CINXE.COM

coring in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> coring in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> coring </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3869/#Item_6" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="algebra">Algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></p> <h2 id="algebraic_theories">Algebraic theories</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/2-algebraic+theory">2-algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-algebraic+theory">(∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-monad">(∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operad">operad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></p> </li> </ul> <h2 id="algebras_and_modules">Algebras and modules</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebra over a monad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-monad">∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+algebraic+theory">algebra over an algebraic theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-algebraic+theory">∞-algebra over an (∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebra over an operad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-operad">∞-algebra over an (∞,1)-operad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a></p> </li> </ul> <h2 id="higher_algebras">Higher algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+an+%28%E2%88%9E%2C1%29-category">monoid in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+an+%28%E2%88%9E%2C1%29-category">commutative monoid in an (∞,1)-category</a></p> </li> </ul> </li> <li> <p>symmetric monoidal (∞,1)-category of spectra</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+smash+product+of+spectra">symmetric monoidal smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a>, <a class="existingWikiWord" href="/nlab/show/module+spectrum">module spectrum</a>, <a class="existingWikiWord" href="/nlab/show/algebra+spectrum">algebra spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+algebra">A-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+space">A-∞ space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/C-%E2%88%9E+algebra">C-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+algebra">E-∞ algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-module+bundle">(∞,1)-module bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative cohomology theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/deformation+theory">deformation theory</a></li> </ul> </li> </ul> <h2 id="model_category_presentations">Model category presentations</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+T-algebras">model structure on simplicial T-algebras</a> / <a class="existingWikiWord" href="/nlab/show/homotopy+T-algebra">homotopy T-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+operads">model structure on operads</a></p> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+algebras+over+an+operad">model structure on algebras over an operad</a></p> </li> </ul> <h2 id="geometry_on_formal_duals_of_algebras">Geometry on formal duals of algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+conjecture">Deligne conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping+hypothesis">delooping hypothesis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/higher+algebra+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#base_ring_extension'>Base ring extension</a></li> <li><a href='#morphisms_of_corings_over_varying_bases'>Morphisms of corings over varying bases</a></li> <ul> <li><a href='#comodules_over_a_coring'>Comodules over a coring</a></li> </ul> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#canonical_sweedler_coring'>Canonical (Sweedler) coring</a></li> <li><a href='#coring_of_a_projective_module'>Coring of a projective module</a></li> <li><a href='#matrix_coring'>Matrix coring</a></li> </ul> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The notion of coring is a generalization of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/coalgebra">coalgebra</a>. While for a coalgebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> must be a <strong>commutative</strong> ring (often a <a class="existingWikiWord" href="/nlab/show/field">field</a>), a coring is defined over a general noncommutative ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> or even an associative algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</p> <p>Whereas a coalgebra structure is defined on a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-module (if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> is a field, it is a <a class="existingWikiWord" href="/nlab/show/vector+space">vector space</a>) – which may be regarded as a central <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/bimodule">bimodule</a> – a coring structure is defined on a general bimodule over a general <a class="existingWikiWord" href="/nlab/show/ring">ring</a>.