CINXE.COM

Search results for: graphite extraction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: graphite extraction</title> <meta name="description" content="Search results for: graphite extraction"> <meta name="keywords" content="graphite extraction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="graphite extraction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="graphite extraction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2152</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: graphite extraction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2152</span> Structural, Optical and Electrical Thin-Film Characterization Using Graphite-Bioepoxy Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anika%20Zafiah%20M.%20Rus">Anika Zafiah M. Rus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Munirah%20Abdullah"> Nur Munirah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20L.%20Abdullah"> M. F. L. Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fabrication and characterization of composite films of graphite- bioepoxy is described. Free-standing thin films of ~0.1 mm thick are prepared using a simple solution mixing with mass proportion of 7/3 (bioepoxy/graphite) and drop casting at room temperature. Fourier transform infra-red spectroscopy (FTIR) and Ultraviolet-visible (UV-vis) spectrophotometer are performed to evaluate the changes in chemical structure and adsorption spectra arising with the increasing of graphite weight loading (wt.%) into the biopolymer matrix. The morphologic study shows a homogeneously dispersed and strong particle bonding between the graphite and the bioepoxy, with conductivity of the film 103 S/m, confirming the efficiency of the processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbance%20peak" title="absorbance peak">absorbance peak</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite-%20bioepoxy%20composites" title=" graphite- bioepoxy composites"> graphite- bioepoxy composites</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20bonding" title=" particle bonding"> particle bonding</a> </p> <a href="https://publications.waset.org/abstracts/16623/structural-optical-and-electrical-thin-film-characterization-using-graphite-bioepoxy-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2151</span> Optimizing Sustainable Graphene Production: Extraction of Graphite from Spent Primary and Secondary Batteries for Advanced Material Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratima%20Kumari">Pratima Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukha%20Ranjan%20Samadder"> Sukha Ranjan Samadder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to contribute to the sustainable production of graphene materials by exploring the extraction of graphite from spent primary and secondary batteries. The increasing demand for graphene materials, a versatile and high-performance material, necessitates environmentally friendly methods for its synthesis. The process involves a well-planned methodology, beginning with the gathering and categorization of batteries, followed by the disassembly and careful removal of graphite from anode structures. The use of environmentally friendly solvents and mechanical techniques ensures an efficient and eco-friendly extraction of graphite. Advanced approaches such as the modified Hummers' method and chemical reduction process are utilized for the synthesis of graphene materials, with a focus on optimizing parameters. Various analytical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and Raman spectroscopy were employed to validate the quality and structure of the produced graphene materials. The major findings of this study reveal the successful implementation of the methodology, leading to the production of high-quality graphene materials suitable for advanced material applications. Thorough characterization using various advanced techniques validates the structural integrity and purity of the graphene. The economic viability of the process is demonstrated through a comprehensive economic analysis, highlighting the potential for large-scale production. This research contributes to the field of sustainable production of graphene materials by offering a systematic methodology that efficiently transforms spent batteries into valuable graphene resources. Furthermore, the findings not only showcase the potential for upcycling electronic waste but also address the pressing need for environmentally conscious processes in advanced material synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20primary%20batteries" title="spent primary batteries">spent primary batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20secondary%20batteries" title=" spent secondary batteries"> spent secondary batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20extraction" title=" graphite extraction"> graphite extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20material%20synthesis" title=" advanced material synthesis"> advanced material synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy%20approach" title=" circular economy approach"> circular economy approach</a> </p> <a href="https://publications.waset.org/abstracts/182210/optimizing-sustainable-graphene-production-extraction-of-graphite-from-spent-primary-and-secondary-batteries-for-advanced-material-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2150</span> Temperature Dependent Tribological Properties of Graphite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar%20Das">Pankaj Kumar Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Niranjan%20Kumar"> Niranjan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasun%20Chakraborti"> Prasun Chakraborti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20tribology" title="high temperature tribology">high temperature tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbostratic%20graphite" title=" turbostratic graphite"> turbostratic graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear "> wear </a> </p> <a href="https://publications.waset.org/abstracts/26767/temperature-dependent-tribological-properties-of-graphite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2149</span> A