CINXE.COM
Full-Stack Generative AI Platform for Developers | NVIDIA Developer
<!DOCTYPE html> <html lang='en' class='h-100'> <head> <meta name="viewport" content="width=device-width,initial-scale=1"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="umAsKzle5V21oqt-vKQmtdB1cjCLgKANiHR61uVWSf6_4r8y7zvswLhxM8VE8z1JQwyfI5W4qNHwPBNmuZqzKw" /> <meta name="csp-nonce" /> <title>Full-Stack Generative AI Platform for Developers | NVIDIA Developer</title> <meta name="description" content="NVIDIA offers developers an accelerated computing platform with tools, frameworks, applications, and ecosystem for generative AI workloads."> <meta name="keywords" content="generative ai, generative ai platform, gen ai, large language models, llms, software ecosystem, nvidia"> <link rel="canonical" href="https://developer.nvidia.com/generative-ai"> <link rel="alternate" href="https://developer.nvidia.com/generative-ai" hreflang="x-default"> <link rel="alternate" href="https://developer.nvidia.com/generative-ai" hreflang="en-us"> <link rel="alternate" href="https://developer.nvidia.cn/generative-ai" hreflang="zh-cn"> <meta property="og:site_name" content="NVIDIA Developer"> <meta property="og:title" content="Full-Stack Generative AI for Developers"> <meta property="og:description" content="Build and operate real-time generative AI applications."> <meta property="og:type" content="website"> <meta property="og:image" content="https://developer.download.nvidia.com/images/products/nvidia-llm-developers-web-journey-og-1200x630.jpg"> <meta property="og:url" content="https://developer.nvidia.com/generative-ai"> <meta name="twitter:title" content="Full-Stack Generative AI for Developers"> <meta name="twitter:description" content="Developers can engage with the NVIDIA AI platform at any layer of the stack, from infrastructure, software, and models to applications, for generative AI workloads."> <meta name="twitter:image" content="https://developer.download.nvidia.com/images/products/nvidia-llm-developers-web-journey-og-1200x630.jpg"> <meta name="twitter:site" content="@NVIDIA"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:creator" content="@NVIDIAAIDEV"> <meta property="interest" content="Generative AI"> <link rel="stylesheet" href="https://dirms4qsy6412.cloudfront.net/assets/application-1e91adb0e814253f53c7a621169b6daa7cc975f97befa1c8f1a2ffe493719eb1.css" media="all" /> <link rel="stylesheet" href="https://dirms4qsy6412.cloudfront.net/assets/one-trust-bea625cf16a072ce5fdb0707a19f2645daf63c05eb1a016db72773eba008fc07.css" /> <script src="https://cdn.cookielaw.org/scripttemplates/otSDKStub.js" data-document-language="true" type="text/javascript" charset="UTF-8" data-domain-script="3e2b62ff-7ae7-4ac5-87c8-d5949ecafff5"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/onetrust-overrides-v2-9d7d1399c432d702a5bf32a31067737e10c123fdbe5ffef8ae83a34cf2d680ee.js"></script> <script> function OptanonWrapper() { let event = new Event('bannerLoaded'); window.dispatchEvent(event); if (window.OnetrustActiveGroups && window.OnetrustActiveGroups.includes("C0002")) { window.DD_RUM && window.DD_RUM.init({ clientToken: 'pub0430c74fae5d2b467bcb8d48b13e5b32', applicationId: '9fc963c7-14e6-403d-bdec-ee671550bb7f', site: 'datadoghq.com', service: 'devzone', env: 'production', version: '', sessionSampleRate: 10, sessionReplaySampleRate: 5, trackUserInteractions: true, trackResources: true, trackLongTasks: true, defaultPrivacyLevel: 'mask-user-input', }); } } </script> <link rel="preload" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css" as="style" type="text/css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css" /> <link rel="stylesheet" href="https://dirms4qsy6412.cloudfront.net/assets/devzone3/vars-cd3a0769a3c2f2d9ea6b83ac53ce86bceef4c719e4dbd22ed41d48d01f200901.css" media="all" /> <link rel="stylesheet" href="https://dirms4qsy6412.cloudfront.net/assets/devzone3/new/application-18e41529317cec7a71ff11ed11f560691cd0843420e9cb6082d8cf8ce8fc638c.css" media="all" /> <link rel="stylesheet" href="https://dirms4qsy6412.cloudfront.net/assets/feed-aggregator/feed-aggregator-9ace7521871242143cb35fa86d5be702c4dacb409600041fa6a5b14fa2a71dde.css" media="all" /> <link rel="stylesheet" href="https://dirms4qsy6412.cloudfront.net/assets/twentytwenty/css/twentytwenty-4ef2ccd719d09a97572e93c499c1fb11cc971d2a3519cfe105dcff2be92f65b9.css" media="all" /> <script src="https://dirms4qsy6412.cloudfront.net/assets/horizontal-chart/d3.v4.min-41cfecdf7c41476e805de7afacf4aacdd1a4be6947fbecf95217e947ebc2faf5.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/horizontal-chart/visualize-d-06443fdef48364af6635f0d1d3535da26910671f6f6a680c531eff0e54ed595f.js"></script> <link rel="stylesheet" href="https://dirms4qsy6412.cloudfront.net/assets/sf-validation/sf-validation-805362e079494cd052f713be5f91a44eb602f545c342f794abbd4a8050c0acb3.css" /> <script src="https://assets.adobedtm.com/5d4962a43b79/c1061d2c5e7b/launch-191c2462b890.min.js" data-ot-ignore="true"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script> <script src="https://api-prod.nvidia.com/search/nvidia-gallery-widget.