CINXE.COM
Search results for: pickup current
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pickup current</title> <meta name="description" content="Search results for: pickup current"> <meta name="keywords" content="pickup current"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pickup current" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pickup current"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8991</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pickup current</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8991</span> Optimal Protection Coordination in Distribution Systems with Distributed Generations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdorreza%20Rabiee">Abdorreza Rabiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahla%20Mohammad%20Hoseini%20Mirzaei"> Shahla Mohammad Hoseini Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=DG" title=" DG"> DG</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20current%20relay" title=" over current relay"> over current relay</a>, <a href="https://publications.waset.org/abstracts/search?q=OCR" title=" OCR"> OCR</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20coordination" title=" protection coordination"> protection coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=pickup%20current" title=" pickup current"> pickup current</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20dial%20setting" title=" time dial setting"> time dial setting</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS" title=" TDS"> TDS</a> </p> <a href="https://publications.waset.org/abstracts/95260/optimal-protection-coordination-in-distribution-systems-with-distributed-generations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8990</span> Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Rodriguez">Jonathan Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominga%20Guerrero"> Dominga Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=Surupa%20Shaw"> Surupa Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=freightage" title=" freightage"> freightage</a>, <a href="https://publications.waset.org/abstracts/search?q=pickup%20cover" title=" pickup cover"> pickup cover</a> </p> <a href="https://publications.waset.org/abstracts/149072/experimental-study-analysis-of-flow-over-pickup-trucks-cargo-area-using-bed-covers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8989</span> A Hybrid Algorithm for Collaborative Transportation Planning among Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Jelodari%20Mamaghani">Elham Jelodari Mamaghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Prins"> Christian Prins</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoxun%20Chen"> Haoxun Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centralized%20collaborative%20transportation" title="centralized collaborative transportation">centralized collaborative transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20transportation%20with%20pickup%20and%20delivery" title=" collaborative transportation with pickup and delivery"> collaborative transportation with pickup and delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20transportation%20with%20time%20windows" title=" collaborative transportation with time windows"> collaborative transportation with time windows</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm%20of%20GA%20and%20SA" title=" hybrid algorithm of GA and SA"> hybrid algorithm of GA and SA</a> </p> <a href="https://publications.waset.org/abstracts/81528/a-hybrid-algorithm-for-collaborative-transportation-planning-among-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8988</span> A Model for Helicopter Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Sipahioglu">Aydin Sipahioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Celik"> Gokhan Celik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Helicopter routing problem (HRP) is finding good tours for helicopter so as to pick up and deliver personnel or material among specified nodes, mutually. It can be encountered in case of being lots of supply and demand points for different commodities and requiring delivering commodities with helicopter. For instance, to deliver personnel or material from shore to oil rig is a good example. In fact, HRP is a branch of vehicle routing problem with pickup and delivery (VRPPD). However, it has additional constraints such that fuel capacity, performance of helicopter in different altitude and temperature, and the number of maximum takeoff and landing allowed. This kind of pickup and delivery problems can be classified into 3 groups, basically. 1-1 (one to one), M-M (many to many) and 1-M-1 (one to many to one). 1-1 means each commodity has only one supply and one demand point. M-M means there can be more than one supply and demand points for each kind of commodity. 1-M-1 means commodities at depot are delivered to demand points and commodities at customers are delivered to depot. In this case helicopter takes off from its own base, complete its tour and return to its own base. In this study, we define 1-M-M-1 type HRP. That means helicopter takes off from its home base, deliver commodities among the nodes as well as between depot and customers and return to its home base. These problems have NP-hard nature. Therefore, obtaining a good solution in a reasonable time is not easy. In this study, a model is offered for 1-M-M-1 type HRP. It is shown on small scale test instances that the model can find the optimal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20routing%20problem" title="helicopter routing problem">helicopter routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20with%20pickup%20and%20delivery" title=" vehicle routing with pickup and delivery"> vehicle routing with pickup and delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a> </p> <a href="https://publications.waset.org/abstracts/9651/a-model-for-helicopter-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8987</span> The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mao%20Zhaofang">Mao Zhaofang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Yida"> Xu Yida</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Kan"> Fang Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20Enyuan"> Fu Enyuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Zhao"> Zhao Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20logistics" title="city logistics">city logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=last-mile%20delivery" title=" last-mile delivery"> last-mile delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=location-routing" title=" location-routing"> location-routing</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20large%20neighborhood%20search" title=" adaptive large neighborhood search"> adaptive large neighborhood search</a> </p> <a href="https://publications.waset.org/abstracts/181563/the-location-routing-problem-with-pickup-facilities-and-heterogeneous-demand-formulation-and-heuristics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8986</span> Improving the Global Competitiveness of SMEs by Logistics Transportation Management: Case Study Chicken Meat Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vanichkobchinda">P. Vanichkobchinda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Logistics Transportation techniques, Open Vehicle Routing (OVR) is an approach toward transportation cost reduction, especially for long distance pickup and delivery nodes. The outstanding characteristic of OVR is that the route starting node and ending node are not necessary the same as in typical vehicle routing problems. This advantage enables the routing to flow continuously and the vehicle does not always return to its home base. This research aims to develop a heuristic for the open vehicle routing problem with pickup and delivery under time window and loading capacity constraints to minimize the total distance. The proposed heuristic is developed based on the Insertion method, which is a simple method and suitable for the rapid calculation that allows insertion of the new additional transportation requirements along the original paths. According to the heuristic analysis, cost comparisons between the proposed heuristic and companies are using method, nearest neighbor method show that the insertion heuristic. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing. The research indicates that the improvement of new transport's calculation and the open vehicle routing with "Insertion Heuristic" represent a better outcome with 34.3 percent in average. in cost savings. Moreover, the proposed heuristic gave superior solutions in all types of test problems. In conclusion, the proposed heuristic can effectively and efficiently solve the open vehicle routing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20competitiveness" title="business competitiveness">business competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20reduction" title=" cost reduction"> cost reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics%20transportation" title=" logistics transportation"> logistics transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=VRP" title=" VRP"> VRP</a> </p> <a href="https://publications.waset.org/abstracts/25842/improving-the-global-competitiveness-of-smes-by-logistics-transportation-management-case-study-chicken-meat-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">685</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8985</span> The Development of Traffic Devices Using Natural Rubber in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weeradej%20Cheewapattananuwong">Weeradej Cheewapattananuwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Keeree%20Srivichian"> Keeree Srivichian</a>, <a href="https://publications.waset.org/abstracts/search?q=Godchamon%20Somchai"> Godchamon Somchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasin%20Phusanong"> Wasin Phusanong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nontawat%20Yoddamnern"> Nontawat Yoddamnern </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LRFD" title="LRFD">LRFD</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20and%20resistance%20factor%20design" title=" load and resistance factor design"> load and resistance factor design</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM" title=" ASTM"> ASTM</a>, <a href="https://publications.waset.org/abstracts/search?q=american%20society%20for%20testing%20and%20materials" title=" american society for testing and materials"> american society for testing and materials</a>, <a href="https://publications.waset.org/abstracts/search?q=NCHRP" title=" NCHRP"> NCHRP</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20cooperation%20highway%20research%20program" title=" national cooperation highway research program"> national cooperation highway research program</a>, <a href="https://publications.waset.org/abstracts/search?q=MASH" title=" MASH"> MASH</a>, <a href="https://publications.waset.org/abstracts/search?q=manual%20for%20assessing%20safety%20hardware" title=" manual for assessing safety hardware"> manual for assessing safety hardware</a> </p> <a href="https://publications.waset.org/abstracts/120164/the-development-of-traffic-devices-using-natural-rubber-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8984</span> Compensation of Cable Attenuation in Step Current Generators to Enable the Convolution Method for Calibration of Current Transducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Treyer">P. Treyer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kujda"> M. Kujda</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Urs"> H. Urs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to digitally compensate for the apparent discharge time constant of the coaxial cable so that the current step response is flat and can be used to calibrate current transducers using the convolution method. For proper use of convolution, the step response record length is required to be at least the same as the waveform duration to be evaluated. The current step generator based on the cable discharge is compared to the Blumlein generator. Moreover, the influence of each component of the system on the performance of the step is described, which allows building the appropriate measurement set-up. In the end, the calibration of current viewing resistors dedicated to high current impulse is computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blumlein%20generator" title="Blumlein generator">Blumlein generator</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20attenuation" title=" cable attenuation"> cable attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution" title=" convolution"> convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20step%20generator" title=" current step generator"> current step generator</a> </p> <a href="https://publications.waset.org/abstracts/130233/compensation-of-cable-attenuation-in-step-current-generators-to-enable-the-convolution-method-for-calibration-of-current-transducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8983</span> Endometriosis: The Optimal Treatment of Recurrent Endometrioma in Infertile Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Lakhotia">Smita Lakhotia</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kew"> C. Kew</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20M.