New Seperation / Precocentration and Determination Procedure Based on Solidified Floating Organic Drop Microextraction (SFODME) of Lead by Using Graphite Furnace Atomic Absorption Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyda%20Donmez">Seyda Donmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Oya%20Aydin%20Urucu"> Oya Aydin Urucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20Kok%20Yetimoglu"> Ece Kok Yetimoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solidified floating organic drop microextraction was used for a preconcentration method of trace amount of lead. The analyte was complexed with 1-(2-pyridylazo)-2-naphtol and 1-undecanol, acetonitrile was added as an extraction and dispersive solvent respectively. The influences of some analytical parameters pH, volumes of extraction and disperser solvent, concentration of chelating agent, and concentration of salt were optimized. Under the optimum conditions the detection limits of Pb (II) was determined. The procedure was validated for the analysis of NCS DC 73347a hair standard reference material with satisfactory result. The developed procedure was successfully applied to food and water samples for detection of Pb (II) ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20methods" title="analytical methods">analytical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20furnace%20atomic%20absorption%20spectrometry" title=" graphite furnace atomic absorption spectrometry"> graphite furnace atomic absorption spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=solidified%20floating%20organic%20drop%20microextraction" title=" solidified floating organic drop microextraction"> solidified floating organic drop microextraction</a> </p> <a href="https://publications.waset.org/abstracts/48197/a-new-seperation-precocentration-and-determination-procedure-based-on-solidified-floating-organic-drop-microextraction-sfodme-of-lead-by-using-graphite-furnace-atomic-absorption-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2148</span> Influence of Pouring Temperature on the Formation of Spheroidal and Lamellar Graphite in Cast Iron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ekici">Mehmet Ekici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to investigate the effect of pouring temperature on the microstructure of the cast iron. The pattern was designed with 300 mm of width, and the thickness variations are 1.25 mm and poured at five different temperatures; 1300, 1325, 1350, 1375 and 1400°C. Several cast irons, prepared with different chemical compositions and microstructures (three lamellar and three spheroidal structures) have been examined by extensive mechanical testing and optical microscopy. The fluidity of spheroidal and lamellar graphite in cast iron increases with the pouring temperature. The numbers of nodules were decreased by increasing pouring temperature for spheroidal structures. Whereas, the numbers of flakes of lamellar structures changed by both pouring temperature and chemical composition. In general, with increasing pouring temperature, the amount of pearlite in the internal structure of both lamellar and spheroidal graphite cast iron materials were increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spheroidal%20graphite%20cast%20iron" title="spheroidal graphite cast iron">spheroidal graphite cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=lamellar%20graphite%20in%20cast%20iron" title=" lamellar graphite in cast iron"> lamellar graphite in cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=pouring%20temperature" title=" pouring temperature"> pouring temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test%20and%20impact%20test" title=" tensile test and impact test"> tensile test and impact test</a> </p> <a href="https://publications.waset.org/abstracts/61555/influence-of-pouring-temperature-on-the-formation-of-spheroidal-and-lamellar-graphite-in-cast-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2147</span> Green Natural Rubber Composites Reinforced with Synthetic Graphite: Effects of Reinforcing Agent on Film’s Mechanical Properties and Electrical Conductivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veerapat%20Kitsawat">Veerapat Kitsawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Muenduen%20Phisalaphong"> Muenduen Phisalaphong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green natural rubber (NR) composites reinforced with synthetic graphite, using alginate as thickening and dispersing agent, were developed to improve mechanical properties and electrical conductivity. The film fabrication was performed using a latex aqueous microdispersion process. The research found that up to 60 parts per hundred rubbers (phr) of graphite could be successfully integrated into the NR matrix without causing agglomeration and phase separation. Accordingly, the mechanical properties, in terms of tensile strength and Young’s modulus of the composite films, were significantly increased, while the elongation at break decreased with higher graphite loading. The reinforcement strongly improved the hydrophilicity of the composite films, resulting in a higher water absorption rate compared to the neat NR film. Moreover, the incorporation of synthetic graphite significantly improved the chemical resistance of the composite films when exposed to toluene. It is demonstrated that the electrical conductivity of the composite films was considerably enhanced with graphite loading. According to the obtained properties, the developed composites offer potential for further development as conductive substrate for electronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alginate" title="alginate">alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a> </p> <a href="https://publications.waset.org/abstracts/172839/green-natural-rubber-composites-reinforced-with-synthetic-graphite-effects-of-reinforcing-agent-on-films-mechanical-properties-and-electrical-conductivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2146</span> Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Vanderbruggen">Anna