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/devzone3/modules/nvidia_editor/nod_widgets-8c38a7d04ed3c3acd9117aa126bf76d7902d3c57c72b76dbf3c281c96ed09975.js"></script> <link rel="icon" type="image/x-icon" href="https://dirms4qsy6412.cloudfront.net/assets/favicon-81bff16cada05fcff11e5711f7e6212bdc2e0a32ee57cd640a8cf66c87a6cbe6.ico" /> </head> <body class='d-flex flex-column h-100' data-theme='devzone3_new'> <div id='header'></div> <main class="main-content dz3-main-section dz-new-theme page-generative-ai page-generative-ai" data-id="5588"> <style> .cta-padding{ padding-top: 15px !important; } </style> <div id="join-nvd-banner" style="background: linear-gradient(rgb(153, 153, 153) 0%, rgb(102, 102, 102) 100%); padding: 1em 0px; color: white;" class=""> <div class="container"> <div class="col-12 text-center"> Learn how to build a video search and summarization agent with the new NVIDIA AI Blueprint. <a href="/blog/build-a-video-search-and-summarization-agent-with-nvidia-ai-blueprint/" class="cta--prim">Read the Blog</a> </div> </div> </div> <section class="sct--m"> <div class="cntnr--narrow txt-cntr"> <h1 class="h--large">Generative AI for Developers</h1> <p class="p--large">Generative AI has introduced a new wave of developer tools, frameworks and applications. The vastly expanding ecosystem helps train massive multimodal models, fine-tune for use cases, quantize and deploy from data centers to the smallest embedded devices. Developers building generative AI applications need an accelerated computing platform with full-stack optimizations, from chip and systems software to acceleration libraries and application development frameworks. With NVIDIA-hosted model APIs and prebuilt inference microservices for deploying models anywhere, it’s easy to get started.<br><br></p> <a href="/blog/customize-generative-ai-models-for-enterprise-applications-with-llama-3-1/?nvid=nv-int-bnr-453388 " target="_blank" class="cta--prim cta--l">Learn More</a> </div> </section> <hr> <section class="sct--m"> <div class="cntnr--cozy txt-cntr"> <h2 class="h--medium">NVIDIA Full-Stack Generative AI Software Ecosystem</h2> <p class="p--large">NVIDIA offers a full-stack <a href="https://www.nvidia.com/en-us/ai-data-science/generative-ai/" target="_blank">accelerated computing platform</a> purpose-built for generative AI workloads. The platform is both deep and wide, offering a combination of hardware, software, and services—all built by NVIDIA and its broad ecosystem of partners—so developers can deliver cutting-edge solutions. <br> </p> <figure><br><br><a href="https://developer.download.nvidia.com/images/products/diagram-generative-ai-for-developers-page-udpate-sigg24.png" target="_blank"> <img src="https://developer.download.nvidia.com/images/products/diagram-generative-ai-for-developers-page-udpate-sigg24.png" alt="Explore NVIDIA full-stack generative AI software ecosystem" title="Explore NVIDIA full-stack generative AI software ecosystem" class="img-responsive"></a><br> </figure> </div> </section> <section class="sct--s"> <div class="cntnr--narrow"> <div class="panel-group" id="accordion"> <div class="panel panel-default"> <div class="panel-heading"> <a data-parent="#accordion" data-toggle="collapse" href="#collapseOne"><h3 class="h--smallest">Build Domain-Specific Applications</h3></a> </div> <div class="panel-collapse collapse in" id="collapseOne"> <div class="panel-body"> <p> Building applications for specific use cases and domains requires user-friendly APIs, efficient fine-tuning techniques, and, in the context of LLM applications, integration with robust third-party apps, vector databases, and guardrailing systems. NVIDIA offers <a href="https://www.nvidia.com/en-us/ai/#referrer=ai-subdomain" target="_blank">hosted API endpoints and prebuilt inference microservices</a> for deploying the latest AI models anywhere, enabling developers to quickly build custom generative AI applications. <br><br> Our software stack powers partners like OpenAI, Cohere, Google VertexAI, and AzureML, allowing developers to use generative AI API endpoints. For domain-specific customization or augmenting applications with databases, in addition to <a href="https://github.com/NVIDIA/NeMo" target="_blank">NVIDIA NeMo™</a>, NVIDIA’s ecosystem includes Hugging Face, LangChain, LlamaIndex, and Milvus. </p> </div> </div> </div> <br> <div class="panel panel-default"> <div class="panel-heading"> <a data-parent="#accordion" data-toggle="collapse" href="#collapseTwo"><h3 class="h--smallest">Evaluate and Deploy Safe Models</h3></a> </div> <div class="panel-collapse collapse" id="collapseTwo"> <div class="panel-body"> <p> To deploy safe, trustworthy models, NeMo provides <a href="https://docs.nvidia.com/nemo-framework/user-guide/latest/modelguide/evaluation.html" target="_blank">simple tools</a> for evaluating trained and fine-tuned models, including GPT and its variants. Developers can also add programmable guardrails with <a href="https://github.com/NVIDIA/NeMo-Guardrails" target="_blank">NeMo Guardrails</a> to control the output of LLM applications, such as implementing controls to avoid discussing politics and tailoring responses based on user requests. <br><br> MLOps and LLMOps tools further assist in evaluating LLM models. NVIDIA NeMo can be integrated with LLMOps tools such as <a href="https://wandb.ai/a-sh0ts/NeMo_Megatron_PTuning-demo/reports/How-to-Adapt-your-LLM-for-Question-Answering-with-Prompt-Tuning-using-NVIDIA-NeMo-and-Weights-Biases--Vmlldzo1NjA1MjEx" target="_blank">Weights & Biases</a> and MLFlow. Developers