CINXE.COM
Search results for: Sim Choon Cheak
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sim Choon Cheak</title> <meta name="description" content="Search results for: Sim Choon Cheak"> <meta name="keywords" content="Sim Choon Cheak"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sim Choon Cheak" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sim Choon Cheak"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sim Choon Cheak</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Nadhirah%20Rusyda%20Rosnan">Nur Nadhirah Rusyda Rosnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursuhaili%20Najwa%20Masrol"> Nursuhaili Najwa Masrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Fatiha%20MD%20Nor"> Nurul Fatiha MD Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zafrullah%20Mohammad%20Salim"> Mohammad Zafrullah Mohammad Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sim%20Choon%20Cheak"> Sim Choon Cheak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immature%20palm%20count" title="immature palm count">immature palm count</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/175726/immature-palm-tree-detection-using-morphological-filter-for-palm-counting-with-high-resolution-satellite-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Revolutionizing Oil Palm Replanting: Geospatial Terrace Design for High-precision Ground Implementation Compared to Conventional Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursuhaili%20Najwa%20Masrol">Nursuhaili Najwa Masrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Hafizah%20Mohammed"> Nur Hafizah Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Nadhirah%20Rusyda%20Rosnan"> Nur Nadhirah Rusyda Rosnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Subramaniam"> Vijaya Subramaniam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sim%20Choon%20Cheak"> Sim Choon Cheak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replanting in oil palm cultivation is vital to enable the introduction of planting materials and provides an opportunity to improve the road, drainage, terrace design, and planting density. Oil palm replanting is fundamentally necessary every 25 years. The adoption of the digital replanting blueprint is imperative as it can assist the Malaysia Oil Palm industry in addressing challenges such as labour shortages and limited expertise related to replanting tasks. Effective replanting planning should commence at least 6 months prior to the actual replanting process. Therefore, this study will help to plan and design the replanting blueprint with high-precision translation on the ground. With the advancement of geospatial technology, it is now feasible to engage in thoroughly researched planning, which can help maximize the potential yield. A blueprint designed before replanting is to enhance management’s ability to optimize the planting program, address manpower issues, or even increase productivity. In terrace planting blueprints, geographic tools have been utilized to design the roads, drainages, terraces, and planting points based on the ARM standards. These designs are mapped with location information and undergo statistical analysis. The geospatial approach is essential in precision agriculture and ensuring an accurate translation of design to the ground by implementing high-accuracy technologies. In this study, geospatial and remote sensing technologies played a vital role. LiDAR data was employed to determine the Digital Elevation Model (DEM), enabling the precise selection of terraces, while ortho imagery was used for validation purposes. Throughout the designing process, Geographical Information System (GIS) tools were extensively utilized. To assess the design’s reliability on the ground compared with the current conventional method, high-precision GPS instruments like EOS Arrow Gold and HIPER VR GNSS were used, with both offering accuracy levels between 0.3 cm and 0.5cm. Nearest Distance Analysis was generated to compare the design with actual planting on the ground. The analysis revealed that it could not be applied to the roads due to discrepancies between actual roads and the blueprint design, which resulted in minimal variance. In contrast, the terraces closely adhered to the GPS markings, with the most variance distance being less than 0.5 meters compared to actual terraces constructed. Considering the required slope degrees for terrace planting, which must be greater than 6 degrees, the study found that approximately 65% of the terracing was constructed at a 12-degree slope, while over 50% of the terracing was constructed at slopes exceeding the minimum degrees. Utilizing blueprint replanting promising strategies for optimizing land utilization in agriculture. This approach harnesses technology and meticulous planning to yield advantages, including increased efficiency, enhanced sustainability, and cost reduction. From this study, practical implementation of this technique can lead to tangible and significant improvements in agricultural sectors. In boosting further efficiencies, future initiatives will require more sophisticated techniques and the incorporation of precision GPS devices for upcoming blueprint replanting projects besides strategic progression aims to guarantee the precision of both blueprint design stages and its subsequent implementation on the field. Looking ahead, automating digital blueprints are necessary to reduce time, workforce, and costs in commercial production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=replanting" title="replanting">replanting</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial" title=" geospatial"> geospatial</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=blueprint" title=" blueprint"> blueprint</a> </p> <a href="https://publications.waset.org/abstracts/175546/revolutionizing-oil-palm-replanting-geospatial-terrace-design-for-high-precision-ground-implementation-compared-to-conventional-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zian%20Cheak%20Tiu">Zian Cheak Tiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Harith%20Ahmad"> Harith Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Wadi%20Harun"> Sulaiman Wadi Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 