Vanderbruggen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Bachmann"> Kai Bachmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20%20Rudolph"> Martin Rudolph</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Serna"> Rodrigo Serna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20mineralogy" title="automated mineralogy">automated mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/125842/challenges-in-the-characterization-of-black-mass-in-the-recovery-of-graphite-from-spent-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2145</span> Burnishing of Aluminum-Magnesium-Graphite Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Hayajneh">Mohammed T. Hayajneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Mahmood%20Hassan"> Adel Mahmood Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Moath%20AL-Qudah"> Moath AL-Qudah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burnishing is increasingly used as a finishing operation to improve surface roughness and surface hardness. This can be achieved by applying a hard ball or roller onto metallic surfaces under pressure, in order to achieve many advantages in the metallic surface. In the present work, the feed rate, speed and force have been considered as the basic burnishing parameters to study the surface roughness and surface hardness of metallic matrix composites. The considered metal matrix composites were made from Aluminum-Magnesium-Graphite with five different weight percentage of graphite. Both effects of burnishing parameters mentioned above and the graphite percentage on the surface hardness and surface roughness of the metallic matrix composites were studied. The results of this investigation showed that the surface hardness of the metallic composites increases with the increase of the burnishing force and decreases with the increase in the burnishing feed rate and burnishing speed. The surface roughness of the metallic composites decreases with the increasing of the burnishing force, feed rate, and speed to certain values, then it starts to increase. On the other hand, the increase in the weight percentage of the graphite in the considered composites causes a decrease in the surface hardness and an increase in the surface roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burnishing%20process" title="burnishing process">burnishing process</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Mg-Graphite%20composites" title=" Al-Mg-Graphite composites"> Al-Mg-Graphite composites</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hardness" title=" surface hardness"> surface hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/19649/burnishing-of-aluminum-magnesium-graphite-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2144</span> Electrochemical Detection of Polycyclic Aromatic Hydrocarbons in Urban Air by Exfoliated Graphite Based Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sacko">A. Sacko</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nyoni"> H. Nyoni</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20M.%20Msagati"> T. A. M. Msagati</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ntsendwana"> B. Ntsendwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon based materials to target environmental pollutants have become increasingly recognized in science. Electrochemical methods using carbon based materials are notable methods for high sensitive detection of organic pollutants in air. It is therefore in this light that exfoliated graphite electrode was fabricated for electrochemical analysis of PAHs in urban atmospheric air. The electrochemical properties of the graphite electrode were studied using CV and EIS in the presence of acetate buffer supporting electrolyte with 2 Mm ferricyanide as a redox probe. The graphite electrode showed enhanced current response which confirms facile kinetics and enhanced sensitivity. However, the peak to peak (DE) separation increased as a function of scan rate. The EIS showed a high charger transfer resistance. The detection phenanthrene on the exfoliated graphite was studied in the presence of acetate buffer solution at PH 3.5 using DPV. The oxidation peak of phenanthrene was observed at 0.4 V. Under optimized conditions (supporting electrolyte, pH, deposition time, etc.). The detection limit observed was at 5x 10⁻⁸ M. Thus the results demonstrate with further optimization and modification lower concentration detection can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20detection" title="electrochemical detection">electrochemical detection</a>, <a href="https://publications.waset.org/abstracts/search?q=exfoliated%20graphite" title=" exfoliated graphite"> exfoliated graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs%20%28polycyclic%20aromatic%20hydrocarbons%29" title=" PAHs (polycyclic aromatic hydrocarbons)"> PAHs (polycyclic aromatic hydrocarbons)</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20air" title=" urban air"> urban air</a> </p> <a href="https://publications.waset.org/abstracts/78454/electrochemical-detection-of-polycyclic-aromatic-hydrocarbons-in-urban-air-by-exfoliated-graphite-based-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2143</span> Wear Damage of Glass Fiber Reinforced Polyimide Composites with the Addition of Graphite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoudi%20Noureddine">Mahmoudi Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The glass fiber (GF) reinforced polyimide (PL) composites filled with graphite powders were fabricated by means of hot press molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring-on-block test rig at dry sliding condition. The wear mechanisms were also discussed, based on scanning electron microscopic examination of the worn surface of the PL composites and the transfer film formed on the counterpart. With the increasing normal loads, the friction coefficient of the composites increased under the dry sliding, owing to inconsistent influences of shear strength and real contact areas. Experimental results revealed that the incorporation of graphite significantly improve the wear resistance of the glass fibers reinforced polyimide composites. For best combination of friction coefficient and wear rate, the optimal volume content of graphite in the composites appears to be 45 %. It was also found that the tribological properties of the glass fiber reinforced PL composites filled with graphite powders were closely related with the sliding condition such as sliding rate and applied load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/41664/wear-damage-of-glass-fiber-reinforced-polyimide-composites-with-the-addition-of-graphite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2142</span> Thermal Analysis of a Graphite Calorimeter for the Measurement of Absorbed Dose for Therapeutic X-Ray Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.J.