</p> <h2 id="definition">Definition</h2> <p>An <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-coring</strong> is a <a class="existingWikiWord" href="/nlab/show/comonoid">comonoid</a> in the <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> of <a class="existingWikiWord" href="/nlab/show/bimodule"> bimodules</a> over a fixed (typically noncommutative) unital <a class="existingWikiWord" href="/nlab/show/ring">ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</p> <p>This generalizes the notion of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/coalgebra"> coalgebras</a> which are defined only if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is commutative and where the bimodules in question are <a class="existingWikiWord" href="/nlab/show/central+bimodule">central</a>.</p> <h2 id="base_ring_extension">Base ring extension</h2> <p>More generally, fix a ground commutative ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>. Corings will be now over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-algebras. So a coring will mean a pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(A,C)</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-algebra and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-coring.</p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">\alpha:A\to B</annotation></semantics></math> be a morphism of rings and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-coring. Then the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-bimodule <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi></mrow><annotation encoding="application/x-tex">B\otimes_A C\otimes_A B</annotation></semantics></math> has an induced structure of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-coring with comultiplication</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mover><mo>⟶</mo><mrow><mi>B</mi><mo>⊗</mo><msub><mi>Δ</mi> <mi>C</mi></msub><mo>⊗</mo><mi>B</mi></mrow></mover><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mover><mo>⟶</mo><mrow><mi>B</mi><mo>⊗</mo><mi>C</mi><mo>⊗</mo><msub><mn>1</mn> <mi>B</mi></msub><mo>⊗</mo><mi>C</mi><mo>⊗</mo><mi>B</mi></mrow></mover><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mo>≅</mo><mo stretchy="false">(</mo><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mo stretchy="false">)</mo><msub><mo>⊗</mo> <mi>B</mi></msub><mo stretchy="false">(</mo><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> B\otimes_A C\otimes_A B \stackrel{B\otimes \Delta_C\otimes B}\longrightarrow B\otimes_A C\otimes_A C\otimes_A B \stackrel{B\otimes C\otimes 1_B\otimes C\otimes B}\longrightarrow B\otimes_A C\otimes_A B\otimes_A C\otimes_A B \cong (B\otimes_A C\otimes_A B)\otimes_B (B \otimes_A C\otimes_A B) </annotation></semantics></math></div> <p>and the counit</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mover><mo>⟶</mo><mrow><mi>B</mi><mo>⊗</mo><msub><mi>ϵ</mi> <mi>C</mi></msub><mo>⊗</mo><mi>B</mi></mrow></mover><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>A</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mover><mo>⟶</mo><mrow><mi>B</mi><mo>⊗</mo><mi>ϕ</mi><mo>⊗</mo><mi>B</mi></mrow></mover><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mover><mo>⟶</mo><mi>mult</mi></mover><mi>B</mi></mrow><annotation encoding="application/x-tex"> B\otimes_A C\otimes_A B \stackrel{B\otimes\epsilon_C\otimes B}\longrightarrow B\otimes_A A\otimes_A B \stackrel{B\otimes\phi\otimes B}\longrightarrow B\otimes_A B\otimes_A B \stackrel{mult}\longrightarrow B </annotation></semantics></math></div> <h2 id="morphisms_of_corings_over_varying_bases">Morphisms of corings over varying bases</h2> <p>A morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">(</mo><mi>B</mi><mo>,</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(A,C)\to (B,D)</annotation></semantics></math> is a pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\alpha,\gamma)</annotation></semantics></math> where</p> <p>(i) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">\alpha : A\to B</annotation></semantics></math> is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-algebra morphism; by restriction this makes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-bimodule by restriction. Denote also by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>D</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>D</mi><mo>→</mo><mi>D</mi><msub><mo>⊗</mo> <mi>B</mi></msub><mi>D</mi></mrow><annotation encoding="application/x-tex">p:D\otimes_A D\to D\otimes_B D</annotation></semantics></math> the canonical projection of bimodules induced by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math>. <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="270.481" height="104.126" viewBox="0 0 270.481 