%20Siraj"> S. H. M. Siraj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chern"> B. Chern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Up to 50% of those with endometriosis may suffer from infertility due to either distorted pelvic anatomy/impaired oocyte release or inhibit ovum pickup and transport, altered peritoneal function, endocrine and anovulatory disorders, including LUF, impaired implantation, progesterone resistance or decreased levels of cellular immunity. The dilemma continues as to whether the surgery or IVF is the optimal management for such recurrent endometriomas. The core question is whether surgery adds anything of value for infertile women with recurrent endometriosis or not. Complete and detailed information on risks and benefits of treatment alternatives must be offered to patients, giving a realistic estimate of chances of success of repetitive surgery and of multiple IVF cycles in order to allow unbiased choices between different possible optionsAn individualized treatment plan should be developed taking into account patient age, duration of infertility, previous pregnancies and specific clinical conditions and wish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recurrent%20endometriosis" title="recurrent endometriosis">recurrent endometriosis</a>, <a href="https://publications.waset.org/abstracts/search?q=infertility" title=" infertility"> infertility</a>, <a href="https://publications.waset.org/abstracts/search?q=oocyte%20release" title=" oocyte release"> oocyte release</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a> </p> <a href="https://publications.waset.org/abstracts/14927/endometriosis-the-optimal-treatment-of-recurrent-endometrioma-in-infertile-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8982</span> Electrolytic Capacitor-Less Transformer-Less AC-DC LED Driver with Current Ripple Canceller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Kobori">Yasunori Kobori</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Quan"> Li Quan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Wu"> Shu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizam%20Mohyar"> Nizam Mohyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zachary%20Nosker"> Zachary Nosker</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobukazu%20Tsukiji"> Nobukazu Tsukiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobukazu%20Takai"> Nobukazu Takai</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruo%20Kobayashi"> Haruo Kobayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors which capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the typical current of 350 mA. We are now making the proposed circuit on a universal board in order to measure the experimental characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LED%20driver" title="LED driver">LED driver</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytic" title=" electrolytic"> electrolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor-less" title=" capacitor-less"> capacitor-less</a>, <a href="https://publications.waset.org/abstracts/search?q=AC-DC%20converter" title=" AC-DC converter"> AC-DC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=buck-boost%20converter" title=" buck-boost converter"> buck-boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20ripple%20canceller" title=" current ripple canceller "> current ripple canceller </a> </p> <a href="https://publications.waset.org/abstracts/7454/electrolytic-capacitor-less-transformer-less-ac-dc-led-driver-with-current-ripple-canceller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8981</span> Single-Inductor Multi-Output Converters with Four-Level Output Voltages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Kobori">Yasunori Kobori</a>, <a href="https://publications.waset.org/abstracts/search?q=Murong%20Li"> Murong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhao"> Feng Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu%20Wu"> Shu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobukazu%20Takai"> Nobukazu Takai</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruo%20Kobayashi"> Haruo Kobayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors with capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the average of LED current of 350 mA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC-DC%20buck%20converter" title="DC-DC buck converter">DC-DC buck converter</a>, <a href="https://publications.waset.org/abstracts/search?q=four-level%20output%20voltage" title=" four-level output voltage"> four-level output voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20inductor%20multi%20output%20%28SIMO%29" title=" single inductor multi output (SIMO)"> single inductor multi output (SIMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20converter" title=" switching converter "> switching converter </a> </p> <a href="https://publications.waset.org/abstracts/9207/single-inductor-multi-output-converters-with-four-level-output-voltages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8980</span> A Three Phase Shunt Active Power Filter for Currents Harmonics Elimination and Reactive Power Compensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Omeiri">Amar Omeiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a three-phase shunt active power filter for current harmonics suppression