CINXE.COM

Search results for: time domain simulation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: time domain simulation</title> <meta name="description" content="Search results for: time domain simulation"> <meta name="keywords" content="time domain simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="time domain simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="time domain simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 22915</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: time domain simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22915</span> Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Bhargava">Rama Bhargava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, numerical simulation has been performed for the two-dimensional time dependent Pennes’ heat transfer model which is solved for irregular diseased tumor cells. An elliptic cryoprobe of varying sizes is taken at the center of the computational domain in such a manner that the location of the probe is fixed throughout the computation. The phase transition occurs due to the effect of probe with infusion of different nanoparticles Au, Al₂O₃, Fe₃O₄. The cooling performance of these nanoparticles injected at very low temperature, has been studied by implementing a hybrid FEM/EFGM method in which the whole domain is decomposed into two subdomains. The results are shown in terms of temperature profile inside the computational domain. Rate of cooling is obtained for various nanoparticles and it is observed that infusion of Au nanoparticles is very much efficient in increasing the heating rate than other nanoparticles. Such numerical scheme has direct applications where the domain is irregular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryosurgery" title="cryosurgery">cryosurgery</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20EFGM%2FFEM" title=" hybrid EFGM/FEM"> hybrid EFGM/FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/141329/numerical-simulation-of-phase-transfer-during-cryosurgery-for-an-irregular-tumor-using-hybrid-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22914</span> Comparison of Frequency-Domain Contention Schemes in Wireless LANs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Feng">Li Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=802.11" title="802.11">802.11</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20LANs" title=" wireless LANs"> wireless LANs</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-domain%20contention" title=" frequency-domain contention"> frequency-domain contention</a>, <a href="https://publications.waset.org/abstracts/search?q=T2F" title=" T2F"> T2F</a> </p> <a href="https://publications.waset.org/abstracts/42959/comparison-of-frequency-domain-contention-schemes-in-wireless-lans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22913</span> Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So-Young%20Ju">So-Young Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Mi%20Jo"> Sung-Mi Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui-Rim%20Jeong"> Eui-Rim Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title="channel estimation">channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=jammer" title=" jammer"> jammer</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot" title=" pilot"> pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-FDE" title=" SC-FDE"> SC-FDE</a> </p> <a href="https://publications.waset.org/abstracts/80488/single-carrier-frequency-domain-equalization-design-to-cope-with-narrow-band-jammer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22912</span> Parallelizing the Hybrid Pseudo-Spectral Time Domain/Finite Difference Time Domain Algorithms for the Large-Scale Electromagnetic Simulations Using Massage Passing Interface Library</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donggun%20Lee">Donggun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Q-Han%20Park"> Q-Han Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to its coarse grid, the Pseudo-Spectral Time Domain (PSTD) method has advantages against the Finite Difference Time Domain (FDTD) method in terms of memory requirement and operation time. However, since the efficiency of parallelization is much lower than that of FDTD, PSTD is not a useful method for a large-scale electromagnetic simulation in a parallel platform. In this paper, we propose the parallelization technique of the hybrid PSTD-FDTD (HPF) method which simultaneously possesses the efficient parallelizability of FDTD and the quick speed and low memory requirement of PSTD. Parallelization cost of the HPF method is exactly the same as the parallel FDTD, but still, it occupies much less memory space and has faster operation speed than the parallel FDTD. Experiments in distributed memory systems have shown that the parallel HPF method saves up to 96% of the operation time and reduces 84% of the memory requirement. Also, by combining the OpenMP library to the MPI library, we further reduced the operation time of the parallel HPF method by 50%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FDTD" title="FDTD">FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=MPI" title=" MPI"> MPI</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenMP" title=" OpenMP"> OpenMP</a>, <a href="https://publications.waset.org/abstracts/search?q=PSTD" title=" PSTD"> PSTD</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a> </p> <a href="https://publications.waset.org/abstracts/104171/parallelizing-the-hybrid-pseudo-spectral-time-domainfinite-difference-time-domain-algorithms-for-the-large-scale-electromagnetic-simulations-using-massage-passing-interface-library" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22911</span> Detection of Parkinsonian Freezing of Gait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Hoon%20Park">Sang-Hoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeji%20Ho"> Yeji Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwang-Moon%20Eom"> Gwang-Moon Eom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast and accurate detection of Freezing of Gait (FOG) is desirable for appropriate application of cueing which has been shown to ameliorate FOG. Utilization of frequency spectrum of leg acceleration to derive the freeze index requires much calculation and