CINXE.COM
Search results for: manganese
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: manganese</title> <meta name="description" content="Search results for: manganese"> <meta name="keywords" content="manganese"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="manganese" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="manganese"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 205</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: manganese</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Shavlakadze">Marine Shavlakadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganese" title="manganese">manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ballast" title=" non-ballast"> non-ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-%20fertilizers" title=" micro- fertilizers "> micro- fertilizers </a> </p> <a href="https://publications.waset.org/abstracts/76450/study-of-receiving-opportunity-of-water-soluble-and-non-ballast-micro-fertilizer-on-the-base-of-manganese-containing-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Reduction Behavior of Medium Grade Manganese Ore from Karangnunggal during a Sintering Process in Methane Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aripin">H. Aripin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Made%20Joni"> I. Made Joni</a>, <a href="https://publications.waset.org/abstracts/search?q=Edvin%20Priatna"> Edvin Priatna</a>, <a href="https://publications.waset.org/abstracts/search?q=Nundang%20Busaeri"> Nundang Busaeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Svilen%20Sabchevski"> Svilen Sabchevski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The ores were grinded using a jar mill to pass through a 150 mesh sieve. The effects of keeping it at a temperature of 1200 °C in methane gas on the structural properties have been studied. The material’s properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. It has been found that the ore contains MnO₂ as the main constituents at about 46.80 wt.%. It can be also observed that the ore particles are agglomerated forming dense grains with different texture and morphology. The irregular-shaped grains with dark contrast, the large brighter grains, and smaller grains with bright texture and smooth surfaces are associated with the presence of manganese, calcium, and quartz, respectively. From XRD patterns, MnO₂ is reduced to hausmannite (Mn₃O₄), manganosite (MnO) and manganese carbide (Mn₇C₃). At a temperature of 1200°C the keeping time does not have any effect on the formation of crystals and the crystalline phases remain almost unchanged in the time range from 15 to 90 minutes. An increase of the keeping time up to 45 minutes during the sintering process leads to an increase of the MnO concentration, while at 90 minutes, the concentration decreases. At longer keeping times the excess reaction of the methane gas and manganese oxide in the ore causes an increase of carbon deposition. As a result, it blocks the particle surface and then hinders the reduction process of manganese oxide. From FTIR spectrum allows one to explain that the appearance of C=O stretching mode arises from absorption of atmospheric methane and manganese oxide of the ore. The intensity of this band increases with increasing the keeping time, indicating an increase of carbon deposition on the surface of manganese oxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganese" title="manganese">manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20grade%20manganese%20ore" title=" medium grade manganese ore"> medium grade manganese ore</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=keeping%20the%20temperature" title=" keeping the temperature"> keeping the temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20deposition" title=" carbon deposition"> carbon deposition</a> </p> <a href="https://publications.waset.org/abstracts/76565/reduction-behavior-of-medium-grade-manganese-ore-from-karangnunggal-during-a-sintering-process-in-methane-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Phenols and Manganese Removal from Landfill Leachate and Municipal Waste Water Using the Constructed Wetland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mojiri">Amin Mojiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lou%20Ziyang"> Lou Ziyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constructed wetland (CW) is a reasonable method to treat waste water. Current study was carried out to co-treat landfill leachate and domestic waste water using a CW system. Typha domingensis was transplanted to CW, which encloses two substrate layers of adsorbents named ZELIAC and zeolite. Response surface methodology and central composite design were employed to evaluate experimental data. Contact time (h) and leachate to waste water mixing ratio (%; v/v) were selected as independent factors. Phenols and manganese removal were selected as dependent responses. At optimum contact time (48.7 h) and leachate to waste water mixing ratio (20.0%), removal efficiencies of phenols and manganese removal efficiencies were 90.5%, and 89.4%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constructed%20wetland" title="constructed wetland">constructed wetland</a>, <a href="https://publications.waset.org/abstracts/search?q=Manganese" title=" Manganese"> Manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=Thypha%20domingensis" title=" Thypha domingensis"> Thypha domingensis</a> </p> <a href="https://publications.waset.org/abstracts/33592/phenols-and-manganese-removal-from-landfill-leachate-and-municipal-waste-water-using-the-constructed-wetland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Banana Peels as an Eco-Sorbent for Manganese Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mahmoud">M. S. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4 % is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2 °C, stirring rate 200 rpm and contact time 2 h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4 % and 97.1 %, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7 % and 82.4 %, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=banana%20peels" title=" banana peels"> banana peels</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20models" title=" isothermal models"> isothermal models</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese "> manganese </a> </p> <a href="https://publications.waset.org/abstracts/15641/banana-peels-as-an-eco-sorbent-for-manganese-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ami%20Fadhillah%20Amir%20Abdul%20Nasir">Ami Fadhillah Amir Abdul Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20C.%20Niehaus"> Amanda C. Niehaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Skye%20F.%20Cameron"> Skye F. Cameron</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20A.%20Von%20Hippel"> Frank A. Von Hippel</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Postlethwait%E2%80%8B"> John Postlethwait</a>, <a href="https://publications.waset.org/abstracts/search?q=Robbie%20S.%20Wilson"> Robbie S. Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecotoxicology" title="ecotoxicology">ecotoxicology</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=telomere%20length" title=" telomere length"> telomere length</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol" title=" cortisol"> cortisol</a>, <a href="https://publications.waset.org/abstracts/search?q=locomotor" title=" locomotor "> locomotor </a> </p> <a href="https://publications.waset.org/abstracts/64831/manganese-contamination-exacerbates-reproductive-stress-in-a-suicidally-breeding-marsupial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Study on the Controlled Growth of Lanthanum Hydroxide and Manganese Oxide Nano Composite under the Presence of Cationic Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Verma">Neeraj Kumar Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum hydroxide and manganese oxide nanocomposite are synthesized by chemical routes. Physical characterization is done by TEM to look at the size and dispersion of the nanoparticles in the composite. Chemical characterization is done by X-ray diffraction technique and FTIR to ascertain the attachment of the functionalities and bond stretching. Further thermal analysis is done by thermogravimetric analysis to find the tendency of the thermal decomposition in the elevated temperature range of 0-1000°C. Proper analysis and correlation of the various results obtained suggested the controlled growth of crystalline without agglomeration and good stability in the various temperature ranges of the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20hydroxide" title=" lanthanum hydroxide"> lanthanum hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20oxide" title=" manganese oxide"> manganese oxide</a> </p> <a href="https://publications.waset.org/abstracts/25803/study-on-the-controlled-growth-of-lanthanum-hydroxide-and-manganese-oxide-nano-composite-under-the-presence-of-cationic-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov">Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova"> Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20copper-manganese%20catalysts" title="supported copper-manganese catalysts">supported copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20of%20exhaust%20gases" title=" combustion of exhaust gases"> combustion of exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/23639/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-catalysts-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Tamer">Ömer Tamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Davut%20Avc%C4%B1"> Davut Avcı</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Atalay"> Yusuf Atalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=picolinate" title=" picolinate"> picolinate</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman" title=" Raman"> Raman</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optic" title=" nonlinear optic"> nonlinear optic</a> </p> <a href="https://publications.waset.org/abstracts/25057/synthesis-structural-spectroscopic-and-nonlinear-optical-properties-of-new-picolinate-complex-of-manganese-ii-ion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Mansour">Parisa Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glial%20activity" title="glial activity">glial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese-enhanced%20magnetic%20resonance%20imaging" title=" manganese-enhanced magnetic resonance imaging"> manganese-enhanced magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroarchitecture" title=" neuroarchitecture"> neuroarchitecture</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20activity" title=" neuronal activity"> neuronal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20tract%20tracing" title=" neuronal tract tracing"> neuronal tract tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20pathway" title=" visual pathway"> visual pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=eye" title=" eye"> eye</a> </p> <a href="https://publications.waset.org/abstracts/188703/the-utilization-of-manganese-enhanced-magnetic-resonance-imaging-in-the-fields-of-ophthalmology-and-visual-neuroscience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Optimization of Groundwater Utilization in Fish Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed%20Eldesouky">M. Ahmed Eldesouky</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nasr"> S. Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Beltagy"> A. Beltagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is generally considered as the best source for aquaculture as it is well protected from contamination. The most common problem limiting the use of groundwater in Egypt is its high iron, manganese and ammonia content. This problem is often overcome by applying the treatment before use. Aeration in many cases is not enough to oxidize iron and manganese in complex forms with organics. Most of the treatment we use potassium permanganate as an oxidizer followed by a pressurized closed green sand filter. The aim of present study is to investigate the optimum characteristics of groundwater to give lowest iron, manganese and ammonia, maximum production and quality of fish in aquaculture in El-Max Research Station. The major design goal of the system was determined the optimum time for harvesting the treated water, pH, and Glauconite weight to use it for aquaculture process in the research site and achieve the Egyptian law (48/1982) and EPA level required for aquaculture. The water characteristics are [Fe = 0.116 mg/L, Mn = 1.36 mg/L,TN = 0.44 mg/L , TP = 0.07 mg/L , Ammonia = 0.386 mg/L] by using the glauconite filter we obtained high efficiency for removal for [(Fe, Mn and Ammonia] ,but in the Lab we obtained result for (Fe, 43-97), ( Mn,92-99 ), and ( Ammonia, 66-88 )]. We summarized the results to show the optimum time, pH, Glauconite weight, and the best model for design in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title="aquaculture">aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia%20in%20groundwater" title=" ammonia in groundwater"> ammonia in groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20and%20manganese%20in%20water" title=" iron and manganese in water"> iron and manganese in water</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20treatment" title=" groundwater treatment"> groundwater treatment</a> </p> <a href="https://publications.waset.org/abstracts/46529/optimization-of-groundwater-utilization-in-fish-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Biosorption of Manganese Mine Effluents Using Crude Chitin from Philippine Bivalves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Randy%20Molejona%20Jr.">Randy Molejona Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaine%20Nicole%20Saquin"> Elaine Nicole Saquin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The area around the Ajuy river in Iloilo, Philippines, is currently being mined for manganese ore, and river water samples exceed the maximum manganese contaminant level set by US-EPA. At the same time, the surplus of local bivalve waste is another environmental concern. Synthetic chemical treatment compromises water quality, leaving toxic residues. Therefore, an alternative treatment process is biosorption or using the physical and chemical properties of biomass to adsorb heavy metals in contaminated water. The study aims to extract crude chitin from shell wastes of Bractechlamys vexillum, Perna viridis, and Placuna placenta and determine its adsorption capacity on manganese in simulated and actual mine water. Crude chitin was obtained by pulverization, deproteinization, demineralization, and decolorization of shells. Biosorption by flocculation followed 5 g: 50 mL chitin-to-water ratio. Filtrates were analyzed using MP-AES after 24 hours. In both actual and simulated mine water, respectively, B. vexillum yielded the highest adsorption percentage of 91.43% and 99.58%, comparable to P. placenta of 91.43% and 99.37%, while significantly different to P. viridis of -57.14% and 31.53%, (p < 0.05). FT-IR validated the presence of chitin in shells based on carbonyl-containing functional groups at peaks 1530-1560 cm⁻¹ and 1660-1680 cm⁻¹. SEM micrographs showed the amorphous and non-homogenous structure of chitin. Thus, crude chitin from B. vexillum and P. placenta can be bio-sorbents for water treatment of manganese-impacted effluents, and promote appropriate waste management of local bivalves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20effluents" title=" mine effluents"> mine effluents</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/119862/biosorption-of-manganese-mine-effluents-using-crude-chitin-from-philippine-bivalves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov">Krasimir Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova"> Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper-manganese%20catalysts" title="copper-manganese catalysts">copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gases" title=" exhaust gases"> exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/22828/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-effect-of-preparation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Shavlakadze">Marine Shavlakadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO<sub>3</sub>)<sub>2 </sub>can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title="hydroponics">hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-fertilizers" title=" micro-fertilizers"> micro-fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese-containing%20materials" title=" manganese-containing materials"> manganese-containing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastes" title=" industrial wastes "> industrial wastes </a> </p> <a href="https://publications.waset.org/abstracts/113053/study-on-the-use-of-manganese-containing-materials-as-a-micro-fertilizer-based-on-the-local-mineral-resources-and-industrial-wastes-in-hydroponic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Lian">Fang Lian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zefang%20Chenli"> Zefang Chenli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laijun%20Ma"> Laijun Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Mao"> Lei Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20purity" title=" high purity"> high purity</a>, <a href="https://publications.waset.org/abstracts/search?q=low-grade%20rhodochrosite" title=" low-grade rhodochrosite"> low-grade rhodochrosite</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20oxide" title=" manganese oxide"> manganese oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=purifying%20process" title=" purifying process"> purifying process</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20ratio" title=" recovery ratio"> recovery ratio</a> </p> <a href="https://publications.waset.org/abstracts/67139/comparative-evaluation-of-high-pure-mn3o4-preparation-technique-between-the-conventional-process-from-electrolytic-manganese-and-a-sustainable-approach-directly-from-low-grade-rhodochrosite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Theoretical Insight into Ligand Free Manganese Catalyzed C-O Coupling Protocol for the Synthesis of Biaryl Ethers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolin%20Anna%20Joy">Carolin Anna Joy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohith%20%20K.%20R"> Rohith K. R</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehin%20%20Sulay"> Rehin Sulay</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvathy%20Santhoshkumar"> Parvathy Santhoshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.Anil%20%20Kumar"> G.Anil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vibin%20Ipe%20Thomas"> Vibin Ipe Thomas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ullmann coupling reactions are gaining great relevance owing to their contribution in the synthesis of biologically and pharmaceutically important compounds. Palladium and many other heavy metals have proven their excellent ability in coupling reaction, but the toxicity matters. The first-row transition metal also possess toxicity, except in the case of iron and manganese. The suitability of manganese as a catalyst is achieving great interest in oxidation, reduction, C-H activation, coupling reaction etc. In this presentation, we discuss the thermo chemistry of ligand free manganese catalyzed C-O coupling reaction between phenol and aryl halide for the synthesis of biaryl ethers using Density functional theory techniques. The mechanism involves an oxidative addition-reductive elimination step. The transition state for both the step had been studied and confirmed using Intrinsic Reaction Coordinate (IRC) calculation. The barrier height for the reaction had also been calculated from the rate determining step. The possibility of other mechanistic way had also been studied. To achieve further insight into the mechanism, substrate having various functional groups is considered in our study to direct their effect on the feasibility of the reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Density%20functional%20theory" title="Density functional theory">Density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Molecular%20Modeling" title=" Molecular Modeling"> Molecular Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand%20free" title=" ligand free"> ligand free</a>, <a href="https://publications.waset.org/abstracts/search?q=biaryl%20ethers" title=" biaryl ethers"> biaryl ethers</a>, <a href="https://publications.waset.org/abstracts/search?q=Ullmann%20coupling" title=" Ullmann coupling"> Ullmann coupling</a> </p> <a href="https://publications.waset.org/abstracts/122722/theoretical-insight-into-ligand-free-manganese-catalyzed-c-o-coupling-protocol-for-the-synthesis-of-biaryl-ethers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Comparative DNA Binding of Iron and Manganese Complexes by Spectroscopic and ITC Techniques and Antibacterial Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Nejat%20Dehkordi">Maryam Nejat Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Lincoln"> Per Lincoln</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Momtaz"> Hassan Momtaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interaction of Schiff base complexes of iron and manganese (iron [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) chloride, [Fe Salen]Cl, manganese [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) acetate) with DNA were investigated by spectroscopic and isothermal titration calorimetry techniques (ITC). The absorbance spectra of complexes have shown hyper and hypochromism in the presence of DNA that is indication of interaction of complexes with DNA. The linear dichroism (LD) measurements