can also use <a href="/triton-inference-server">NVIDIA Triton™ Inference Server</a> to analyze model performance and standardize AI model deployment. </p> </div> </div> </div> <br> <div class="panel panel-default"> <div class="panel-heading"> <a data-parent="#accordion" data-toggle="collapse" href="#collapseThree"><h3 class="h--smallest">Optimize Model Architecture and Techniques</h3></a> </div> <div class="panel-collapse collapse" id="collapseThree"> <div class="panel-body"> <p> Accelerating specific generative AI computations on compute infrastructure requires libraries and compilers that are specifically designed to address the needs of LLMs. Some of the most popular libraries include XLA, <a href="https://github.com/NVIDIA/Megatron-LM" target="_blank">Megatron-LM</a>, <a href="https://github.com/NVIDIA/cutlass" target="_blank">CUTLASS</a>, <a href="/cuda-toolkit">CUDA®</a>, <a href="https://developer.nvidia.com/blog/optimizing-inference-on-llms-with-tensorrt-llm-now-publicly-available/" target="_blank">NVIDIA® TensorRT™-LLM</a>, <a href="https://github.com/rapidsai/raft" target="_blank">RAFT</a>, and <a href="/cudnn">cuDNN</a>.</p> </div> </div> </div> <br> <div class="panel panel-default"> <div class="panel-heading"> <a data-parent="#accordion" data-toggle="collapse" href="#collapseFour"><h3 class="h--smallest">Orchestrate Generative AI Workloads on Accelerated Infrastructure</h3></a> </div> <div class="panel-collapse collapse" id="collapseFour"> <div class="panel-body"> <p> Building large-scale models often requires upwards of thousands of GPUs, and inferencing is done on multi-node, multi-GPU configurations to address memory-limited bandwidth issues. This requires software that can carefully orchestrate the different generative AI workloads on accelerated infrastructure. Some management and orchestration libraries include Kubernetes, Slurm, Nephele, and <a href="https://www.nvidia.com/en-us/data-center/base-command/" target="_blank">NVIDIA Base Command™</a>. <br><br> NVIDIA-accelerated computing platforms provide the infrastructure to power these applications in the most cost-optimized way, whether they’re run in a data center, the cloud, or on local desktops and laptops. Powerful platforms and technologies include <a href="https://www.nvidia.com/en-us/data-center/dgx-platform/" target="_blank">NVIDIA DGX™ platform</a>, <a href="https://www.nvidia.com/en-us/data-center/hgx/" target="_blank">NVIDIA HGX™ systems</a>, <a href="https://www.nvidia.com/en-us/geforce/rtx/" target="_blank">NVIDIA RTX™ systems</a>, and NVIDIA Jetson™.</p> </div> </div> </div> <br> </div></div> </section> <section class="sct--m sct--lt-gry1"> <div class="cntnr--cw txt-cntr"> <div class="row"> <h2 class="h--medium">Build With Generative AI</h2> <p class="p--large">Developers can choose to engage with the NVIDIA AI platform at any layer of the stack, from infrastructure, software, and models to applications, either directly through NVIDIA products or through a vast ecosystem of offerings.<br><br> </p> </div> </div> <div class="cntnr--cw"> <div class="row"> <div class="col-md-3"> <div class="card"> <div class="card-cntnt-cntnr"> <h3 class="h--smallest">Start With State-of-the-Art Foundation Models</h3> <p class="p--medium">Try the latest models, including Llama 3, Stable Diffusion, NVIDIA’s Nemotron-3 8B family, and more.</p><br> <a href="https://build.nvidia.com/explore/discover" class="cta--tert mt-auto has-cta-icon" target="_blank">Experience AI Foundation Models <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-3"> <div class="card"> <div class="card-cntnt-cntnr"> <h3 class="h--smallest">Deploy AI Models Across Platforms</h3> <p class="p--medium">Quickly deploy AI models using easy-to-use inference microservices. </p><br> <a href="https://www.nvidia.com/en-us/ai/" class="cta--tert mt-auto has-cta-icon" target="_blank">Deploy With NVIDIA NIM <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-3"> <div class="card"> <div class="card-cntnt-cntnr"> <h3 class="h--smallest">Connect Generative AI Models to Knowledge Bases </h3> <p class="p--medium">Use retrieval-augmented generation (RAG) to connect LLMs to the latest information. </p><br> <a href="https://github.com/NVIDIA/GenerativeAIExamples" class="cta--tert mt-auto has-cta-icon" target="_blank">Try a RAG Example on GitHub <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-3"> <div class="card"> <div class="card-cntnt-cntnr"> <h3 class="h--smallest">Train and Customize Generative AI for Every Industry </h3> <p class="p--medium">Build custom generative AI models for industries, including gaming, healthcare, automotive, industrial, and more. </p> <a href="https://www.nvidia.com/en-us/ai-data-science/products/nemo/" class="cta--tert mt-auto cta-padding" target="_blank">Customize With NVIDIA NeMo <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> </div> </div> </section> <section class="sct--xs sct--drk-gry4 txt-cntr" style="background-color: #000000"> <div class="cntnr--cw txt-cntr"> <p class="p--medium text-white"><strong></strong> </p> <h2 class="h--medium text-white ">Best Practices for LLM Application Development</h2> <p class="p--large text-white">Tune in to hands-on sessions with NVIDIA experts to learn about state-of-the-art models, customization and optimization techniques, and how to run your own LLM apps.