%20Kim">I.J. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.C.%20Kim"> B.C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.H.%20Kim"> J.H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-Y.%20Yi"> C.-Y. Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer in a graphite calorimeter is analyzed by using the finite elements method. The calorimeter is modeled in 3D geometry. Quasi-adiabatic mode operation is realized in the simulation and the temperature rise by different sources of the ionizing radiation and electric heaters is compared, directly. The temperature distribution caused by the electric power was much different from that by the ionizing radiation because of its point-like localized heating. However, the temperature rise which was finally read by sensing thermistors agreed well to each other within 0.02 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphite%20calorimeter" title="graphite calorimeter">graphite calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-adiabatic%20mode" title=" quasi-adiabatic mode "> quasi-adiabatic mode </a> </p> <a href="https://publications.waset.org/abstracts/24560/thermal-analysis-of-a-graphite-calorimeter-for-the-measurement-of-absorbed-dose-for-therapeutic-x-ray-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2141</span> Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Krupakara">P. V. Krupakara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al6061" title="Al6061">Al6061</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=passivation" title=" passivation"> passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/24636/corrosion-characterization-of-al6061-hybrid-metal-matrix-composites-in-acid-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2140</span> Synthesis and Characterization of Partially Oxidized Graphite Oxide for Solar Energy Storage Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Ben%20Hamad">Ghada Ben Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohir%20Younsi"> Zohir Younsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabien%20Salaun"> Fabien Salaun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassane%20Naji"> Hassane Naji</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Lebaz"> Noureddine Lebaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The graphene oxide (GO) material has attracted much attention for solar energy applications. This paper reports the synthesis and characterization of partially oxidized graphite oxide (GTO). GTO was obtained by modified Hummers method, which is based on the chemical oxidation of natural graphite. Several samples were prepared with different oxidation degree by an adjustment of the oxidizing agent’s amount. The effect of the oxidation degree on the chemical structure and on the morphology of GTO was determined by using Fourier transform infrared (FT-IR) spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS), and scanning electronic microscope (SEM). The thermal stability of GTO was evaluated by using thermogravimetric analyzer (TGA) in Nitrogen atmosphere. The results indicate high degree oxidation of graphite oxide for each sample, proving that the process is efficient. The GTO synthesized by modified Hummers method shows promising characteristics. Graphene oxide (GO) obtained by exfoliation of GTO are recognized as a good candidate for thermal energy storage, and it will be used as solid shell material in the encapsulation of phase change materials (PCM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20hummers%20method" title="modified hummers method">modified hummers method</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20oxide" title=" graphite oxide"> graphite oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20degree" title=" oxidation degree"> oxidation degree</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20storage" title=" solar energy storage"> solar energy storage</a> </p> <a href="https://publications.waset.org/abstracts/117537/synthesis-and-characterization-of-partially-oxidized-graphite-oxide-for-solar-energy-storage-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2139</span> Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Longkui%20Zhu">Longkui Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengcao%20Li"> Zhengcao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20high%20temperature%20gas-cooled%20reactor" title="advanced high temperature gas-cooled reactor">advanced high temperature gas-cooled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20and%20nitrogen%20diffusion" title=" hydrogen and nitrogen diffusion"> hydrogen and nitrogen diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20evolution" title=" microstructure evolution"> microstructure evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20graphite" title=" nuclear graphite"> nuclear graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20waste%20management" title=" radioactive waste management"> radioactive waste management</a> </p> <a href="https://publications.waset.org/abstracts/70163/approaches-for-minimizing-radioactive-tritium-and-14c-in-advanced-high-temperature-gas-cooled-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2138</span> X-Ray Diffraction and Precision Dilatometer Study of Neutron-Irradiated Nuclear Graphite Recovery Process up to 