confirmed the bending of DNA in the presence of complexes. Furthermore, isothermal titration calorimetry experiments approved that complexes bound to DNA on the base of both electrostatic and hydrophobic interactions. Furthermore, ITC profile exhibits the existence of two binding phases for the complex. Antibacterial activity of ligand and complexes were tested in vitro to evaluate their activity against the gram positive and negative bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base%20complexes" title="Schiff base complexes">Schiff base complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=ct-DNA" title=" ct-DNA"> ct-DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20dichroism%20%28LD%29" title=" linear dichroism (LD)"> linear dichroism (LD)</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20titration%20calorimetry%20%28ITC%29" title=" isothermal titration calorimetry (ITC)"> isothermal titration calorimetry (ITC)</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity "> antibacterial activity </a> </p> <a href="https://publications.waset.org/abstracts/24799/comparative-dna-binding-of-iron-and-manganese-complexes-by-spectroscopic-and-itc-techniques-and-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Mohammed">M. I. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20M.%20Ahmad"> U. M. Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20elements" title="mineral elements">mineral elements</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20grains" title=" coarse grains"> coarse grains</a>, <a href="https://publications.waset.org/abstracts/search?q=staple%20food" title=" staple food"> staple food</a>, <a href="https://publications.waset.org/abstracts/search?q=Kano" title=" Kano"> Kano</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/41203/determination-of-mineral-elements-in-some-coarse-grains-used-as-staple-food-in-kano-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Hydrometallurgical Recovery of Cobalt, Nickel, Lithium, and Manganese from Spent Lithium-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20K.%20Hardwick">E. K. Hardwick</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20B.%20Siwela"> L. B. Siwela</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Falconer"> J. G. Falconer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Mathibela"> M. E. Mathibela</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Rolfe"> W. Rolfe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium-ion battery (LiB) demand has increased with the advancement in technologies. The applications include electric vehicles, cell phones, laptops, and many more devices. Typical components of the cathodes include lithium, cobalt, nickel, and manganese. Recycling the spent LiBs is necessary to reduce the ecological footprint of their production and use and to have a secondary source of valuable metals. A hydrometallurgical method was investigated for the recovery of cobalt and nickel from LiB cathodes. The cathodes were leached using a chloride solution. Ion exchange was then used to recover the chloro-complexes of the metals. The aim of the research was to determine the efficiency of a chloride leach, as well as ion exchange operating capacities that can be achieved for LiB recycling, and to establish the optimal operating conditions (ideal pH, temperature, leachate and eluant, flowrate, and reagent concentrations) for the recovery of the cathode metals. It was found that the leaching of the cathodes could be hindered by the formation of refractory metal oxides of cathode components. A reducing agent was necessary to improve the leaching rate and efficiency. Leaching was achieved using various chloride-containing solutions. The chloro-complexes were absorbed by the ion exchange resin and eluted to produce concentrated cobalt, nickel, lithium, and manganese streams. Chromatographic separation of these elements was achieved. Further work is currently underway to determine the optimal operating conditions for the recovery by ion exchange. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt" title="cobalt">cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate%20formation" title=" leachate formation"> leachate formation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title=" lithium-ion batteries"> lithium-ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/150918/hydrometallurgical-recovery-of-cobalt-nickel-lithium-and-manganese-from-spent-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Donkova">B. Donkova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nedyalkova"> M. Nedyalkova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mehandjiev"> D. Mehandjiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title="crystal structure">crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20oxalate" title=" manganese oxalate"> manganese oxalate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behavior" title=" thermal behavior"> thermal behavior</a> </p> <a href="https://publications.waset.org/abstracts/85251/comparison-of-the-thermal-behavior-of-different-crystal-forms-of-manganeseii-oxalate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Manganese Imidazole Complexes: Electrocatalytic Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishakha%20Kaim">Vishakha Kaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mookan%20Natarajan"> Mookan Natarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kaur-Ghumaan"> Sandeep