and reactive power compensation using the supply current as reference. The proposed APF has a simple control circuit; it consists of detecting the supply current instead of the load current. The advantages of this APF are simplicity of control circuits and low implementation cost. The simulation results show that the proposed APF can compensate the reactive power and suppress current harmonics with two types of non-linear loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20power%20filter" title="active power filter">active power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20harmonics%20and%20reactive%20power%20compensation" title=" current harmonics and reactive power compensation"> current harmonics and reactive power compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM%20inverter" title=" PWM inverter"> PWM inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=Total%20Harmonic%20Distortion" title=" Total Harmonic Distortion"> Total Harmonic Distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a> </p> <a href="https://publications.waset.org/abstracts/23921/a-three-phase-shunt-active-power-filter-for-currents-harmonics-elimination-and-reactive-power-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8979</span> Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamseela%20Habib">Tamseela Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Amjad"> Muhammad Amjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Edokali"> Muhammad Edokali</a>, <a href="https://publications.waset.org/abstracts/search?q=Masome%20Moeni"> Masome Moeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Pickup"> Olivia Pickup</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hassanpour"> Ali Hassanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20absorption%20refrigeration%20system" title=" vapor absorption refrigeration system"> vapor absorption refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20generation" title=" steam generation"> steam generation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20salinity" title=" high salinity"> high salinity</a> </p> <a href="https://publications.waset.org/abstracts/166384/investigating-the-steam-generation-potential-of-lithium-bromide-based-cuo-nanofluid-under-simulated-solar-flux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8978</span> Simulation of Internal Flow Field of Pitot-Tube Jet Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Noor">Iqra Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihtzaz%20Qamar"> Ihtzaz Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20circulation" title=" flow circulation"> flow circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20pump" title=" high pressure pump"> high pressure pump</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20flow" title=" internal flow"> internal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pickup%20tube%20pump" title=" pickup tube pump"> pickup tube pump</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangle%20channels" title=" rectangle channels"> rectangle channels</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20casing" title=" rotating casing"> rotating casing</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/132118/simulation-of-internal-flow-field-of-pitot-tube-jet-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8977</span> Load Characteristics of Improved Howland Current Pump for Bio-Impedance Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Weijie">Zhao Weijie</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Xinjian"> Lin Xinjian</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xiaojuan"> Liu Xiaojuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lihua"> Li Lihua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Howland current pump is widely used in bio-impedance measurement. Much attention has been focused on the output impedance of the Howland circuit. Here we focus on the maximum load of the Howland source and discuss the relationship between the circuit parameters at maximum load. We conclude that the signal input terminal of the feedback resistor should be as large as possible, but that the current-limiting resistor should be smaller. The op-amp saturation voltage should also be high. The bandwidth of the circuit is proportional to the bandwidth of the op-amp. The Howland current pump was simulated using multisim12. When the AD8066AR was selected as the op-amp, the maximum load was 11.5 kΩ, and the Howland current pump had a stable output ipp to 2mAp up to 200 kHz. However, with an OPA847 op-amp and a load of 6.3 kΩ, the output current was also stable, and the frequency was as high as 3 MHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-impedance" title="bio-impedance">bio-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20Howland%20current%20pump" title=" improved Howland current pump"> improved Howland current pump</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20characteristics" title=" load characteristics"> load characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioengineering" title=" bioengineering"> bioengineering</a> </p> <a href="https://publications.waset.org/abstracts/3294/load-characteristics-of-improved-howland-current-pump-for-bio-impedance-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8976</span> Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungil%20Chae">Hyungil Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chopper%20stabilization" title="chopper stabilization">chopper stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Hall-effect%20sensor" title=" Hall-effect sensor"> Hall-effect sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20current" title=" spinning current"> spinning current</a> </p> <a href="https://publications.waset.org/abstracts/83742/power-reduction-of-hall-effect-sensor-by-pulse-width-modulation-of-spinning-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8975</span> The Impact of Trade Liberalization on Current Account Deficit: The Turkish Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Sel%C3%A7uk">E. Selçuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kara%C3%A7or"> Z. Karaçor</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Yard%C4%B1mc%C4%B1"> P. Yardımcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trade