it would lead to delayed cueing. We hypothesized that FOG can be reasonably detected from the time domain amplitude of foot acceleration. A time instant was recognized as FOG if the mean amplitude of the acceleration in the time window surrounding the time instant was in the specific FOG range. Parameters required in the FOG detection was optimized by simulated annealing. The suggested time domain methods showed performances comparable to those of frequency domain methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freezing%20of%20gait" title="freezing of gait">freezing of gait</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson&#039;s disease"> Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=time-domain%20method" title=" time-domain method"> time-domain method</a> </p> <a href="https://publications.waset.org/abstracts/4337/detection-of-parkinsonian-freezing-of-gait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22910</span> Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20P.%20Hu">W. P. Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20V.%20Kumar"> J. V. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20J.%20P.%20Tsai"> Jeffrey J. P. Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonpeptide%20inhibitor" title="nonpeptide inhibitor">nonpeptide inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Src%20SH2%20domain" title=" Src SH2 domain"> Src SH2 domain</a>, <a href="https://publications.waset.org/abstracts/search?q=LibDock" title=" LibDock"> LibDock</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a> </p> <a href="https://publications.waset.org/abstracts/9031/computational-analysis-of-potential-inhibitors-selected-based-on-structural-similarity-for-the-src-sh2-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22909</span> Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Idawaty">A. Idawaty</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Mohamed"> O. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Z.%20Zuriati"> A. Z. Zuriati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time%20system%20%28RTS%29" title="real-time system (RTS)">real-time system (RTS)</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20utility%20function%2F%20utility%20accrual%20%28TUF%2FUA%29%20scheduling" title=" time utility function/ utility accrual (TUF/UA) scheduling"> time utility function/ utility accrual (TUF/UA) scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20recovery%20mechanism" title=" backward recovery mechanism"> backward recovery mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=multiprocessor" title=" multiprocessor"> multiprocessor</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation%20%28DES%29" title=" discrete event simulation (DES)"> discrete event simulation (DES)</a> </p> <a href="https://publications.waset.org/abstracts/52774/simulation-of-utility-accrual-scheduling-and-recovery-algorithm-in-multiprocessor-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22908</span> Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Tabassum">Shagufta Tabassum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20reflectometry%20measurement%20techinque" title="time domain reflectometry measurement techinque">time domain reflectometry measurement techinque</a>, <a href="https://publications.waset.org/abstracts/search?q=cable%20and%20connector%20loss" title=" cable and connector loss"> cable and connector loss</a>, <a href="https://publications.waset.org/abstracts/search?q=oscilloscope%20loss" title=" oscilloscope loss"> oscilloscope loss</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20normalization%20technique" title=" and normalization technique"> and normalization technique</a> </p> <a href="https://publications.waset.org/abstracts/139922/basic-calibration-and-normalization-techniques-for-time-domain-reflectometry-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22907</span> Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Akta%C5%9F">Ömer Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20A.%20Suvorova"> Olga A. Suvorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Tretyakov"> Oleg Tretyakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20regularization%20method" title="analytical regularization method">analytical regularization method</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20theory%20evolutionary%20equations%20of%20time-domain" title=" electromagnetic theory evolutionary equations of time-domain"> electromagnetic theory evolutionary equations of time-domain</a>, <a href="https://publications.waset.org/abstracts/search?q=TM%20Field" title=" TM Field"> TM Field</a> </p> <a href="https://publications.waset.org/abstracts/44904/analysis-and-simulation-of-tm-fields-in-waveguides-with-arbitrary-cross-section-shapes-by-means-of-evolutionary-equations-of-time-domain-electromagnetic-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22906</span> Analytical Study Of Holographic Polymer Dispersed Liquid Crystals Using Finite Difference Time Domain Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20R.%20Mohamad">N. R. Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ono"> H. Ono</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haroon"> H. Haroon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Salleh"> A. Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Z.%20Hashim"> N. M. Z. Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have studied and analyzed the modulation of light and liquid crystal in HPDLCs using Finite Domain Time Difference (FDTD) method. HPDLCs are modeled as a mixture of polymer and liquid crystals (LCs) that categorized as an anisotropic medium. FDTD method is directly solves Maxwell’s equation with less approximation, so this method can analyze more flexible and general approach for the arbitrary anisotropic media. As the results from FDTD simulation, the highest diffraction efficiency occurred at ±19 degrees (Bragg angle) using p polarization incident beam to Bragg grating, Q > 10 when the pitch is 1µm. Therefore, the liquid crystal is assumed to be aligned parallel to the grating constant vector during these parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=birefringence" title="birefringence">birefringence</a>, <a href="https://publications.waset.org/abstracts/search?q=diffraction%20efficiency" title=" diffraction