1673K</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuhao%20Jin">Yuhao Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Zhou"> Zhou Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsumi%20Yoshida"> Katsumi Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengcao%20Li"> Zhengcao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadashi%20Maruyama"> Tadashi Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Toyohiko%20Yano"> Toyohiko Yano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four kinds of nuclear graphite, IG-110U, ETP-10, CX-2002U and IG-430U were neutron-irradiated at different fluences and temperatures, ranged from 1.38 x 1024 to 7.4 x 1025 n/m2 (E > 1.0 MeV) at 473K, 573K and 673K. To take into account the disorder in the microstructure, such as stacking faults and anisotropic coherent lengths, the X-ray diffraction patterns were interpreted using a comprehensive structural model and a refinement program CARBONXS. The deduced structural parameters show the changes of lattice parameters, coherent lengths along the c-axis and the basal plane, and the degree of turbostratic disorder as a function of the irradiation dose. Our results reveal neutron irradiation effects on the microstructure and macroscopic dimension, which are consistent with previous work. The methodology used in this work enables the quantification of the damage on the microstructure of nuclear graphite induced by neutron irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20graphite" title="nuclear graphite">nuclear graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20irradiation" title=" neutron irradiation"> neutron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20annealing" title=" thermal annealing"> thermal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20behavior" title=" recovery behavior"> recovery behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20change" title=" dimensional change"> dimensional change</a>, <a href="https://publications.waset.org/abstracts/search?q=CARBONX" title=" CARBONX"> CARBONX</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD%20analysis" title=" XRD analysis"> XRD analysis</a> </p> <a href="https://publications.waset.org/abstracts/72835/x-ray-diffraction-and-precision-dilatometer-study-of-neutron-irradiated-nuclear-graphite-recovery-process-up-to-1673k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2137</span> Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Thompson">T. Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20F.%20Zegeye"> E. F. Zegeye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 &deg;C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 &deg;C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20cellulose" title="bacterial cellulose">bacterial cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=exfoliated%20graphite" title=" exfoliated graphite"> exfoliated graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=kombucha%20scoby" title=" kombucha scoby"> kombucha scoby</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a> </p> <a href="https://publications.waset.org/abstracts/118660/mechanical-properties-of-organic-polymer-and-exfoliated-graphite-reinforced-bacteria-cellulose-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2136</span> Study of the Tribological Behavior of a Pin on Disc Type of Contact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Djebali">S. Djebali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Larbi"> S. Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bilek"> A. Bilek </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bronze" title="bronze">bronze</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20loss" title=" mass loss"> mass loss</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a> </p> <a href="https://publications.waset.org/abstracts/49238/study-of-the-tribological-behavior-of-a-pin-on-disc-type-of-contact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2135</span> Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Azian">M. N. Azian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ilia%20Anisa"> A. N. Ilia Anisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Iwai"> Y. Iwai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20bioactive%20compounds" title=" ginger bioactive compounds"> ginger bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction" title=" soxhlet extraction"> soxhlet extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20water%20extraction" title=" accelerated water extraction"> accelerated water extraction</a> </p> <a href="https://publications.waset.org/abstracts/9278/mechanisms-of-ginger-bioactive-compounds-extract-using-soxhlet-and-accelerated-water-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2134</span> Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rong%20Li">Rong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20D.%20Wirth"> Brian D. Wirth</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Liu"> Bing Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphite%20damage%20cascade" title="graphite damage cascade">graphite damage cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20morphology" title=" cascade morphology"> cascade morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20distribution" title=" cascade distribution"> cascade distribution</a> </p> <a href="https://publications.waset.org/abstracts/72796/molecular-dynamics-simulation-of-irradiation-induced-damage-cascades-in-graphite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2133</span> The Formation of Thin Copper Films on Graphite Surface Using Magnetron Sputtering Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zydrunas%20Kavaliauskas">Zydrunas Kavaliauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandras%20Iljinas"> Aleksandras Iljinas</a>, <a href="https://publications.waset.org/abstracts/search?q=Liutauras%20Marcinauskas"> Liutauras Marcinauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindaugas%20Milieska"> Mindaugas Milieska</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitas%20Valincius"> Vitas Valincius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetron sputtering deposition method is often used to obtain thin film coatings. The main advantage of magnetron vaporization compared to other