liberalization and its effects on the economies of developing countries have been investigated by many different studies, and some of them have focused on its impact on the current account balance. Turkey, as being one of the countries, which has liberalized its foreign trade in the 1980s, also needs to be studied in terms of the impact of liberalization on current account deficits. Therefore, the aim of this study is to find out whether trade liberalization has affected Turkey’s trade and current account balances. In order to determine this, yearly data of Turkey from 1980 to 2013 is used. As liberalization dummy, the year 1989, which was set for Turkey, is selected. Structural break test and model estimation results show that trade liberalization has a negative impact on trade balance but do not have a significant impact on the current account balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=budget%20deficit" title="budget deficit">budget deficit</a>, <a href="https://publications.waset.org/abstracts/search?q=liberalization" title=" liberalization"> liberalization</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkish%20economy" title=" Turkish economy"> Turkish economy</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20account" title=" current account"> current account</a> </p> <a href="https://publications.waset.org/abstracts/37704/the-impact-of-trade-liberalization-on-current-account-deficit-the-turkish-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8974</span> Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ghodsi">Mojtaba Ghodsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Ziaifar"> Hamidreza Ziaifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mohammadzaheri"> Morteza Mohammadzaheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20Soltani"> Payam Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20damping%20coefficient" title="internal damping coefficient">internal damping coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20damping%20coefficient" title=" external damping coefficient"> external damping coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=euler-bernoulli" title=" euler-bernoulli"> euler-bernoulli</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvester" title=" energy harvester"> energy harvester</a>, <a href="https://publications.waset.org/abstracts/search?q=galfenol" title=" galfenol"> galfenol</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostrictive" title=" magnetostrictive"> magnetostrictive</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20method" title=" response surface method"> response surface method</a> </p> <a href="https://publications.waset.org/abstracts/118790/effect-of-damping-on-performance-of-magnetostrictive-vibration-energy-harvester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8973</span> Harmonic Distortion Caused by Electric Bus Battery Charger in Alexandria Distribution System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elhosieny%20Aly%20Ismail">Mohamed Elhosieny Aly Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper illustrates the total voltage and current harmonic distortion impact caused by fast-charging an electric bus and maintaining standard limit compliance. Measuring the current harmonic level in the range of 2 kHz-9 kHz. Also, the impact of the total demand distortions current caused by fast charger electric bus on the utility by measuring at the point of common coupling and comparing the measurement with IEEE519 -2014 standard. The results show that the total harmonic current distortion for the charger is within the limits of IEC 61000-3-12 and the fifth harmonic current was the most dominant frequency then the seventh harmonic current. The harmonic current in the range of 2 kHz- 9 kHz shows the frequency 5.1kHz is the most dominant frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20harmonic%20distortion" title=" total harmonic distortion"> total harmonic distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=IEEE519-2014" title=" IEEE519-2014"> IEEE519-2014</a>, <a href="https://publications.waset.org/abstracts/search?q=IEC%2061000-3-12" title=" IEC 61000-3-12"> IEC 61000-3-12</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20harmonic%20distortion" title=" super harmonic distortion"> super harmonic distortion</a> </p> <a href="https://publications.waset.org/abstracts/177738/harmonic-distortion-caused-by-electric-bus-battery-charger-in-alexandria-distribution-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8972</span> Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Okechukwu%20Ifediniru">Anthony Okechukwu Ifediniru</a>, <a href="https://publications.waset.org/abstracts/search?q=Austin%20Ikechukwu%20Gbasouzor"> Austin Ikechukwu Gbasouzor</a>, <a href="https://publications.waset.org/abstracts/search?q=Isidore%20Uche%20Uju"> Isidore Uche Uju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC%20current" title="AC current">AC current</a>, <a href="https://publications.waset.org/abstracts/search?q=arc%20welding%20machine" title=" arc welding machine"> arc welding machine</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20current" title=" DC current"> DC current</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=welds" title=" welds"> welds</a> </p> <a href="https://publications.waset.org/abstracts/125450/design-analysis-and-construction-of-a-250vac-8amps-arc-welding-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8971</span> Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morn%C3%A9%20Roman">Morné Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20van%20Zyl"> Robert van Zyl</a>, <a href="https://publications.waset.org/abstracts/search?q=Nishanth%20Parus"> Nishanth Parus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nishal%20Mahatho"> Nishal Mahatho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20current" title="direct current">direct current</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator" title=" insulator"> insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20current" title=" leakage current"> leakage current</a>, <a href="https://publications.waset.org/abstracts/search?q=live%20line" title=" live line"> live