<br><br></p> <center> <a class="cta--tert text-white txt-cntr" style="border: 0px solid yellow; padding: 0px 0px 0px 0px; margin: 0px 0px 0px 0px; display: inline-block" href="https://www.nvidia.com/en-us/on-demand/search/?facet.event_name[]=LLM%20Developer%20Day&facet.mimetype[]=event%20session&headerText=All%20Sessions&layout=list&page=1&q=-&sort=relevance&sortDir=desc" target="_blank">Watch Sessions on Demand<span class="fas fa-angle-right fa-fw"></span></a> </center> </div> </section> <section class="sct--m sct--lt-gry2"> <div class="cntnr--cozy txt-cntr"> <h2 class="h--medium">Benefits</h2> </div> <div class="cntnr--cw"> <div class="row"> <div class="col-md-4"> <div class="txt-cntr"> <center><img src="https://developer.download.nvidia.com/icons/m48-collections.svg" alt="Decorative image of a comprehensive, full-stack platform" title="Decorative image of a comprehensive, full-stack platform" style="max-width: 96px"></center> <div> <h3 class="h--smallest">End-to-End Accelerated Stack</h3> <p class="p--medium">Accelerates every layer of the stack, from infrastructure to the app layer, with offerings from DGX Cloud to NeMo. </p> </div> </div> </div> <div class="col-md-4"> <div class="txt-cntr"> <center><img src="https://developer.download.nvidia.com/icons/m48-hybrid-cloud.svg" alt="Decorative image of product availability and choice" title="Decorative image of product availability and choice" style="max-width: 96px"></center> <div> <h3 class="h--smallest">High Performance</h3> <p class="p--medium">Delivers real-time performance with GPU optimizations, including quantization-aware training, layer and tensor fusion, and kernel tuning.</p> </div> </div> </div> <div class="col-md-4"> <div class="txt-cntr"> <center><img src="https://developer.download.nvidia.com/icons/m48-nvidia-gpu-cloud-ngc-catalog.svg" alt=" Decorative image of state-of-the-art computing performance" title=" Decorative image of state-of-the-art computing performance" style="max-width: 96px"></center> <div> <h3 class="h--smallest">Ecosystem Integrations</h3> <p class="p--medium">Tightly integrates with leading generative AI frameworks. For example, NVIDIA NeMo's connectors enable the use of NVIDIA AI Foundation models and TensorRT-LLM optimizations within the LangChain framework for RAG agents. </p> </div> </div> </div> </div> </div> </section> <section class="sct--m"> <div class="cntnr--cw"> <h2 class="h--medium txt-cntr">NVIDIA Blueprints Learning Library</h2> <div class="row"> <div class="col-md-4"> <div class="card"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smallest">Multimodal PDF Data Extraction for Enterprise RAG</h3> <p> Use NeMo Retriever NIM™ microservices to unlock highly accurate insights from massive volumes of enterprise data. </p> </div> <a class="cta--tert mt-auto cta-padding" href="https://build.nvidia.com/nvidia/multimodal-pdf-data-extraction-for-enterprise-rag" target="_blank">Try Now<span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-4"> <div class="card"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smallest">Generative Virtual Screening for Drug Discovery</h3> <p> Search and optimize a library of small molecules to identify chemical structures that bind to a target protein. </p> </div> <a class="cta--tert mt-auto cta-padding" href="https://build.nvidia.com/nvidia/generative-virtual-screening-for-drug-discovery" target="_blank">Try Now<span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-4"> <div class="card"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smallest">Digital Humans for Customer Service</h3> <p> Bring applications to life with an AI-powered digital avatar to transform customer service experiences. </p> </div> <a class="cta--tert mt-auto cta-padding" href="https://build.nvidia.com/nvidia/digital-humans-for-customer-service" target="_blank">Try Now<span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> </div> </div> </section> <section class="sct--m sct--lt-gry2"> <div class="cntnr--cozy txt-cntr"> <h3 class="h--small txt-cntr">Access Exclusive NVIDIA Resources</h3> <p class="p--large txt-cntr">The NVIDIA Developer Program gives you free access to the latest AI models for development with NVIDIA NIM™, along with access to training, documentation, how-to guides, expert forums, support from peers and domain experts, and information on the right hardware to tackle the biggest challenges. </p> <br> <center><a class="cta--prim" href="https://developer.nvidia.com/developer-program" role="button">Join the NVIDIA Developer Program</a> </center> <br> </div> <div class="cntnr--cw"> <div class="row"> <div class="col-md-4"> <div class="card"> <img src="https://developer.download.nvidia.com/images/products/dli-individuals-850x480.jpg" alt="A collage of images showing hands-on technical training and certification programs" title="A collage of images showing hands-on technical training and certification programs"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smaller">Get Generative AI Training and Certification</h3> <p class="p--medium">Elevate your technical skills in generative AI and LLMs with NVIDIA Training’s comprehensive learning paths, covering fundamental to advanced topics, featuring hands-on training, and delivered by NVIDIA experts. Showcase your skills and advance your career by <a href="https://www.nvidia.com/en-us/learn/certification/" target="_blank">getting certified</a> by NVIDIA.