efficiency"> diffraction efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20domain%20time%20difference" title=" finite domain time difference"> finite domain time difference</a>, <a href="https://publications.waset.org/abstracts/search?q=nematic%20liquid%20crystals" title=" nematic liquid crystals"> nematic liquid crystals</a> </p> <a href="https://publications.waset.org/abstracts/36230/analytical-study-of-holographic-polymer-dispersed-liquid-crystals-using-finite-difference-time-domain-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22905</span> A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulong%20Jia">Yulong Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Zhang"> Xiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziyuan%20Wu"> Ziyuan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiji%20Hu"> Shiji Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in the quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in the quadratic extension domain. The sub-expanded domain Fp₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, The output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (AB+CD)r⁻¹ mod form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sm9" title="sm9">sm9</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware" title=" hardware"> hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=Montgomery" title=" Montgomery"> Montgomery</a> </p> <a href="https://publications.waset.org/abstracts/194787/a-low-latency-quadratic-extended-domain-modular-multiplier-for-bilinear-pairing-based-on-non-least-positive-multiplication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22904</span> Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosmas%20Pandit%20Pagwiwoko">Cosmas Pandit Pagwiwoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Khaled%20Abdelaziz%20Abdelsamia"> Ammar Khaled Abdelaziz Abdelsamia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flutter" title="flutter">flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-induced%20vibration" title=" flow-induced vibration"> flow-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-structure%20interaction" title=" flow-structure interaction"> flow-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20structure" title=" non-linear structure"> non-linear structure</a> </p> <a href="https://publications.waset.org/abstracts/50783/modelling-and-simulation-of-aero-elastic-vibrations-using-system-dynamic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22903</span> Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zanj">A. Zanj</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20He"> F. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-physical%20domain" title="multi-physical domain">multi-physical domain</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20model" title=" conduction model"> conduction model</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20based%20modeling" title=" port based modeling"> port based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a> </p> <a href="https://publications.waset.org/abstracts/42625/conduction-model-compatible-for-multi-physical-domain-dynamic-investigations-bond-graph-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22902</span> Modal Analysis for Optimal Location of Doubly Fed Induction-Generator-Based Wind Farms for Reduction of Small Signal Oscillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meet%20Patel">Meet Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Darshan%20Patel"> Darshan Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Shah"> Nilay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excess growth of wind-based renewable energy sources is required to identify the optimal location and damping capacity of doubly fed induction-generator-based (DFIG) wind farms while it penetrates into the transmission network. In this analysis, various ratings of DFIG wind farms are penetrated into the Single Machine Infinite Bus (SMIB ) at a different distance of the transmission line. On the basis of detailed examinations, a prime position is evaluated to maximize the stability of overall systems. A damping controller is designed at an optimum location to mitigate the small oscillations. The proposed model was validated using eigenvalue analysis, calculation of the participation factor, and time-domain simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFIG" title="DFIG">DFIG</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20signal%20stability" title=" small signal stability"> small signal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation" title=" time domain simulation"> time domain simulation</a> </p> <a href="https://publications.waset.org/abstracts/163608/modal-analysis-for-optimal-location-of-doubly-fed-induction-generator-based-wind-farms-for-reduction-of-small-signal-oscillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22901</span> Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Tabassum">Shagufta Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Pawar"> V. P. Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=jr."> jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Shinde"> G. N. Shinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 &ordm;C temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excess%20properties" title="excess properties">excess properties</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dielectric%20constant" title=" static dielectric constant"> static dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20time%20domain%20reflectometry%20technique" title=" and time domain reflectometry technique"> and time domain reflectometry technique</a> </p> <a href="https://publications.waset.org/abstracts/110068/comparative-dielectric-properties-of-12-dichloroethane-with-n-methylformamide-and-nn-dimethylformamide-using-time-domain-reflectometry-technique-in-microwave-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22900</span> Vibrations of Springboards: Mode Shape and Time Domain Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Frassinelli">Stefano Frassinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Niccolai"> Alessandro Niccolai</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20E.