stromal cellular subtypes and tumor stromal interactions expressed in RB tumors. Materials and Methods: Immunohistochemistry for stromal cell markers CD31, CD68, alpha-smooth muscle (α-SMA), vimentin and glial fibrillary acidic protein (GFAP) was performed on formalin fixed paraffin embedded tissues sections of RB (n=12). The differential expression of stromal target molecules; fibroblast activation protein (FAP), tenascin-C (TNC), osteopontin (SPP1), bone marrow stromal antigen 2 (BST2), stromal derived factor 2 and 4 (SDF2 and SDF4) in primary RB tumors (n=20) and normal retina (n=5) was studied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. The differential expression was correlated with the histopathological features of RB. The interaction between RB cell lines (Weri-Rb-1, NCC-RbC-51) and Bone marrow stromal cells (BMSC) was also studied using direct co-culture and indirect co-culture methods. The functional effect of the co-culture methods on the RB cells was evaluated by invasion and proliferation assays. Global gene expression was studied by using Affymetrix 3’ IVT microarray. Pathway prediction was performed using KEGG and the key molecules were validated using qRT-PCR. Results: The immunohistochemistry revealed the presence of several stromal cell types such as endothelial cells (CD31+;Vim+/-); macrophages (CD68+;Vim+/-); Fibroblasts (Vim+; CD31-;CD68- );myofibroblasts (α-SMA+/ Vim+) and invading retinal astrocytes/ differentiated retinal glia (GFAP+; Vim+). A characteristic distribution of these stromal cell types was observed in the tumor microenvironment, with endothelial cells predominantly seen in blood vessels and macrophages near actively proliferating tumor or necrotic areas. Retinal astrocytes and glia were predominant near the optic nerve regions in invasive tumors with sparse distribution in tumor foci. Fibroblasts were widely distributed with rare evidence of myofibroblasts in the tumor. Both gene and protein expression revealed statistically significant (P<0.05) up-regulation of FAP, TNC and BST2 in primary RB tumors compared to the normal retina. Co-culture of BMSC with RB cells promoted invasion and proliferation of RB cells in direct and indirect contact methods respectively. Direct co-culture of RB cell lines with BMSC resulted in gene expression changes in ECM-receptor interaction, focal adhesion, IL-8 and TGF-β signaling pathways associated with cancer. In contrast, various metabolic pathways such a glucose, fructose and amino acid metabolism were significantly altered under the indirect co-culture condition. Conclusion: The study suggests that the close interaction between RB cells and the stroma might be involved in RB tumor invasion and progression which is likely to be mediated by ECM-receptor interactions and secretory factors. Targeting the tumor stroma would be an attractive option for redesigning treatment strategies for RB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20profiles" title="gene expression profiles">gene expression profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=retinoblastoma" title=" retinoblastoma"> retinoblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=stromal%20cells" title=" stromal cells"> stromal cells</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a> </p> <a href="https://publications.waset.org/abstracts/65598/deciphering-tumor-stroma-interactions-in-retinoblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Identification of a Panel of Epigenetic Biomarkers for Early Detection of Hepatocellular Carcinoma in Blood of Individuals with Liver Cirrhosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Lubecka">Katarzyna Lubecka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirsty%20Flower"> Kirsty Flower</a>, <a href="https://publications.waset.org/abstracts/search?q=Megan%20Beetch"> Megan Beetch</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucinda%20Kurzava"> Lucinda Kurzava</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Buvala"> Hannah Buvala</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Gawrieh"> Samer Gawrieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Suthat%20Liangpunsakul"> Suthat Liangpunsakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Gonzalez"> Tracy Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20McCabe"> George McCabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Naga%20Chalasani"> Naga Chalasani</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20M.%20Flanagan"> James M. Flanagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Stefanska"> Barbara Stefanska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hepatocellular carcinoma (HCC), the most prevalent type of primary liver cancer, is the second leading cause of cancer death worldwide. Late onset of clinical symptoms in HCC results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable early detection biomarkers that can distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed and could increase the cure rate from 5% to 80%. We used Illumina-450K microarray to test whether blood DNA, an easily accessible source of DNA, bear site-specific changes in DNA methylation in response to HCC before diagnosis with conventional tools (pre-diagnostic). Top 11 differentially methylated sites were selected for validation by pyrosequencing. The diagnostic potential of the 11 pyrosequenced probes was tested in blood samples from a prospective cohort of cirrhotic patients. We identified 971 differentially methylated CpG sites in pre-diagnostic HCC cases as compared with healthy controls (P < 0.05, paired Wilcoxon test, ICC ≥ 0.5). Nearly 76% of differentially methylated CpG sites showed lower levels of methylation in cases vs. controls (P = 2.973E-11, Wilcoxon test). Classification of the CpG sites according to their location relative to CpG islands and transcription start site revealed that those hypomethylated loci are located in regulatory regions important for gene transcription such as CpG island shores, promoters, and 5’UTR at higher frequency than hypermethylated sites. Among 735 CpG sites hypomethylated in cases vs. controls, 482 sites were assigned to gene coding regions whereas 236 hypermethylated sites corresponded to 160 genes. Bioinformatics analysis using GO, KEGG and DAVID knowledgebase indicate that differentially methylated CpG sites are located in genes associated with functions that are essential for gene transcription, cell adhesion, cell migration, and regulation of signal transduction pathways. Taking into account the magnitude of the difference, statistical significance, location, and consistency across the majority of matched pairs case-control, we selected 11 CpG loci corresponding to 10 genes for further validation by pyrosequencing. We established that methylation of CpG sites within 5 out of those 10 genes distinguish cirrhotic patients who subsequently developed HCC from those who stayed cancer free (cirrhotic controls), demonstrating potential as biomarkers of early detection in populations at risk. The best predictive value was detected for CpGs located within BARD1 (AUC=0.70, asymptotic significance ˂0.01). Using an additive logistic regression model, we further showed that 9 CpG loci within those 5 genes, that were covered in pyrosequenced probes, constitute a panel with high diagnostic accuracy (AUC=0.887; 95% CI:0.80-0.98). The panel was able to distinguish pre-diagnostic cases from cirrhotic controls free of cancer with 88% sensitivity at 70% specificity. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established biomarker panel has high potential to be developed into a routine clinical test after validation in larger cohorts. This study was supported by Showalter Trust, American Cancer Society (IRG#14-190-56), and Purdue Center for Cancer Research (P30 CA023168) granted to BS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20methylation" title=" DNA methylation"> DNA methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20detection" title=" early detection"> early detection</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatocellular%20carcinoma" title=" hepatocellular carcinoma"> hepatocellular carcinoma</a> </p> <a href="https://publications.waset.org/abstracts/56216/identification-of-a-panel-of-epigenetic-biomarkers-for-early-detection-of-hepatocellular-carcinoma-in-blood-of-individuals-with-liver-cirrhosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>