<br><br></p> </div> <a class="cta--tert mt-auto" href="https://www.nvidia.com/en-us/learn/learning-path/generative-ai-llm/" target="_blank">Explore Training <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-4"> <div class="card"> <img src="https://developer.download.nvidia.com/images/products/onnect-with-experts-850x480.jpg" alt="A group of developers are working with NVIDIA experts" title="A group of developers are working with NVIDIA experts"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smaller">Connect With NVIDIA Experts</h3> <p class="p--medium">Have questions as you’re getting started? Explore our NVIDIA Developer Forum for AI to get your questions answered or explore insights from other developers. <br><br> </p> </div> <a class="cta--tert mt-auto" href="https://forums.developer.nvidia.com/c/ai-data-science/86" target="_blank">Visit Forums <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-4"> <div class="card"> <img src="https://developer.download.nvidia.com/images/products/inference-850x480.jpg" alt="NVIDIA Inception program for generative AI startups" title="NVIDIA Inception program for generative AI startups"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smaller">Build Your Custom Generative AI With NVIDIA Partners</h3> <p class="p--medium">For generative AI startups, <a href="https://www.nvidia.com/en-us/startups/" target="_blank">NVIDIA Inception</a> provides access to the latest developer resources, preferred pricing on NVIDIA software and hardware, and exposure to the venture capital community. The program is free and available to tech startups of all stages.<br><br></p> </div> <a class="cta--tert mt-auto" href="https://www.nvidia.com/en-us/startups/" target="_blank">Learn More NVIDIA Inception <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> </section> <section class="sct--m"> <div class="cntnr--cozy txt-cntr"> <h2 class="h--medium">Latest News</h2> <p class="p--large">Explore what’s new and learn about our latest breakthroughs.</p> </div> <div class="cntnr--cw" style="padding-top: 60px;"> <div class="row"> <div class="col-md-4"> <div class="card"> <img src="https://developer.download.nvidia.com/images/products/google-s-gemma-running-on-nvidia-gp-us.jpg" alt="Shining Brighter Together: Google’s Gemma Optimized to Run on NVIDIA GPUs" title="Shining Brighter Together: Google’s Gemma Optimized to Run on NVIDIA GPUs"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smaller">Shining Brighter Together: Google’s Gemma Optimized to Run on NVIDIA GPUs</h3> <p class="p--medium">Google's state-of-the-art, new, lightweight, 2-billion and 7-billion-parameter open language model, Gemma, is optimized with NVIDIA TensorRT-LLM and can run anywhere, reducing costs and speeding up innovative work for domain-specific use cases.<br><br> </p> </div> <a class="cta--tert" href="https://blogs.nvidia.com/blog/google-gemma-llm-rtx-ai-pc/" target="_blank">Learn More <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-4"> <div class="card"> <img src="https://developer.download.nvidia.com/images/products/robotics-innovations-at-ces.jpg" alt="NVIDIA Reveals Gaming, Creating, Generative AI, Robotics Innovations at CES" title="NVIDIA Reveals Gaming, Creating, Generative AI, Robotics Innovations at CES"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smaller">NVIDIA Reveals Gaming, Creating, Generative AI, Robotics Innovations at CES</h3> <p class="p--medium">At CES, NVIDIA released the TensorRT-LLM library for Windows, announced NVIDIA Avatar Cloud Engine (ACE) microservices with generative AI models for digital avatars, and unveiled a partnership with iStock by Getty Images, a generative AI service powered by NVIDIA Edify. <br><br></p> </div> <a class="cta--tert" href="https://blogs.nvidia.com/blog/ces-2024/" target="_blank">Learn More <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> <div class="col-md-4"> <div class="card"> <img src="https://developer.download.nvidia.com/images/products/amgen-generative-ai-models-for-data-insights-drug-discovery.jpg" alt="Amgen to Build Generative AI Models for Novel Human Data Insights and Drug Discovery" title="Amgen to Build Generative AI Models for Novel Human Data Insights and Drug Discovery"> <div class="card-cntnt-cntnr"> <div> <h3 class="h--smaller">Amgen to Build Generative AI Models for Novel Human Data Insights and Drug Discovery</h3> <p class="p--medium">Amgen, an early adopter of NVIDIA BioNeMo™, uses it to accelerate drug discovery and development with generative AI models. They plan to integrate the NVIDIA DGX SuperPOD™ to train state-of-the-art models in days rather than months.<br><br></p> </div> <a class="cta--tert" href="https://blogs.nvidia.com/blog/genomics-ai-amgen-superpod/" target="_blank">Learn More <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> </div> </div> </section> <section class="sct--m sct--lt-gry1"> <div class="cntnr--narrow"> <h2 class="h--medium txt-cntr">Get Started With Generative AI</h2> <div class="row"> <div class="col-md-6"> <h3 class="h--smaller">Scale Your Business Applications With Generative AI</h3> <p class="p--medium">Experience, prototype, and deploy AI with production-ready APIs that run anywhere.