µs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-wavelength%20Q-switched" title="multi-wavelength Q-switched">multi-wavelength Q-switched</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotube" title=" multi-walled carbon nanotube"> multi-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title=" photonic crystal fiber"> photonic crystal fiber</a> </p> <a href="https://publications.waset.org/abstracts/8270/multi-wavelength-q-switched-erbium-doped-fiber-laser-with-photonic-crystal-fiber-and-multi-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Ho%20Chung">Jun-Ho Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Hyun%20Yoo"> Sung-Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Hwan%20Choi"> In-Hwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Kook%20Lee"> Hyun-Kook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon-Kyu%20Song"> Moon-Kyu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon-Ki%20Ahn"> Choon-Ki Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20system" title="fuzzy logic system">fuzzy logic system</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20FIR%20filter" title=" extended FIR filter"> extended FIR filter</a> </p> <a href="https://publications.waset.org/abstracts/42104/a-different-approach-to-optimize-fuzzy-membership-functions-with-extended-fir-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">723</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Indoor Temperature Estimation with FIR Filter Using R-C Network Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun%20You">Sung Hyun You</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Hoon%20Kim"> Jeong Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Ki%20Kim"> Dae Ki Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Ki%20Ahn"> Choon Ki Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance-capacitance%20network%20model" title=" resistance-capacitance network model"> resistance-capacitance network model</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20impulse%20response%20filter" title=" finite impulse response filter"> finite impulse response filter</a> </p> <a href="https://publications.waset.org/abstracts/65608/indoor-temperature-estimation-with-fir-filter-using-r-c-network-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Unified Structured Process for Health Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supunmali%20Ahangama">Supunmali Ahangama</a>, <a href="https://publications.waset.org/abstracts/search?q=Danny%20Chiang%20Choon%20Poo"> Danny Chiang Choon Poo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20methodology" title="agile methodology">agile methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20analytics" title=" health analytics"> health analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20process%20model" title=" unified process model"> unified process model</a>, <a href="https://publications.waset.org/abstracts/search?q=UML" title=" UML"> UML</a> </p> <a href="https://publications.waset.org/abstracts/18324/unified-structured-process-for-health-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Kyu%20Cho">Hyun-Kyu Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Su%20Kim"> Jun-Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon-Geun%20Huh"> Choon-Geun Huh</a>, <a href="https://publications.waset.org/abstracts/search?q=Geon%20Lee%20Young-Chul%20Park"> Geon Lee Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20performance" title="injection performance">injection performance</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20monitor" title=" foam monitor"> foam monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Projection%20distance" title=" Projection distance"> Projection distance</a> </p> <a href="https://publications.waset.org/abstracts/58090/studying-projection-distance-and-flow-properties-by-shape-variations-of-foam-monitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun%20Yoo">Sung Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Hwan%20Choi"> In Hwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Ho%20Jung"> Jun Ho Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Ki%20Ahn"> Choon Ki Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Myo%20Taeg%20Lim"> Myo Taeg Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20fuzzy%20inference%20system%20%28ANFIS%29" title="artificial neural fuzzy inference system (ANFIS)">artificial neural fuzzy inference system (ANFIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20energy%20management%20system%20%28HEMS%29" title=" home energy management system (HEMS)"> home energy management system (HEMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20device" title=" smart device"> smart device</a>, <a href="https://publications.waset.org/abstracts/search?q=legacy%20device" title=" legacy device"> legacy device</a> </p> <a href="https://publications.waset.org/abstracts/42360/home-legacy-device-output-estimation-using-temperature-and-humidity-information-by-adaptive-neural-fuzzy-inference-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Function Approximation with Radial Basis Function Neural Networks via FIR Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Chul%20Lee">Kyu Chul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun%20Yoo"> Sung Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Ki%20Ahn"> Choon Ki Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Myo%20Taeg%20Lim"> Myo Taeg Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20problem" title=" classification problem"> classification problem</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20networks%20%28RBFN%29" title=" radial basis function networks (RBFN)"> radial basis function networks (RBFN)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20impulse%20response%20%28FIR%29%20filter" title=" finite impulse response (FIR) filter"> finite impulse response (FIR) filter</a> </p> <a href="https://publications.waset.org/abstracts/13851/function-approximation-with-radial-basis-function-neural-networks-via-fir-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho%20Jeong%20Jin">Ho Jeong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Won%20Seo"> Chang Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Sik%20Cho"> Choon