Kaur-Ghumaan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is one of the most abundant elements present on earth’s crust and considered to be the simplest element in existence. It is not found naturally as a gas on earth and thus has to be manufactured. Hydrogen can be produced from a variety of sources, i.e., water, fossil fuels, or biomass and it is a byproduct of many chemical processes. It is also considered as a secondary source of energy commonly referred to as an energy carrier. Though hydrogen is not widely used as a fuel, it still has the potential for greater use in the future as a clean and renewable source of energy. Electrocatalysis is one of the important source for the production of hydrogen which could contribute to this prominent challenge. Metals such as platinum and palladium are considered efficient for hydrogen production but with limited applications. As a result, a wide variety of metal complexes with earth abundant elements and varied ligand environments have been explored for the electrochemical production of hydrogen. In nature, [FeFe] hydrogenase enzyme present in DesulfoVibrio desulfuricans and Clostridium pasteurianum catalyses the reversible interconversion of protons and electrons into dihydrogen. Since the first structure for the enzyme was reported in 1990s, a range of iron complexes has been synthesized as structural and functional mimics of the enzyme active site. Mn is one of the most desirable element for sustainable catalytic transformations, immediately behind Fe and Ti. Only limited number manganese complexes have been reported in the last two decades as catalysts for proton reduction. Furthermore, redox reactions could be carried out in a facile manner, due to the capability of manganese complexes to be stable at different oxidation states. Herein are reported, four µ2-thiolate bridged manganese complexes [Mn₂(CO)₆(μ-S₂N₄C₁₄H₁₀)] 1, [Mn₂(CO)7(μ- S₂N₄C₁₄H₁₀)] 2, Mn₂(CO)₆(μ-S₄N₂C₁₄H₁₀)] 3 and [Mn₂(CO)(μ- S₄N₂C₁₄H₁₀)] 4 have been synthesized and characterized. The cyclic voltammograms of the complexes displayed irreversible reduction peaks in the range - 0.9 to -1.3 V (vs. Fc⁺/Fc in acetonitrile at 0.1 Vs⁻¹). The complexes were catalytically active towards proton reduction in the presence of trifluoroacetic acid as seen from electrochemical investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20abundant" title="earth abundant">earth abundant</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalytic" title=" electrocatalytic"> electrocatalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a> </p> <a href="https://publications.waset.org/abstracts/80317/manganese-imidazole-complexes-electrocatalytic-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Corrosion and Microstructural Properties of Vanadium-Microalloyed High-Manganese Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20Olumide%20Olugbade">Temitope Olumide Olugbade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low resistance and delayed fracture to corrosion, especially in harsh environmental conditions, often limit the wide application of high-manganese (high-Mn) steels. To address this issue, the present work investigates the influence of microalloying on the corrosion properties of high-Mn steels. Microalloyed and base high-Mn steels were synthesized through an arc melting process under an argon atmosphere. To generate different microstructures, the temperature and duration were varied via thermal homogenization treatments. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to determine the corrosion properties in 0.6 M NaCl aqueous solution at room temperature. The relationship between the microstructures and corrosion properties was investigated via Scanning Kelvin Probe Microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDX), and Scanning electron microscopy (SEM) techniques. The local corrosion properties were investigated via in situ atomic force spectroscopy (AFM), considering the homogenization treatments. The results indicate that microalloying is a successful technique for enhancing the corrosion behavior of high-Mn steels. Compared to other alloying elements, Vanadium has shown improvement in corrosion properties for both general and local corrosion in chloride environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=high-manganese%20steel" title=" high-manganese steel"> high-manganese steel</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=microalloying" title=" microalloying"> microalloying</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/174119/corrosion-and-microstructural-properties-of-vanadium-microalloyed-high-manganese-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Industrial Waste Multi-Metal Ion Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20S.