%20Zich"> Riccardo E. Zich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=springboard%20analysis" title="springboard analysis">springboard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a> </p> <a href="https://publications.waset.org/abstracts/61559/vibrations-of-springboards-mode-shape-and-time-domain-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22899</span> Quality Assurance in Software Design Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabbia%20Tariq">Rabbia Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Sajjad"> Hannan Sajjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehreen%20Sirshar"> Mehreen Sirshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design patterns are widely used to make the process of development easier as they greatly help the developers to develop the software. Different design patterns have been introduced till now but the behavior of same design pattern may differ in different domains that can lead to the wrong selection of the design pattern. The paper aims to discover the design patterns that suits best with respect to their domain thereby helping the developers to choose an effective design pattern. It presents the comprehensive analysis of design patterns based on different methodologies that include simulation, case study and comparison of various algorithms. Due to the difference of the domain the methodology used in one domain may be inapplicable to the other domain. The paper draws a conclusion based on strength and limitation of each design pattern in their respective domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20patterns" title="design patterns">design patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance" title=" quality assurance"> quality assurance</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20domains" title=" software domains"> software domains</a> </p> <a href="https://publications.waset.org/abstracts/25836/quality-assurance-in-software-design-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22898</span> Simulation of Reflectometry in Alborz Tokamak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kohestani">S. Kohestani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Amrollahi"> R. Amrollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Daryabor"> P. Daryabor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave diagnostics such as reflectometry are receiving growing attention in magnetic confinement fusionresearch. In order to obtain the better understanding of plasma confinement physics, more detailed measurements on density profile and its fluctuations might be required. A 2D full-wave simulation of ordinary mode propagation has been written in an effort to model effects seen in reflectometry experiment. The code uses the finite-difference-time-domain method with a perfectly-matched-layer absorption boundary to solve Maxwell’s equations.The code has been used to simulate the reflectometer measurement in Alborz Tokamak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reflectometry" title="reflectometry">reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20mode" title=" ordinary mode"> ordinary mode</a>, <a href="https://publications.waset.org/abstracts/search?q=tokamak" title=" tokamak"> tokamak</a> </p> <a href="https://publications.waset.org/abstracts/30953/simulation-of-reflectometry-in-alborz-tokamak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22897</span> Hydrodynamic Performance of a Moored Barge in Irregular Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasan%20Chandrasekaran">Srinivasan Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihas%20A.%20Khader"> Shihas A. Khader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discuss the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in future studies. For the current study, 5000 seconds simulation is taken. The results represent wave-induced motion responses, mooring line tensions and identifies critical mooring lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irregular%20wave" title="irregular wave">irregular wave</a>, <a href="https://publications.waset.org/abstracts/search?q=moored%20barge" title=" moored barge"> moored barge</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/42063/hydrodynamic-performance-of-a-moored-barge-in-irregular-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22896</span> Inviscid Steady Flow Simulation Around a Wing Configuration Using MB_CNS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Kiani">Muhammad Umar Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Akbar"> Hassan Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a high speed inviscid steady ideal air flow around a 2D/axial-symmetry body was carried out by the use of mb_cns code. mb_cns is a program for the time-integration of the Navier-Stokes equations for two-dimensional compressible flows on a multiple-block structured mesh. The flow geometry may be either planar or axisymmetric and multiply-connected domains can be modeled by patching together several blocks. The main simulation code is accompanied by a set of pre and post-processing programs. The pre-processing programs scriptit and mb_prep start with a short script describing the geometry, initial flow state and boundary conditions and produce a discretized version of the initial flow state. The main flow simulation program (or solver as it is sometimes called) is mb_cns. It takes the files prepared by scriptit and mb_prep, integrates the discrete form of the gas flow equations in time and writes the evolved flow data to a set of output files. This output data may consist of the flow state (over the whole domain) at a number of instants in time. After integration in time, the post-processing programs mb_post and mb_cont can be used to reformat the flow state data and produce GIF or postscript plots of flow quantities such as pressure, temperature and Mach number. The current problem is an example of supersonic inviscid flow. The flow domain for the current problem (strake configuration wing) is discretized by a structured grid and a finite-volume approach is used to discretize the conservation equations. The flow field is recorded as cell-average values at cell centers and explicit time stepping is used to update conserved quantities. MUSCL-type interpolation and one of three flux calculation methods (Riemann solver, AUSMDV flux splitting and the