line</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20lines" title=" transmission lines"> transmission lines</a> </p> <a href="https://publications.waset.org/abstracts/97695/design-of-a-hand-held-clamp-on-leakage-current-sensor-for-high-voltage-direct-current-insulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8970</span> A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Yu">Jun Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yat-Hei%20Lam"> Yat-Hei Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Grinberg"> Boris Grinberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Chai%20Tshun%20Chuan"> Kevin Chai Tshun Chuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title="boost converter">boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20sensing" title=" current sensing"> current sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=power-on%20protection" title=" power-on protection"> power-on protection</a>, <a href="https://publications.waset.org/abstracts/search?q=step-up%20converter" title=" step-up converter"> step-up converter</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-start" title=" soft-start"> soft-start</a> </p> <a href="https://publications.waset.org/abstracts/37877/a-5-v-to-30-v-current-mode-boost-converter-with-integrated-current-sensor-and-power-on-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1019</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8969</span> Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sajjadnejad">M. Sajjadnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Karimi%20Abadeh"> H. Karimi Abadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=duty%20cycle" title=" duty cycle"> duty cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20current" title=" pulsed current"> pulsed current</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/111558/corrosion-evaluation-of-zinc-coating-prepared-by-two-types-of-electric-currents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8968</span> Close Loop Controlled Current Nerve Locator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Alzomor">H. A. Alzomor</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Ouda"> B. K. Ouda</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Eldeib"> A. M. Eldeib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Close%20Loop%20Control%20%28CLC%29" title="Close Loop Control (CLC)">Close Loop Control (CLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20current" title=" constant current"> constant current</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20locator" title=" nerve locator"> nerve locator</a>, <a href="https://publications.waset.org/abstracts/search?q=rheobase" title=" rheobase"> rheobase</a> </p> <a href="https://publications.waset.org/abstracts/2622/close-loop-controlled-current-nerve-locator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8967</span> PSRR Enhanced LDO Regulator Using Noise Sensing Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-ju%20Kwon">Min-ju Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae-won%20Kim"> Chae-won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-yun%20Seo"> Jeong-yun Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-guk%20Chae"> Hee-guk Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-seo%20Koo"> Yong-seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we presented the LDO (low-dropout) regulator which enhanced the PSRR by applying the constant current source generation technique through the BGR (Band Gap Reference) to form the noise sensing circuit. The current source through the BGR has a constant current value even if the applied voltage varies. Then, the noise sensing circuit, which is composed of the current source through the BGR, operated between the error amplifier and the pass transistor gate of the LDO regulator. As a result, the LDO regulator has a PSRR of -68.2 dB at 1k Hz, -45.85 dB at 1 MHz and -45 dB at 10 MHz. the other performance of the proposed LDO was maintained at the same level of the conventional LDO regulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDO%20regulator" title="LDO regulator">LDO regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20sensing%20circuit" title=" noise sensing circuit"> noise sensing circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20reference" title=" current reference"> current reference</a>, <a href="https://publications.waset.org/abstracts/search?q=pass%20transistor" title=" pass transistor"> pass transistor</a> </p> <a href="https://publications.waset.org/abstracts/78192/psrr-enhanced-ldo-regulator-using-noise-sensing-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8966</span> Current Issues on Enterprise Architecture Implementation Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Nikpay">Fatemeh Nikpay</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodina%20Binti%20Ahmad"> Rodina Binti Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Darvish%20Rouhani"> Babak Darvish Rouhani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enterprise Architecture (EA) is employed by enterprises for providing integrated Information Systems (ISs) in order to support alignment of their business and Information Technology (IT). Evaluation of EA implementation can support enterprise to reach intended goals. There are some problems in current evaluation methods of EA implementation that lead to ineffectiveness implementation of EA. This paper represents current issues on evaluation of EA implementation. In this regard, we set the framework in order to represent evaluation’s issues based on their functionality and structure. The results of this research not only increase the knowledge of evaluation, but also could be useful for both academics and practitioners in order to realize the current situation of evaluations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current%20issues%20on%20EA%20implementation%20evaluation" title="current issues on EA implementation evaluation">current issues on EA implementation evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20architecture" title=" enterprise architecture"> enterprise architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20of%20enterprise%20architecture%20implementation" title=" evaluation