<br><br></p> <a href="https://build.nvidia.com/explore/discover" class="cta--tert has-cta-icon" target="_blank">Get Started <span class="fas fa-angle-right fa-fw"></span></a> </div> <div class="col-md-6"> <h3 class="h--smaller">Enterprise-Ready Generative AI With NVIDIA AI Enterprise</h3> <p class="p--medium">The NVIDIA AI Enterprise subscription includes production-grade software, accelerating enterprises to the leading edge of AI with easy-to-deploy microservices, enterprise support, security, and API stability.<br><br></p> <a href="https://www.nvidia.com/en-us/data-center/products/ai-enterprise/" class="cta--tert has-cta-icon" target="_blank">Learn More NVIDIA AI Enterprise <span class="fas fa-angle-right fa-fw"></span></a> <a href="https://www.nvidia.com/en-us/data-center/products/ai-enterprise/contact-sales/" class="cta--tert has-cta-icon" target="_blank">Talk to an Expert <span class="fas fa-angle-right fa-fw"></span></a> </div> </div> </div> </div> </section> <script> document.addEventListener('DOMContentLoaded', () => { const allLinks = document.querySelectorAll('.dz3-main-section.dz-new-theme a'); allLinks.forEach((link) => { let hasIcon = link.querySelector('span.fas'); if(hasIcon) { link.classList.add('has-cta-icon'); } }); }); </script> </main> <div id='footer' class='mt-auto'></div> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" crossorigin="anonymous"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/devzone3/new/popper.min-a9eb3f3101919a18965114cfdcd0138652ec03b2b58cfb26806f9a256564c858.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/feed-aggregator/feed-aggregator-7f147443abc2d1300a239c29e4ba3ca0d0d2eb0dc66b608765e2b3be50e18e10.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/devzone3/new/dist/dz3-new-bundle-11f473650a558402a2733b7bb4d6133e28814892ec0527381c9144f3499b8d60.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/twentytwenty/js/jquery.event.move-16041d2e384b513c1b202af51fc404a0643b8c38ff823bb4326520ad5a82b761.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/twentytwenty/js/jquery.twentytwenty-835622257095d5bd0719a5484d68213ccc8708a321dd3deded777d1e6623b499.js"></script> <script> const template = document.createElement('template'); template.innerHTML = ` <style> @import "https://dirms4qsy6412.cloudfront.net/assets/feed-aggregator/feed-aggregator-9ace7521871242143cb35fa86d5be702c4dacb409600041fa6a5b14fa2a71dde.css"; .feed-aggregator-component .card { box-shadow: 0 4px 5px 0 rgba(0,0,0,0.14), 0 1px 10px 0 rgba(0,0,0,0.12), 0 2px 4px -1px rgba(0,0,0,0.3) !important; } .feed-aggregator-component .card:hover { box-shadow: 0 0 8px 0 rgba(0,0,0,0.13), 0 14px 32px 5px rgba(0,0,0,0.13) !important; } </style> <div class="feed-aggregator-component"></div> `; const hosts = { 'en': 'https://developer.nvidia.com/blog', 'cn': 'https://developer.nvidia.com/zh-cn/blog', } class FeedAggregatorElement extends HTMLElement { constructor() { super(); this._shadowRoot = this.attachShadow({ 'mode': 'open' }); this._shadowRoot.appendChild(template.content.cloneNode(true)); } connectedCallback() { const categories = this.getAttribute('categories'); const tags = this.getAttribute('tags'); const perPage = this.getAttribute('per-page'); const excludedTags = this.getAttribute('excluded-tags'); let locale = this.getAttribute('locale'); if (!locale) { locale = 'en'; } let targetElement = this._shadowRoot.querySelector(".feed-aggregator-component"); let feed = { id: 'blog', host: hosts[locale], type: 'json', minCount: 2, }; if (categories && categories !== 'all') { feed['category_ids'] = categories.split(','); } if (tags && tags !== 'all') { feed['tag_ids'] = tags.split(','); } if(excludedTags && excludedTags !== 'null'){ feed['excluded_tag_ids'] = excludedTags.split(','); } document.addEventListener("DOMContentLoaded", function () { new FeedAggregator({ target: targetElement, props: { count: perPage, openInNewTab: true, showExcerpts: true, feeds: [feed] } }); }) } } window.customElements.define('feed-aggregator', FeedAggregatorElement); </script> <template id='application-button-template'> <style> @import "https://dirms4qsy6412.cloudfront.net/assets/application-button/application-button-68ca7e1e3aa49ec79169d49226e34ee0c341d27a15a38b28ce975cb2467e123e.css"; </style> <a href='' class='nvidia-application-button'>Join now</a> </template> <script> async function fetchMembershipState () { const userInfo = await fetch('/api/user'); const {status} = userInfo; if (status === 401) { let error = new Error('Unauthorized'); error.statusCode = status; throw error; } // TODO: Figure out how to get DZ4 program // Fetch page info. const {pathname} = location; const pageInfo = await fetch(`${pathname}.json`); const pageData = await pageInfo.json(); // Fetch membership info return pageData; } const initApplicationButton = (element) => { const linkElement = element.querySelector('a'); fetchMembershipState() .then(data => { console.log(data); }) .catch(error => { switch (error.statusCode) { default: linkElement.innerHTML = 'Login'; linkElement.href = '/login'; } }); }; class NvidiaApplicationButton extends HTMLElement { constructor() { const template = document.getElementById('application-button-template'); super(); this._shadowRoot = this.attachShadow({ 'mode': 'open' }); this._shadowRoot.appendChild(template.content.cloneNode(true)); } connectedCallback() { const element = this._shadowRoot; document.addEventListener('DOMContentLoaded', () => { initApplicationButton(element); }); } } window.customElements.define('nv-application-button', NvidiaApplicationButton); </script> <template id='application-text-template'> <p></p> </template> <script> class NvidiaApplicationText extends HTMLElement { constructor() { const template = document.getElementById('application-text-template'); super(); this._shadowRoot = this.attachShadow({ 'mode': 'open' }); this._shadowRoot.appendChild(template.content.cloneNode(true)); } connectedCallback() { } } window.customElements.define('nv-application-text', NvidiaApplicationText); </script> <template id='nv-sf-form-validator-template'> <script src="https://dirms4qsy6412.cloudfront.net/assets/sf-validation/moment-620a5949fff0ad37198f07464b91d7b7c110ecdb6f94ca90ca7d2e1b471f1da8.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/sf-validation/validate.min-2160a65c1b5d4a5966544ad25af8fe99f11c636a99c516fee6c7afd3b1f21409.js"></script> <p></p> </template> <script> class NvidiaSalesforceValidator extends HTMLElement { constructor() { const template = document.getElementById('nv-sf-form-validator-template'); super(); this._shadowRoot = this.attachShadow({'mode': 'open'}); this._shadowRoot.appendChild(template.content.cloneNode(true)); } initComponent() { if (!window.sfv) { return; } validate.extend(validate.validators.datetime, { parse: function (value, options) { if (moment(value, options.format, true).isValid()) { return +moment.utc(value); } }, format: function (value, options) { var format = options.dateOnly ? "MM/DD/YYYY" : "MM/DD/YYYY hh:mm"; return moment.utc(value).format(format); } }); function showErrors(errors) { $.each(errors, function (index, element) { $('input[name="' + errors[index]['attribute'] + '"]').each(function (i, e) { var errorMessage = errors[index]['options']['message']; $('<div class="js-validation-errors">' + errorMessage + '</div>').insertAfter(e); }).focus(); }); } function isValidForm(form, constraints) { var errors = validate(form, constraints, {format: "detailed"}); if (errors) { showErrors(errors); return false; } return true; } $.each(window.sfv, function (index, element) { $(element.target).on('click', function (event) { $('.js-validation-errors').remove(); if (!isValidForm(element.form, element.constraints)) { event.preventDefault(); } }); }); } connectedCallback() { document.addEventListener('DOMContentLoaded', () => { this.initComponent(); }); } } window.customElements.define('nv-sf-form-validator', NvidiaSalesforceValidator); </script> <script src="https://dirms4qsy6412.cloudfront.net/assets/horizontal-chart/d3.v4.min-41cfecdf7c41476e805de7afacf4aacdd1a4be6947fbecf95217e947ebc2faf5.js"></script> <script src="https://dirms4qsy6412.cloudfront.net/assets/horizontal-chart/visualize-d-06443fdef48364af6635f0d1d3535da26910671f6f6a680c531eff0e54ed595f.js"></script> <template id="chart-template"> <style> @import "https://dirms4qsy6412.cloudfront.net/assets/devzone3/modules/nvidia_tokens/nvidia-charts-a459e90d273ab4f8b282e0f5fef607074b5fc7cbb5f8d0f0e378281320e6b9c8.css"; </style> <div class="horizontal-chart-component"> <div class="chart-container"> <h4 class="chart-title"></h4> <p class="chart-subtitle"></p> <div class="legend"></div> <svg data-nvidia-chart="true" data-chart-legend=""></svg> <p class="chart-footnote"></p> </div> </div> </template> <script> function chartInit(element) { const chart = element.querySelector('svg[data-nvidia-chart]'); const isRendered = chart.getAttribute("data-rendered"); if (isRendered) { return; } const svgChart = d3.select(chart); const bars = JSON.parse(chart.dataset['chartBars']); const ticks = JSON.parse(chart.dataset['chartTicks']); const xAxisLabel = chart.dataset['xAxisLabel']; const barPadding = chart.dataset['barPadding']; const milestone = null; const isGrouped = chart.dataset['isGrouped'] === 'true'; if (isGrouped) { const legend = JSON.parse(chart.dataset['chartLegend']); createGroupedHorizontalBarChart(svgChart, bars, barPadding, legend, ticks, milestone, xAxisLabel, false); } else { createHorizontalBarChart(svgChart, bars, barPadding, ticks, xAxisLabel, "", false); } chart.dataset['rendered'] = 'true'; } $('a[data-toggle="tab"]').on("click", function (event) { setTimeout(() => { // Triggering 'resize' event to redraw charts. window.dispatchEvent(new Event('resize')); const target = jQuery(event.target).parents('.nav.nav-tabs').siblings('.tab-content').find('.tab-pane.active'); if (target.length > 0) { const svg = jQuery(target).find('horizontal-chart'); if (svg.length) { svg.each((idx, el) => { setTimeout(function () { const chartContainer = el._shadowRoot.querySelector('.chart-container'); chartInit(chartContainer); }, 300); }); } } }, 50); }); async function loadFileSource(url) { try{ const response = await fetch(url); return response.json(); }catch (e) { console.warn(`Failed to load chart data. URL: ${url}`); } return {}; } class HorizontalChartElement extends HTMLElement { constructor() { const horizontalCharTemplate = document.getElementById('chart-template'); super(); this._shadowRoot = this.attachShadow({ 'mode': 'open' }); this._shadowRoot.appendChild(horizontalCharTemplate.content.cloneNode(true)); } connectedCallback() { const url = this.getAttribute('source'); const element = this._shadowRoot; document.addEventListener("DOMContentLoaded", function () { loadFileSource(url).then(data => { const { chartTitle: title, chartSubtitle: subTitle, chartFootnote: footNote, chartId: id, isGrouped: isGrouped, legendData, barPadding, xAxisLabel, bars, ticks } = data; element.querySelector('.chart-title').innerHTML = title; // Subtitle if (subTitle) { element.querySelector('.chart-subtitle').innerHTML = subTitle; } else { element.querySelector('.chart-subtitle').remove(); } // Chart const svgElement = element.querySelector('.chart-container svg'); svgElement.id = id; const dataAttributes = [ ['isGrouped', isGrouped ? 