Equilibrium Flux Method, EFM) are used to calculate inviscid fluxes across cell faces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steady%20flow%20simulation" title="steady flow simulation">steady flow simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20programs" title=" processing programs"> processing programs</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20code" title=" simulation code"> simulation code</a>, <a href="https://publications.waset.org/abstracts/search?q=inviscid%20flux" title=" inviscid flux"> inviscid flux</a> </p> <a href="https://publications.waset.org/abstracts/2345/inviscid-steady-flow-simulation-around-a-wing-configuration-using-mb-cns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22895</span> Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Li-Ping">Sun Li-Ping</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Jian-Xun"> Zhu Jian-Xun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Sheng-Nan"> Liu Sheng-Nan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=S-lay%20operation" title="S-lay operation">S-lay operation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20positioning" title=" dynamic positioning"> dynamic positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20motion" title=" coupling motion"> coupling motion</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain" title=" time domain"> time domain</a>, <a href="https://publications.waset.org/abstracts/search?q=allocation%20of%20thrust" title=" allocation of thrust "> allocation of thrust </a> </p> <a href="https://publications.waset.org/abstracts/8016/coupling-time-domain-analysis-for-dynamic-positioning-during-s-lay-installation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22894</span> Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Patrascioiu">C. Patrascioiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene&ndash;propane distillation processes. The modeling and simulation instrument is the Unisim<sup>&reg;</sup> Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim<sup>&reg;</sup> Design simulation diagrams, the input&ndash;output system structure and the numerical results. Future studies will consider modeling and simulation of the propene&ndash;propane distillation process with heat pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=unisim%20design" title=" unisim design"> unisim design</a> </p> <a href="https://publications.waset.org/abstracts/42425/modelling-and-simulation-of-the-freezing-systems-and-heat-pumps-using-unisim-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22893</span> Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaofei%20Hu">Xiaofei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyu%20Cai"> Zhiyu Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Weian%20Yao"> Weian Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=V-notch" title="V-notch">V-notch</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stress%20intensity%20factor" title=" dynamic stress intensity factor"> dynamic stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20time%20domain%20expanding%20algorithm" title=" precise time domain expanding algorithm"> precise time domain expanding algorithm</a> </p> <a href="https://publications.waset.org/abstracts/83948/study-on-sharp-v-notch-problem-under-dynamic-loading-condition-using-symplectic-analytical-singular-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22892</span> An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charbel%20Aoun">Charbel Aoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Loic%20Lagadec"> Loic Lagadec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20sensors" title="smart sensors">smart sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20fusion" title=" data fusion"> data fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20fusion%20architecture" title=" distributed fusion architecture"> distributed fusion architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20networks" title=" sensor networks"> sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20specific%20modeling%20language" title=" domain specific modeling language"> domain specific modeling language</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20architecture" title=" enterprise architecture"> enterprise architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20moving%20object" title=" underwater moving object"> underwater moving object</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20observatory" title=" marine observatory"> marine observatory</a>, <a href="https://publications.waset.org/abstracts/search?q=NS-3" title=" NS-3"> NS-3</a>, <a href="https://publications.waset.org/abstracts/search?q=IMS" title=" IMS"> IMS</a> </p> <a href="https://publications.waset.org/abstracts/135443/an-extended-domain-specific-modeling-language-for-marine-observatory-relying-on-enterprise-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22891</span> Visualization of Energy Waves via Airy Functions in Time-Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Sener">E. Sener</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Isik"> O. Isik</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Eroglu"> E. Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Sahin"> U. Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airy%20functions" title="airy functions">airy functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Klein-Gordon%20Equation" title=" Klein-Gordon Equation"> Klein-Gordon Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%E2%80%99s%20equations" title=" Maxwell’s equations"> Maxwell’s equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Surplus%20of%20energy" title=" Surplus of energy"> Surplus of energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20boundary%20operators" title=" wave boundary operators"> wave boundary operators</a> </p> <a href="https://publications.waset.org/abstracts/42403/visualization-of-energy-waves-via-airy-functions-in-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22890</span> Integer Programming: Domain Transformation in Nurse Scheduling Problem.