deposition methods is the high rate erosion of the cathode material (e.g., copper, aluminum, etc.) and the ability to operate under low-pressure conditions. The structure of the formed coatings depends on the working parameters of the magnetron deposition system, which is why it is possible to influence the properties of the growing film, such as morphology, crystal orientation, and dimensions, stresses, adhesion, etc. The properties of these coatings depend on the distance between the substrate and the magnetron surface, the vacuum depth, the gas used, etc. Using this deposition technology, substrates are most often placed near the anode. The magnetic trap of the magnetrons for localization of electrons in the cathode region is formed using a permanent magnet system that is on the side of the cathode. The scientific literature suggests that, after insertion of a small amount of copper into graphite, the electronic conductivity of graphite increase. The aim of this work is to create thin (up to 300 nm) layers on a graphite surface using a magnetron evaporation method, to investigate the formation peculiarities and microstructure of thin films, as well as the mechanism of copper diffusion into graphite inner layers at different thermal treatment temperatures. The electron scanning microscope was used to investigate the microrelief of the coating surface. The chemical composition is determined using the EDS method, which shows that, with an increase of the thermal treatment of the copper-carbon layer from 200 °C to 400 °C, the copper content is reduced from 8 to 4 % in atomic mass units. This is because the EDS method captures only the amount of copper on the graphite surface, while the temperature of the heat treatment increases part of the copper because of the diffusion processes penetrates into the inner layers of the graphite. The XRD method shows that the crystalline copper structure is not affected by thermal treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=coatings" title=" coatings"> coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a> </p> <a href="https://publications.waset.org/abstracts/88995/the-formation-of-thin-copper-films-on-graphite-surface-using-magnetron-sputtering-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2132</span> Dimensionally Stable Anode as a Bipolar Plate for Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaejin%20Han">Jaejin Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsub%20Choi"> Jinsub Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vanadium redox flow battery (VRFB) is a type of redox flow battery which uses vanadium ionic solution as electrolyte. Inside the VRFB, 2.5mm thickness of graphite is generally used as bipolar plate for anti-corrosion of current collector. In this research, thick graphite bipolar plate was substituted by 0.126mm thickness of dimensionally stable anode which was coated with IrO2 on an anodic nanotubular TiO2 substrate. It can provide dimensional advantage over the conventional graphite when the VRFB is used as multi-stack. Ir was coated by using spray coating method in order to enhance electric conductivity. In this study, various electrochemical characterizations were carried out. Cyclic voltammetry data showed activation of Ir in the positive electrode of VRFB. In addition, polarization measurements showed Ir-coated DSA had low overpotential in the positive electrode of VRFB. In cell test results, the DSA-used VRFB showed better efficiency than graphite-used VRFB in voltage and overall efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bipolar%20plate" title="bipolar plate">bipolar plate</a>, <a href="https://publications.waset.org/abstracts/search?q=DSA%20%28dimensionally%20stable%20anode%29" title=" DSA (dimensionally stable anode)"> DSA (dimensionally stable anode)</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium%20oxide%20coating" title=" iridium oxide coating"> iridium oxide coating</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanotubes" title=" TiO2 nanotubes"> TiO2 nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=VRFB%20%28vanadium%20redox%20flow%20battery%29" title=" VRFB (vanadium redox flow battery)"> VRFB (vanadium redox flow battery)</a> </p> <a href="https://publications.waset.org/abstracts/36558/dimensionally-stable-anode-as-a-bipolar-plate-for-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2131</span> Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Joda">Marzieh Joda</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Fallah"> Narges Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Afsham"> Neda Afsham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electro%20deposition" title="Electro deposition">Electro deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%20oxide-hydroxide" title=" Nickel oxide-hydroxide"> Nickel oxide-hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitrogen%20selectivity" title=" Nitrogen selectivity"> Nitrogen selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammonia%20oxidation" title=" Ammonia oxidation"> Ammonia oxidation</a> </p> <a href="https://publications.waset.org/abstracts/132084/selective-oxidation-of-ammonia-to-nitrogen-over-nickel-oxide-hydroxide-graphite-prepared-with-an-electro-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2130</span> Pre-Lithiation of SiO₂ Nanoparticles-Based Anode for Lithium Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Hoornam">Soraya Hoornam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Sanaee"> Zeinab Sanaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium-ion batteries are widely used for providing energy for mobile electronic devices. Graphite is a traditional anode material that was used in almost all commercialized lithium-ion batteries. It gives a specific capacity of 372 mAh/g for lithium storage. But there are multiple better choices for storing lithium that propose significantly higher specific capacities. As an example, silicon-based materials can be mentioned. In this regard, SiO₂ material can offer a huge specific capacity of 1965 mAh/g. Due to this high lithium storage ability, large volume change occurs in this electrode