Sik Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong%20Yong%20Choi"> Bong Yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Kyun%20Na"> Kwang Kyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Rok%20Lee"> Sang Rok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20sensing" title="compressive sensing">compressive sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=LFM-FSK%20radar" title=" LFM-FSK radar"> LFM-FSK radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20signal%20processing" title=" radar signal processing"> radar signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20algorithm" title=" sparse algorithm"> sparse algorithm</a> </p> <a href="https://publications.waset.org/abstracts/51309/linear-frequency-modulation-frequency-shift-keying-radar-with-compressive-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Thapa">Prakash Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gye%20Choon%20Park"> Gye Choon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Gi%20Kwon"> Sung Gi Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Lee"> Jin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20%28PEM%29%20fuel%20cell" title="proton exchange membrane (PEM) fuel cell">proton exchange membrane (PEM) fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20and%20humidity%20sensor%20%28PTH%29" title=" temperature and humidity sensor (PTH)"> temperature and humidity sensor (PTH)</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20curve" title=" efficiency curve"> efficiency curve</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio%20network%20%28CRN%29" title=" cognitive radio network (CRN)"> cognitive radio network (CRN)</a> </p> <a href="https://publications.waset.org/abstracts/84275/real-time-monitoring-and-control-of-proton-exchange-membrane-fuel-cell-in-cognitive-radio-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Effectiveness of Video Clips to Enhance Students’ Achievement and Motivation on History Learning and Facilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bih%20Ni">L. Bih Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Norizah%20Ag%20Kiflee"> D. Norizah Ag Kiflee</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Choon%20Keong"> T. Choon Keong</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Talip"> R. Talip</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Singh%20Bikar%20Singh"> S. Singh Bikar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Noor%20Mad%20Japuni"> M. Noor Mad Japuni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Talin"> R. Talin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to determine the effectiveness of video clips to enhance students' achievement and motivation towards learning and facilitating of history. We use narrative literature studies to illustrate the current state of the two art and science in focused areas of inquiry. We used experimental method. The experimental method is a systematic scientific research method in which the researchers manipulate one or more variables to control and measure any changes in other variables. For this purpose, two experimental groups have been designed: one experimental and one groups consisting of 30 lower secondary students. The session is given to the first batch using a computer presentation program that uses video clips to be considered as experimental group, while the second group is assigned as the same class using traditional methods using dialogue and discussion techniques that are considered a control group. Both groups are subject to pre and post-trial in matters that are handled by the class. The findings show that the results of the pre-test analysis did not show statistically significant differences, which in turn proved the equality of the two groups. Meanwhile, post-test analysis results show that there was a statistically significant difference between the experimental group and the control group at an importance level of 0.05 for the benefit of the experimental group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Video%20clips" title="Video clips">Video clips</a>, <a href="https://publications.waset.org/abstracts/search?q=Learning%20and%20Facilitation" title=" Learning and Facilitation"> Learning and Facilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=Achievement" title=" Achievement"> Achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=Motivation" title=" Motivation"> Motivation</a> </p> <a href="https://publications.waset.org/abstracts/105243/the-effectiveness-of-video-clips-to-enhance-students-achievement-and-motivation-on-history-learning-and-facilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Molecular Detection of Viruses Causing Hemorrhagic Fevers in Rodents in the South-West of Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sehrish%20Jalal">Sehrish Jalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon-Mee%20Kim"> Choon-Mee Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Min%20Kim"> Dong-Min Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Many pathogens causing hemorrhagic fevers of medical and veterinary importance have been identified and isolated from rodents in the Republic of Korea (ROK). Objective: We investigated the prevalence of emerging viruses causing hemorrhagic fevers, such as hemorrhagic fever with renal syndrome (HFRS), severe fever with thrombocytopenia syndrome (SFTS) and flaviviruses, from wild rodents. Methods: Striped field mice, Apodemus agrarius, (n=39) were captured during 2014-2015 in the south-west of ROK. Using molecular methods, lung samples were evaluated for SFTS virus, HFRS virus and flavivirus, and seropositivity was evaluated in the blood. Results: A high positive rate of Hantavirus (46.2%) was detected in A.agrarius lungs by reverse transcription-nested polymerase chain reaction (RT-N-PCR). The monthly prevalence of HFRS virus was 16.7% in October, 86.7% in November and 25% in August of the following year (p < 0.001). Moreover, 17.9% of blood samples were serologically positive for Hantavirus antibodies. The most prevalent strain in A. agrarius was Hantaan virus. All samples were positive for neither SFTS nor flavivirus. Conclusion: Hantan virus was detected in 86.7% of A. agrarius in November (autumn), and thus, virus shedding from A. agrarius can increase the risk of humans contracting HFRS. These findings may help to predict and prevent disease outbreaks in ROK. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemorrhagic%20fever%20virus" title="hemorrhagic fever virus">hemorrhagic fever virus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20diagnostic%20technique" title=" molecular diagnostic technique"> molecular diagnostic technique</a>, <a href="https://publications.waset.org/abstracts/search?q=rodents" title=" rodents"> rodents</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea" title=" Korea"> Korea</a> </p> <a href="https://publications.waset.org/abstracts/101213/molecular-detection-of-viruses-causing-hemorrhagic-fevers-in-rodents-in-the-south-west-of-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umar%20Adli%20Amran">Umar Adli Amran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Choon%20Chek"> Tan Choon Chek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Shahkhirat%20Norizan"> Mohd Shahkhirat Norizan</a>, <a href="https://publications.waset.org/abstracts/search?q=Then%20Kek%20Hoe"> Then Kek Hoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutrition" title="nutrition">nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20seedlings" title=" oil palm seedlings"> oil palm seedlings</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manuring" title=" sustainable manuring"> sustainable manuring</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20growth" title=" vegetative growth"> vegetative growth</a> </p> <a href="https://publications.waset.org/abstracts/184431/resin-coated-controlled-release-fertilizer-crf-for-oil-palm-laboratory-and-main-nursery-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Assessing an Instrument Usability: Response Interpolation and Scale Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betsy%20Ng">Betsy Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Seng%20Chee%20Tan"> Seng Chee Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Lang%20Quek"> Choon Lang Quek</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Looker"> Peter Looker</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Koh"> Jaime Koh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to determine the particular scale rating that stands out for an instrument. The instrument was designed to assess student perceptions of various learning environments, namely face-to-face, online and blended. The original instrument had a 5-point Likert items (1 = strongly disagree and 5 = strongly agree). Alternate versions were modified with a 6-point Likert scale and a bar scale rating. Participants consisted of undergraduates in a local university were involved in the usability testing of the instrument in an electronic setting. They were presented with the 5-point, 6-point and percentage-bar (100-point) scale ratings, in response to their perceptions of learning environments. The 5-point and 6-point Likert scales were presented in the form of radio button controls for each number, while the percentage-bar scale was presented with a sliding selection. Among these responses, 6-point Likert scale emerged to be the best overall. When participants were confronted with the 5-point items, they either chose 3 or 4, suggesting that data loss could occur due to the insensitivity of instrument. The insensitivity of instrument could be due to the discreet options, as evidenced by response interpolation. To avoid the constraint of discreet options, the percentage-bar scale rating was tested, but the participant responses were not well-interpolated. The bar scale might have provided a variety of responses without a constraint of a set of categorical options, but it seemed to reflect a lack of perceived and objective accuracy. The 6-point Likert scale was more likely to reflect a respondent’s perceived and objective accuracy as well as higher sensitivity. This finding supported the conclusion that 6-point Likert items provided a more accurate measure of the participant’s evaluation. The 5-point and bar scale ratings might not be accurately measuring the participants’ responses. This study highlighted the importance of the respondent’s perception of accuracy, respondent’s true evaluation, and the scale’s ease of use. Implications and limitations of this study were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=usability" title="usability">usability</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Likert%20scales" title=" Likert scales"> Likert scales</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/62241/assessing-an-instrument-usability-response-interpolation-and-scale-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Priority Sites for Deforested and Degraded Mountain Restoration Projects in North Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koo%20Ja-Choon">Koo Ja-Choon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hyun-Deok"> Seok Hyun-Deok</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20So-Hee"> Park So-Hee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though developed countries have supported aid projects for restoring degraded and deforested mountain, recent North Korean authorities announced that North Korean forest is still very serious. Last 12 years, more than 16 thousand ha of forest were destroyed. Most of previous researches concluded that food and fuel problems should be solved for preventing people from deforesting and degrading forest in North Korea. It means that mountain restoration projects such as A/R(afforestation/reforestation) and REDD(Reducing Emissions from Deforestation and Forest Degradation) project should be implemented with the agroforestry and the forest tending project. Because agroforestry and the forest tending can provide people in the project area with foods and fuels, respectively. Especially, Agroforestry has been operated well with the support of Swiss agency of Development and cooperation since 2003. This paper aims to find the priority sites for mountain restoration project where all types of projects including agroforesty can be implemented simultaneously. We tried to find the primary