%20Abia%20II">Thomas S. Abia II</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater%20treatment" title=" industrial wastewater treatment"> industrial wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-metal%20ion%20exchange" title=" multi-metal ion exchange"> multi-metal ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a> </p> <a href="https://publications.waset.org/abstracts/70462/industrial-waste-multi-metal-ion-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Manganese and Other Geothermal Minerals Exposure to Residents in Ketenger Village, Banyumas, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Yuniatun">Rita Yuniatun</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Fadlilah%20Firdausi"> Dewi Fadlilah Firdausi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anida%20Hanifah"> Anida Hanifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Putrisuvi%20Nurjannah%20Zalqis"> Putrisuvi Nurjannah Zalqis</a>, <a href="https://publications.waset.org/abstracts/search?q=Erza%20Nur%20Afrilia"> Erza Nur Afrilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Akrima%20Fajrin%20Nurimani"> Akrima Fajrin Nurimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Luis%20Krishna"> Andrew Luis Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manganese (Mn) is one of the potential contaminants minerals geothermal water. Preliminary studies conducted in Ketenger village, the nearest village with Baturaden hot spring, showed that the concentration of Mn in water supply has exceeded the reference value. Mineral contamination problem in Ketenger village is not only Mn, but also other potential geothermal minerals, such as chromium (Cr), iron (Fe), sulfide (S2-), nickel (Ni), cobalt (Co), and zinc (Zn). It becomes a concern because generally the residents still use ground water as the water source for their daily needs, including drinking and cooking. Therefore, this study aimed to determine the distribution of mineral contamination in drinking water and food and to estimate the health risks possibility from the exposure. Four minerals (Mn, Fe, S2-, and Cr6+) were analyzed in drinking water, carbohydrate sources, vegetables, fishes, and fruits. The test results indicate that Mn concentration in drinking water is 0.35 mg/L, has exceeded the maximum contaminant level (MCL) according to the US EPA (MCL = 0.005 mg/L), whereas other minerals still comply with the standards. In addition, we found that the average of Mn concentration in the carbohydrate sources is quite high (1.87 mg/Kg). Measurement results in Chronic Daily Intake (CDI) and the Risk Quotient (RQ) found that exposure to manganese and other geothermal minerals in drinking water and food are safe from the non-carcinogenic effects in each age group (RQ<1). So, geothermal mineral concentrations in drinking water and food has no effect on non-carcinogenic risk in Ketenger’s residents because of CDI is also influenced by other parameters such as the duration of exposure and the rate of consumption. However, it was found that intake of essential minerals (Mn and Fe) are deficient in every age group. So that, the addition of Mn and Fe intake is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CDI" title="CDI">CDI</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminant" title=" contaminant"> contaminant</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20minerals" title=" geothermal minerals"> geothermal minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=RQ" title=" RQ"> RQ</a> </p> <a href="https://publications.waset.org/abstracts/48070/manganese-and-other-geothermal-minerals-exposure-to-residents-in-ketenger-village-banyumas-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Morphostructural Characterization of Zinc and Manganese Nano-Oxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriana-Gabriela%20Plaiasu">Adriana-Gabriela Plaiasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalin%20Marian%20Ducu"> Catalin Marian Ducu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological" title=" morphological"> morphological</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-oxides" title=" nano-oxides"> nano-oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a> </p> <a href="https://publications.waset.org/abstracts/83988/morphostructural-characterization-of-zinc-and-manganese-nano-oxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Bikashvili">Tamar Bikashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Lordkipanidze"> Tamar Lordkipanidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilia%20Lazrishvili"> Ilia Lazrishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron" title=" neuron"> neuron</a> </p> <a href="https://publications.waset.org/abstracts/41099/effect-of-toxic-metals-exposure-on-rat-behavior-and-brain-morphology-arsenic-manganese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Development of Long and Short Range Ordered Domains in a High Specific Strength Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Kumar">Nikhil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Singh"> Aparna Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural development when annealed at different temperatures in a high aluminum and manganese light weight steel has been examined. The FCC matrix of the manganese (Mn)-rich and nickel (Ni)-rich areas in the studied Fe-Mn-Al-Ni-C-light weight steel have been found to contain anti phase domains. In the Mn-rich region short order range of domains manifested by the diffuse scattering in the electron diffraction patterns was observed. Domains in the Ni-rich region were found to be arranged periodically validated through lattice imaging. The nature of these domains can be tuned with annealing temperature resulting in profound influence in the mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anti-phase%20domain%20boundaries" title="Anti-phase domain boundaries">Anti-phase domain boundaries</a>, <a href="https://publications.waset.org/abstracts/search?q=BCC" title=" BCC"> BCC</a>, <a href="https://publications.waset.org/abstracts/search?q=FCC" title=" FCC"> FCC</a>, <a