of enterprise architecture implementation"> evaluation of enterprise architecture implementation</a> </p> <a href="https://publications.waset.org/abstracts/21274/current-issues-on-enterprise-architecture-implementation-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8965</span> Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiguo%20Shi">Zhiguo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Ning%20Loong"> Cheng Ning Loong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazeng%20Shan"> Jiazeng Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Weichao%20Wu">Weichao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20damping" title=" eddy current damping"> eddy current damping</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/119732/equivalent-circuit-model-for-the-eddy-current-damping-with-frequency-dependence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8964</span> Analyzing Current Transformers Saturation Characteristics for Different Connected Burden Using LabVIEW Data Acquisition Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Subedi">D. Subedi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pradhan"> S. Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current transformers are an integral part of power system because it provides a proportional safe amount of current for protection and measurement applications. However when the power system experiences an abnormal situation leading to huge current flow, then this huge current is proportionally injected to the protection and metering circuit. Since the protection and metering equipment’s are designed to withstand only certain amount of current with respect to time, these high currents pose a risk to man and equipment. Therefore during such instances, the CT saturation characteristics have a huge influence on the safety of both man and equipment and also on the reliability of the protection and metering system. This paper shows the effect of burden on the Accuracy Limiting factor/ Instrument security factor of current transformers and also the change in saturation characteristics of the CT’s. The response of the CT to varying levels of overcurrent at different connected burden will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer saturation characteristics with changes in burden will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20limiting%20factor" title="accuracy limiting factor">accuracy limiting factor</a>, <a href="https://publications.waset.org/abstracts/search?q=burden" title=" burden"> burden</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20transformer" title=" current transformer"> current transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=instrument%20security%20factor" title=" instrument security factor"> instrument security factor</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20characteristics" title=" saturation characteristics"> saturation characteristics</a> </p> <a href="https://publications.waset.org/abstracts/37462/analyzing-current-transformers-saturation-characteristics-for-different-connected-burden-using-labview-data-acquisition-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8963</span> Travel Behavior Simulation of Bike-Sharing System Users in Kaoshiung City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong-Yi%20Lin">Hong-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Tyan%20Lin"> Feng-Tyan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a Bike-sharing system (BSS), users can easily rent bikes from any station in the city for mid-range or short-range trips. BSS can also be integrated with other types of transport system, especially Green Transportation system, such as rail transport, bus etc. Since BSS records time and place of each pickup and return, the operational data can reflect more authentic and dynamic state of user behaviors. Furthermore, land uses around docking stations are highly associated with origins and destinations for the BSS users. As urban researchers, what concerns us more is to take BSS into consideration during the urban planning process and enhance the quality of urban life. This research focuses on the simulation of travel behavior of BSS users in Kaohsiung. First, rules of users’ behavior were derived by analyzing operational data and land use patterns nearby docking stations. Then, integrating with Monte Carlo method, these rules were embedded into a travel behavior simulation model, which was implemented by NetLogo, an agent-based modeling tool. The simulation model allows us to foresee the rent-return behaviour of BSS in order to choose potential locations of the docking stations. Also, it can provide insights and recommendations about planning and policies for the future BSS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20model" title="agent-based model">agent-based model</a>, <a href="https://publications.waset.org/abstracts/search?q=bike-sharing%20system" title=" bike-sharing system"> bike-sharing system</a>, <a href="https://publications.waset.org/abstracts/search?q=BSS%20operational%20data" title=" BSS operational data"> BSS operational data</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/64209/travel-behavior-simulation-of-bike-sharing-system-users-in-kaoshiung-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8962</span> Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Mahi">Fatima Zohra Mahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Varani"> Luca Varani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detectivity" title="detectivity">detectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=photodetectors" title=" photodetectors"> photodetectors</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity%20equation" title=" continuity equation"> continuity equation</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20noise" title=" current noise"> current noise</a> </p> <a href="https://publications.waset.org/abstracts/13905/characterization-of-the-in-053-ga-047-as-nnn-photodetectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=299">299</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=300">300</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pickup%20current&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>