counties where the areas of these activities were distributed widely and evenly. Recent spatial data of 186 counties representing altitude, gradient and crown density were collected from World Forest Watch. These 3 attributes were used to determine the type of activities; A/R, REDD, Agroforestry and forest tending project. Finally, we calculated the size of 4 activities in 186 counties by using GIS technique. Result shows that Chongjin in Hamgyeongbuk-do, Hoeryong in Hamgyeongbuk-do and Tongchang in Pyeonganbuk-do are on the highest priority of counties. Most of feasible counties whose value of richness and uniformity were greater than the average were located near the eastern coast of North Korea. South Korean government has not supported any aid projects in North Korea since 2010. Recently, South Korea is trying to continue the aid projects for North Korea. Forest project which is not affected by the political situation between North- and South- Korea can be considered as a priority activities. This result can be used when South Korean government determine the priority sites for North Korean mountain restoration project in near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title="agroforestry">agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20restoration%20project" title=" forest restoration project"> forest restoration project</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Korea" title=" North Korea"> North Korea</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a> </p> <a href="https://publications.waset.org/abstracts/29406/priority-sites-for-deforested-and-degraded-mountain-restoration-projects-in-north-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Carbapenem Usage in Medical Wards: An Antibiotic Stewardship Feedback Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Choon%20Seong%20Ng">Choon Seong Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Petrick"> P. Petrick</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20L.%20Lau"> C. L. Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Carbapenem-resistant isolates have been increasingly reported recently. Carbapenem stewardship is designed to optimize its usage particularly among medical wards with high prevalence of carbapenem prescriptions to combat such emerging resistance. Carbapenem stewardship programmes (CSP) can reduce antibiotic use but clinical outcome of such measures needs further evaluation. We examined this in a prospective manner using feedback mechanism. Methods: Our single-center prospective cohort study involved all carbapenem prescriptions across the medical wards (including medical patients admitted to intensive care unit) in a tertiary university hospital setting. The impact of such stewardship was analysed according to the accepted and the rejected groups. The primary endpoint was safety. Safety measure applied in this study was the death at 1 month. Secondary endpoints included length of hospitalisation and readmission. Results: Over the 19 months’ period, input from 144 carbapenem prescriptions was analysed on the basis of acceptance of our CSP recommendations on the use of carbapenems. Recommendations made were as follows : de-escalation of carbapenem; stopping the carbapenem; use for a short duration of 5-7 days; required prolonged duration in the case of carbapenem-sensitive Extended Spectrum Beta-Lactamases bacteremia; dose adjustment; and surgical intervention for removal of septic foci. De-escalation, shorten duration of carbapenem and carbapenem cessation comprised 79% of the recommendations. Acceptance rate was 57%. Those who accepted CSP recommendations had no increase in mortality (p = 0.92), had a shorter length of hospital stay (LOS) and had cost-saving. Infection-related deaths were found to be higher among those in the rejected group. Moreover, three rejected cases (6%) among all non-indicated cases (n = 50) were found to have developed carbapenem-resistant isolates. Lastly, Pitt’s bacteremia score appeared to be a key element affecting the carbapenem prescription’s behaviour in this trial. Conclusions: Carbapenem stewardship program in the medical wards not only saves money, but most importantly it is safe and does not harm the patients with added benefits of reducing the length of hospital stay. However, more time is needed to engage the primary clinical teams by formal clinical presentation and immediate personal feedback by senior Infectious Disease (ID) personnel to increase its acceptance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audit%20and%20feedback" title="audit and feedback">audit and feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=carbapenem%20stewardship" title=" carbapenem stewardship"> carbapenem stewardship</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20wards" title=" medical wards"> medical wards</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20hospital" title=" university hospital "> university hospital </a> </p> <a href="https://publications.waset.org/abstracts/71884/carbapenem-usage-in-medical-wards-an-antibiotic-stewardship-feedback-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Derek%20Kaka%E2%80%99an">I. Derek Kaka’an</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Smolianov"> P. Smolianov</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Koh%20Choon%20Lian"> D. Koh Choon Lian</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dion"> S. Dion</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Schoen"> C. Schoen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Norberg"> J. Norberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=football" title="football">football</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance" title=" high performance"> high performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20participation" title=" mass participation"> mass participation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20development" title=" sport development"> sport development</a> </p> <a href="https://publications.waset.org/abstracts/100602/nigerian-football-system-examining-meso-level-practices-against-a-global-model-for-integrated-development-of-mass-and-elite-sport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>