'true' : 'false', ''], ['chartLegend', JSON.stringify(legendData), ''], ['xAxisLabel', xAxisLabel, ''], ['barPadding', barPadding, 5], ['chartBars', bars, ''], ['chartTicks', ticks, ''], ]; dataAttributes.forEach(dataAttribute => { if (dataAttribute[0] === 'chartBars' && dataAttribute[1]) { dataAttribute[1] = JSON.stringify(dataAttribute[1]); } if (dataAttribute[0] === 'chartTicks' && dataAttribute[1]) { dataAttribute[1] = JSON.stringify(dataAttribute[1]); } svgElement.dataset[dataAttribute[0]] = dataAttribute[1] ? dataAttribute[1] : dataAttribute[2]; }); // Caption if (footNote) { element.querySelector('.chart-footnote').innerHTML = footNote; } else { element.querySelector('.chart-footnote').remove(); } // Init chart const chartContainer = element.querySelector('.chart-container'); setTimeout(function () { if (jQuery(chartContainer).is(':visible')) { chartInit(chartContainer); } }, 300); }); }) } } window.customElements.define('horizontal-chart', HorizontalChartElement); </script> <script src="https://dirms4qsy6412.cloudfront.net/assets/nv-developer-menu-09b6a95e79b8d8d44b0f1ac794e39d5adac82391d128f6d4d39715826a860020.js"></script> <script> let menuLocale = 'en'; if (menuLocale == 'en') { menuLocale = 'en-US'; } function mountHeader(data = false) { let options = { baseURL: window.location.origin, signedIn: false, locale: menuLocale }; if (data) { options.secondaryMenu = data; } options.showMembershipCardLink = true; new NVDeveloperHeader({ target: document.getElementById('header'), props: options }); } function mountFooter(data = false) { let options = { menu: data, locale: menuLocale }; new NVDeveloperFooter({ target: document.getElementById('footer'), props: options }); } let url = 'd29g4g2dyqv443.cloudfront.net'; let headerMenuURL = "https://d29g4g2dyqv443.cloudfront.net/menu/en-US/header-secondary.json"; fetch(headerMenuURL) .then(response => response.json()) .then(data => { mountHeader(data); }) .catch((error) => { mountHeader(); window.nv.tracing.addError('menu', error); }); fetch(`https://${url}/menu/${menuLocale}/footer.json`) .then(response => response.json()) .then(data => { mountFooter(data); }) .catch((error) => { mountFooter(); window.nv.tracing.addError('menu', error); }); </script> <script src="https://www.datadoghq-browser-agent.com/us1/v5/datadog-rum.js"></script> <script> let silentAuthHost = 'www.nvidia.com'; let crossOriginPageUrl = `https://${silentAuthHost}/auth/hints/`; function readHint() { return new Promise((resolve) => { const { origin: targetOrigin } = new URL(crossOriginPageUrl); const iframe = document.createElement('iframe'); iframe.hidden = true; iframe.src = crossOriginPageUrl; function responseHandler(event) { if (event.origin === targetOrigin) { iframe.parentNode.removeChild(iframe); return resolve(event.data); } } window.addEventListener('message', responseHandler, { once: true }); iframe.onload = () => { iframe.contentWindow.postMessage({ type: 'read' }, targetOrigin); } document.body.appendChild(iframe); }); } function writeHint(login_hint, idp_id, timestamp, sub) { const { origin: targetOrigin } = new URL(crossOriginPageUrl); const iframe = document.createElement('iframe'); iframe.hidden = true; iframe.src = crossOriginPageUrl; iframe.onload = () => { const message = { type: 'write', login_hint, idp_id, timestamp, sub }; iframe.contentWindow.postMessage(message, targetOrigin); } document.body.appendChild(iframe); } function deleteHint() { const { origin: targetOrigin } = new URL(crossOriginPageUrl); const iframe = document.createElement('iframe'); iframe.hidden = true; iframe.src = crossOriginPageUrl; iframe.onload = () => { iframe.contentWindow.postMessage({ type: 'delete' }, targetOrigin); } document.body.appendChild(iframe); } </script> <script>_satellite.pageBottom();</script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/runtime-503119e3bfeec75056bc.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/692-70104789368a40f2d231.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/341-3761d2892158034dde54.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/798-8f26177f1189c7399fb3.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/866-f9c34b19d1b60b883caf.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/311-033b6299b51897e65419.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/252-f83b27d9f72fef366bc7.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/367-0b2e82a8016bebbc82b5.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/900-34f3bf570904cbfb5a16.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/application-54bf18784eb1ee5cdece.js" defer="defer"></script> <script src="https://dirms4qsy6412.cloudfront.net/packs/js/ls_track-4ba11c63b23b3f4ff0d5.js" defer="defer"></script> </body> </html>