material during insertion and extraction of lithium, which may lead to cracking and destruction of the electrode. The use of nanomaterials instead of bulk material can significantly solve this problem. In addition, if we insert lithium in the active material of the battery before its cycling, which is called pre-lithiation, a further enhancement in the performance is expected. Here, we have fabricated an anode electrode of the battery using SiO₂ nanomaterial mixed with Graphite and assembled a lithium-ion battery half-cell with this electrode. Next, a pre-lithiation was performed on the SiO₂ nanoparticle-containing electrode, and the resulting anode material was investigated. This electrode has great potential for high-performance lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiO%E2%82%82%20nanoparticles" title="SiO₂ nanoparticles">SiO₂ nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-lithiation" title=" pre-lithiation"> pre-lithiation</a>, <a href="https://publications.waset.org/abstracts/search?q=anode%20material" title=" anode material"> anode material</a> </p> <a href="https://publications.waset.org/abstracts/158363/pre-lithiation-of-sio2-nanoparticles-based-anode-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2129</span> Mechanically Strong and Highly Thermal Conductive Polymer Composites Enabled by Three-Dimensional Interconnected Graphite Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three-dimensional (3D) network structure has been recognized as an effective approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry and infiltrating with the polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m⁻¹ K⁻¹ by 1094% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 82% and 310%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title="mechanical properties">mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=oriented%20network" title=" oriented network"> oriented network</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20polymer%20composite" title=" graphite polymer composite"> graphite polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/94381/mechanically-strong-and-highly-thermal-conductive-polymer-composites-enabled-by-three-dimensional-interconnected-graphite-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2128</span> Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliya%20Kurbanova">Aliya Kurbanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurlan%20Akhmetov"> Nurlan Akhmetov</a>, <a href="https://publications.waset.org/abstracts/search?q=Abilmansur%20Yeshmuratov"> Abilmansur Yeshmuratov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yerzhigit%20Sugurbekov"> Yerzhigit Sugurbekov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramiz%20Zulkharnay"> Ramiz Zulkharnay</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulzat%20Demeuova"> Gulzat Demeuova</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Baisariyev"> Murat Baisariyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnar%20Sugurbekova"> Gulnar Sugurbekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demetallization" title="demetallization">demetallization</a>, <a href="https://publications.waset.org/abstracts/search?q=deasphalting" title=" deasphalting"> deasphalting</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20removal" title=" electrochemical removal"> electrochemical removal</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering" title=" petroleum engineering"> petroleum engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/80594/removal-of-nickel-and-vanadium-from-crude-oil-by-using-solvent-extraction-and-electrochemical-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2127</span> Effects of Carbon Black/Graphite Ratio for Electrical Conduction and Frictional Resistance of Nanocomposite Sol-Gel Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julien%20Acquadro">Julien Acquadro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Noel"> Sophie Noel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Houze"> Frédéric Houze</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Teste"> Philippe Teste</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Chretien"> Pascal Chretien</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A9ment%20Genet"> Clément Genet</a>, <a href="https://publications.waset.org/abstracts/search?q=Edouard%20Breniaux"> Edouard Breniaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Jo%C3%ABl%20Menu"> Marie-Joël Menu</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Ansart"> Florence Ansart</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Gressier"> Marie Gressier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the study results of the electrical and tribological properties of nanocomposite hybrid sol-gel coatings developed for industrial applications on electrical connector housings. The electrical properties of coatings are provided by conductive fillers. The coatings presented in this study are formulated with different types of conductive carbon fillers, in this case carbon black and graphite particles. The coatings are deposited on a high-phosphorous nickel substrate by a dip-coating process. The authors have investigated the effects of the carbon black/graphite ratio on the coating's electrical and tribological properties. Electrical characterizations with a 4-probe method and AFM measurements as well as tribological tests by micro-friction shed light on the role of the black carbon/graphite ratio on the final properties of the sol-gel nanocomposite coatings. This study shows that the amount of carbon black mainly drives the coatings' electrical conduction property, while graphite's lubrication properties bring interest to reduce the values of friction coefficients (at a contact pressure of 800 MPa). In the industrial field of electrical connectors, such coatings aim at replacing cadmium and chromium (VI) protection, as recommended by REACH (Registration, Evaluation and Authorization of Chemicals) and RoHS (Restriction of Hazardous Substances in electrical and electronic equipment) regulations (Annex XVII of REACH). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20conductive%20fillers" title="carbon conductive fillers">carbon conductive fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conduction" title=" electrical conduction"> electrical conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20coatings" title=" sol-gel coatings"> sol-gel coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/167788/effects-of-carbon-blackgraphite-ratio-for-electrical-conduction-and-frictional-resistance-of-nanocomposite-sol-gel-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2126</span> Analytical Study of Cobalt(II) and Nickel(II) Extraction with Salicylidene O-, M-, and P-Toluidine in Chloroform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Almi">Sana Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Barkat"> Djamel Barkat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solvent extraction of cobalt (II) and nickel (II) from aqueous sulfate solutions were investigated with the analytical methods of slope analysis using salicylidene aniline and the three isomeric o-, m- and p-salicylidene toluidine diluted with chloroform at 25°C. By a statistical analysis of the extraction data, it was concluded that the extracted species are CoL2 with CoL2(HL) and NiL2 (HL denotes HSA, HSOT, HSMT, and HSPT). The extraction efficiency of Co(II) was higher than Ni(II). This tendency is confirmed from numerical extraction constants for each metal cations. The best extraction was according to the following order: HSMT > HSPT > HSOT > HSA for Co2+ and Ni2+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title="solvent extraction">solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%28II%29" title=" nickel(II)"> nickel(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%28II%29" title=" cobalt(II)"> cobalt(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylidene%20aniline" title=" salicylidene aniline"> salicylidene aniline</a>, <a href="https://publications.waset.org/abstracts/search?q=o-" title=" o-"> o-</a>, <a href="https://publications.waset.org/abstracts/search?q=m-" title=" m-"> m-</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20p-salicylidene%20toluidine" title=" and p-salicylidene toluidine"> and p-salicylidene toluidine</a> </p> <a href="https://publications.waset.org/abstracts/21677/analytical-study-of-cobaltii-and-nickelii-extraction-with-salicylidene-o-m-and-p-toluidine-in-chloroform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2125</span> Extraction of Essential Oil From Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aayush%20Bhisikar">Aayush Bhisikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Rajas"> Neha Rajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhingare"> Aditya Bhingare</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Bhandare"> Samarth Bhandare</a>, <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Amrurkar"> Amruta Amrurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orange%20peels" title="orange peels">orange peels</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a> </p> <a href="https://publications.waset.org/abstracts/173039/extraction-of-essential-oil-from-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> Extraction of Essential Oil from Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Rajas">Neha Rajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aayush%20Bhisikar"> Aayush Bhisikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Bhandare"> Samarth Bhandare</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhingare"> Aditya Bhingare</a>, <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Amrutkar"> Amruta Amrutkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orange%20peels" title="orange peels">orange peels</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/173321/extraction-of-essential-oil-from-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> Microwave-Assisted Extraction of Lycopene from Gac Arils (Momordica cochinchinensis (Lour.) Spreng)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yardfon%20Tanongkankit">Yardfon Tanongkankit</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjana%20Narkprasom"> Kanjana Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Nukrob%20Narkprasom"> Nukrob Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwanruthai%20Saiupparat"> Khwanruthai Saiupparat</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatthareeya%20Siriwat"> Phatthareeya Siriwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gac fruit (Momordica cochinchinensis (Lour.) Spreng) possesses high potential for health food as it contains high lycopene contents. The objective of this study was to optimize the extraction of lycopene from gac arils using the microwave extraction method. Response surface method was used to find the conditions that optimize the extraction of lycopene from gac arils. The parameters of extraction used in this study were extraction time (120-600 seconds), the solvent to sample ratio (10:1, 20:1, 30:1, 40:1 and 50:1 mL/g) and set microwave power (100-800 watts). The results showed that the microwave extraction condition at the extraction time of 360 seconds, the sample ratio of 30:1 mL/g and the microwave power of 450 watts were suggested since it exhibited the highest value of lycopene content of 9.86 mg/gDW. It was also observed that lycopene contents extracted from gac arils by microwave method were higher than that by the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20extraction" title="conventional extraction">conventional extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Gac%20arils" title=" Gac arils"> Gac arils</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20extraction" title=" microwave-assisted extraction"> microwave-assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lycopene" title=" Lycopene"> Lycopene</a> </p> <a href="https://publications.waset.org/abstracts/62117/microwave-assisted-extraction-of-lycopene-from-gac-arils-momordica-cochinchinensis-lour-spreng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=72">72</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=graphite%20extraction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10