href="https://publications.waset.org/abstracts/search?q=Light%20Weight%20Steel" title=" Light Weight Steel"> Light Weight Steel</a> </p> <a href="https://publications.waset.org/abstracts/121140/development-of-long-and-short-range-ordered-domains-in-a-high-specific-strength-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Hui%20Cheng"> Kuan-Hui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Wen%20Wu"> Mei-Wen Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Mn%20coating" title="Ni-Mn coating">Ni-Mn coating</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20plating" title=" DC plating"> DC plating</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20stress" title=" internal stress"> internal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=leveling%20power" title=" leveling power"> leveling power</a> </p> <a href="https://publications.waset.org/abstracts/24914/the-mechanical-and-electrochemical-properties-of-dc-electrodeposited-ni-mn-alloy-coating-with-low-internal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Imran">G. Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandurangan"> A. Pandurangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous" title=" mesoporous"> mesoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=MnOx" title=" MnOx"> MnOx</a> </p> <a href="https://publications.waset.org/abstracts/43630/efficiently-dispersed-mnox-on-mesoporous-3d-cubic-support-for-cyclohexene-epoxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20Kolentsova">Elitsa Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Dimitrov"> Dimitar Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasko%20Idakiev"> Vasko Idakiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Tabakova"> Tatyana Tabakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov"> Krasimir Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Mn-Co%20catalysts" title="Cu-Mn-Co catalysts">Cu-Mn-Co catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20oxide" title=" carbon oxide"> carbon oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs" title=" VOCs"> VOCs</a> </p> <a href="https://publications.waset.org/abstracts/68064/alumina-supported-copper-manganese-cobalt-catalysts-for-co-and-vocs-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Tailoring and Characterization of Lithium Manganese Ferrite- Polypyrrole Nanocomposite (LixMnxFe₂O₄-PPY) to Evaluate Their Performance as an Energy Storage Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waheed%20Mushtaq">Muhammad Waheed Mushtaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20bashir"> Shahid bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Atta%20Ur%20Rehman"> Atta Ur Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decade, the growing demand for capital and the increased utilization of supercapacitors reflect advancements in energy-producing systems and energy storage devices. Metal oxides and ferrites have emerged as promising candidates for supercapacitors and batteries. In our current study, we synthesized Lithium manganese nanoferrite, denoted as LixMnxFe₂O₄, using the hydrothermal technique. Subsequently, we treated it with sodium dodecyl benzene sulphonate (SDBS) surfactant to create nanocomposites of Lithium manganese nano ferrite (LMFe) with poly pyrrole (LixMnxFe₂O₄-PPY). We employed Powder X-ray diffraction (XRD) to confirm the crystalline nature and spinel phase structure of LMFe nanoparticles, which exhibited a single-phase crystal structure, indicating sample purity. To assess the surface topography, morphology, and grain size of both synthesized LixMnxFe₂O₄ and LixMnxFe₂O₄-PPY, we used atomic force microscopy and scanning electron microscopy (SEM). The average particle size of pure ferrite was found to be 54 nm, while that of its nanocomposite was 71 nm. Energy dispersive X-ray (EDX) analysis confirmed the presence of all required elements, including Li, Mn, Fe, and O, in the appropriate proportions. Saturation magnetization (32.69 emu), remanence (Mr), and coercive force (Hc) were measured using a Vibrating Sample Magnetometer (VSM). To assess the electrochemical performance of the material, we conducted Cyclic Voltammetry (CV) measurements for both pure LMFe and LMFe-PPY. The CV results for LMFe-PPY demonstrated that specific capacitance decreased with increasing scan rate while the area of the current-voltage loop increased. These findings are promising for the development of supercapacitors and lithium-ion batteries (LIBs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20manganese%20ferrite" title="lithium manganese ferrite">lithium manganese ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20pyrrole" title=" poly pyrrole"> poly pyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode" title=" cathode"> cathode</a> </p> <a href="https://publications.waset.org/abstracts/172571/tailoring-and-characterization-of-lithium-manganese-ferrite-polypyrrole-nanocomposite-lixmnxfe2o4-ppy-to-evaluate-their-performance-as-an-energy-storage-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manganese&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manganese&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manganese&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manganese&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manganese&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manganese&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manganese&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>