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetha%20Baskaran">Geetha Baskaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Barjiela"> Andrzej Barjiela</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Qu"> Rong Qu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation: Nurse scheduling is a complex combinatorial optimization problem. It is also known as NP-hard. It needs an efficient re-scheduling to minimize some trade-off of the measures of violation by reducing selected constraints to soft constraints with measurements of their violations. Problem Statement: In this paper, we extend our novel approach to solve the nurse scheduling problem by transforming it through Information Granulation. Approach: This approach satisfies the rules of a typical hospital environment based on a standard benchmark problem. Generating good work schedules has a great influence on nurses' working conditions which are strongly related to the level of a quality health care. Domain transformation that combines the strengths of operation research and artificial intelligence was proposed for the solution of the problem. Compared to conventional methods, our approach involves judicious grouping (information granulation) of shifts types’ that transforms the original problem into a smaller solution domain. Later these schedules from the smaller problem domain are converted back into the original problem domain by taking into account the constraints that could not be represented in the smaller domain. An Integer Programming (IP) package is used to solve the transformed scheduling problem by expending the branch and bound algorithm. We have used the GNU Octave for Windows to solve this problem. Results: The scheduling problem has been solved in the proposed formalism resulting in a high quality schedule. Conclusion: Domain transformation represents departure from a conventional one-shift-at-a-time scheduling approach. It offers an advantage of efficient and easily understandable solutions as well as offering deterministic reproducibility of the results. We note, however, that it does not guarantee the global optimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domain%20transformation" title="domain transformation">domain transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=nurse%20scheduling" title=" nurse scheduling"> nurse scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20granulation" title=" information granulation"> information granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation "> simulation </a> </p> <a href="https://publications.waset.org/abstracts/1492/integer-programming-domain-transformation-in-nurse-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22889</span> Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokihiko%20Akita">Tokihiko Akita</a>, <a href="https://publications.waset.org/abstracts/search?q=Seiichi%20Mita"> Seiichi Mita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave%20radar" title="millimeter-wave radar">millimeter-wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20classification" title=" object classification"> object classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20adaptation" title=" domain adaptation"> domain adaptation</a> </p> <a href="https://publications.waset.org/abstracts/164634/accuracy-improvement-of-traffic-participant-classification-using-millimeter-wave-radar-by-leveraging-simulator-based-on-domain-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22888</span> Time-Domain Analysis of Pulse Parameters Effects on Crosstalk in High-Speed Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loubna%20Tani">Loubna Tani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabih%20Elouzzani"> Nabih Elouzzani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in high-speed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiconductor%20transmission%20line" title="multiconductor transmission line">multiconductor transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=crosstalk" title=" crosstalk"> crosstalk</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20time%20domain%20%28FDTD%29" title=" finite difference time domain (FDTD)"> finite difference time domain (FDTD)</a>, <a href="https://publications.waset.org/abstracts/search?q=printed-circuit%20board%20%28PCB%29" title=" printed-circuit board (PCB)"> printed-circuit board (PCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=rise%20time" title=" rise time"> rise time</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/27538/time-domain-analysis-of-pulse-parameters-effects-on-crosstalk-in-high-speed-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22887</span> Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Taha">Abdelrahman Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Malekghaini"> Niloofar Malekghaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Ebrahimian"> Hamed Ebrahimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Motamed"> Ramin Motamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20approach" title="direct approach">direct approach</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20function" title=" impedance function"> impedance function</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=substructure%20approach" title=" substructure approach"> substructure approach</a> </p> <a href="https://publications.waset.org/abstracts/153295/time-domain-analysis-approaches-of-soil-structure-interaction-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22886</span> Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rafiur%20Rahman">M. Rafiur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mezbah%20Uddin"> M. Mezbah Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Irfan%20Uddin"> Mohammad Irfan Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moinul%20Islam"> M. Moinul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20integrated%20dynamic%20analysis" title="coupled integrated dynamic analysis">coupled integrated dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SFC" title=" SFC"> SFC</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converters" title=" wave energy converters"> wave energy converters</a> </p> <a href="https://publications.waset.org/abstracts/81412/integrated-dynamic-analysis-of-semi-submersible-flap-type-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=763">763</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=764">764</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20domain%20simulation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10