104.126"> <defs> <g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-0"> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1"> <path d="M 1.875 -0.890625 C 1.765625 -0.46875 1.75 -0.34375 0.90625 -0.34375 C 0.6875 -0.34375 0.5625 -0.34375 0.5625 -0.125 C 0.5625 0 0.640625 0 0.875 0 L 4.65625 0 C 7.078125 0 9.4375 -2.5 9.4375 -5.15625 C 9.4375 -6.890625 8.40625 -8.15625 6.6875 -8.15625 L 2.859375 -8.15625 C 2.625 -8.15625 2.515625 -8.15625 2.515625 -7.9375 C 2.515625 -7.8125 2.625 -7.8125 2.8125 -7.8125 C 3.53125 -7.8125 3.53125 -7.71875 3.53125 -7.59375 C 3.53125 -7.5625 3.53125 -7.5 3.484375 -7.3125 Z M 4.40625 -7.34375 C 4.5 -7.796875 4.546875 -7.8125 5.015625 -7.8125 L 6.328125 -7.8125 C 7.453125 -7.8125 8.484375 -7.203125 8.484375 -5.5625 C 8.484375 -4.953125 8.25 -2.875 7.09375 -1.5625 C 6.75 -1.171875 5.84375 -0.34375 4.46875 -0.34375 L 3.109375 -0.34375 C 2.9375 -0.34375 2.921875 -0.34375 2.84375 -0.359375 C 2.71875 -0.375 2.703125 -0.390625 2.703125 -0.484375 C 2.703125 -0.578125 2.71875 -0.640625 2.75 -0.75 Z M 4.40625 -7.34375 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-2"> <path d="M 2.03125 -1.328125 C 1.609375 -0.625 1.203125 -0.375 0.640625 -0.34375 C 0.5 -0.328125 0.40625 -0.328125 0.40625 -0.125 C 0.40625 -0.046875 0.46875 0 0.546875 0 C 0.765625 0 1.296875 -0.03125 1.515625 -0.03125 C 1.859375 -0.03125 2.25 0 2.578125 0 C 2.65625 0 2.796875 0 2.796875 -0.234375 C 2.796875 -0.328125 2.703125 -0.34375 2.625 -0.34375 C 2.359375 -0.375 2.125 -0.46875 2.125 -0.75 C 2.125 -0.921875 2.203125 -1.046875 2.359375 -1.3125 L 3.265625 -2.828125 L 6.3125 -2.828125 C 6.328125 -2.71875 6.328125 -2.625 6.328125 -2.515625 C 6.375 -2.203125 6.515625 -0.953125 6.515625 -0.734375 C 6.515625 -0.375 5.90625 -0.34375 5.71875 -0.34375 C 5.578125 -0.34375 5.453125 -0.34375 5.453125 -0.125 C 5.453125 0 5.5625 0 5.625 0 C 5.828125 0 6.078125 -0.03125 6.28125 -0.03125 L 6.953125 -0.03125 C 7.6875 -0.03125 8.21875 0 8.21875 0 C 8.3125 0 8.4375 0 8.4375 -0.234375 C 8.4375 -0.34375 8.328125 -0.34375 8.15625 -0.34375 C 7.5 -0.34375 7.484375 -0.453125 7.453125 -0.8125 L 6.71875 -8.265625 C 6.6875 -8.515625 6.640625 -8.53125 6.515625 -8.53125 C 6.390625 -8.53125 6.328125 -8.515625 6.21875 -8.328125 Z M 3.46875 -3.171875 L 5.875 -7.1875 L 6.28125 -3.171875 Z M 3.46875 -3.171875 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-3"> <path d="M 4.375 -7.34375 C 4.484375 -7.796875 4.53125 -7.8125 5 -7.8125 L 6.546875 -7.8125 C 7.90625 -7.8125 7.90625 -6.671875 7.90625 -6.5625 C 7.90625 -5.59375 6.9375 -4.359375 5.359375 -4.359375 L 3.640625 -4.359375 Z M 6.390625 -4.265625 C 7.703125 -4.5 8.875 -5.421875 8.875 -6.515625 C 8.875 -7.453125 8.0625 -8.15625 6.703125 -8.15625 L 2.875 -8.15625 C 2.640625 -8.15625 2.53125 -8.15625 2.53125 -7.9375 C 2.53125 -7.8125 2.640625 -7.8125 2.828125 -7.8125 C 3.546875 -7.8125 3.546875 -7.71875 3.546875 -7.59375 C 3.546875 -7.5625 3.546875 -7.5 3.5 -7.3125 L 1.890625 -0.890625 C 1.78125 -0.46875 1.75 -0.34375 0.921875 -0.34375 C 0.6875 -0.34375 0.578125 -0.34375 0.578125 -0.125 C 0.578125 0 0.640625 0 0.890625 0 L 4.984375 0 C 6.8125 0 8.21875 -1.390625 8.21875 -2.59375 C 8.21875 -3.578125 7.359375 -4.171875 6.390625 -4.265625 Z M 4.703125 -0.34375 L 3.078125 -0.34375 C 2.921875 -0.34375 2.890625 -0.34375 2.828125 -0.359375 C 2.6875 -0.375 2.671875 -0.390625 2.671875 -0.484375 C 2.671875 -0.578125 2.703125 -0.640625 2.71875 -0.75 L 3.5625 -4.125 L 5.8125 -4.125 C 7.21875 -4.125 7.21875 -2.8125 7.21875 -2.71875 C 7.21875 -1.5625 6.1875 -0.34375 4.703125 -0.34375 Z M 4.703125 -0.34375 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-0"> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1"> <path d="M 8.625 -2.984375 C 8.625 -5.1875 6.84375 -6.96875 4.65625 -6.96875 C 2.421875 -6.96875 0.65625 -5.15625 0.65625 -2.984375 C 0.65625 -0.78125 2.453125 0.984375 4.640625 0.984375 C 6.859375 0.984375 8.625 -0.8125 8.625 -2.984375 Z M 2.265625 -5.5625 C 2.25 -5.578125 2.15625 -5.671875 2.15625 -5.6875 C 2.15625 -5.734375 3.125 -6.671875 4.640625 -6.671875 C 5.0625 -6.671875 6.15625 -6.609375 7.140625 -5.6875 L 4.65625 -3.1875 Z M 1.921875 -0.484375 C 1.1875 -1.296875 0.953125 -2.21875 0.953125 -2.984375 C 0.953125 -3.90625 1.296875 -4.78125 1.921875 -5.484375 L 4.421875 -2.984375 Z M 7.34375 -5.484375 C 7.921875 -4.875 8.328125 -3.96875 8.328125 -2.984375 C 8.328125 -2.0625 7.984375 -1.1875 7.359375 -0.484375 L 4.859375 -2.984375 Z M 7.015625 -0.421875 C 7.046875 -0.390625 7.125 -0.3125 7.125 -0.28125 C 7.125 -0.234375 6.15625 0.6875 4.65625 0.6875 C 4.234375 0.6875 3.125 0.640625 2.15625 -0.28125 L 4.640625 -2.78125 Z M 7.015625 -0.421875 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-0"> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-1"> <path d="M 3.125 -3.03125 C 3.046875 -3.171875 2.828125 -3.515625 2.328125 -3.515625 C 1.390625 -3.515625 0.34375 -2.40625 0.34375 -1.234375 C 0.34375 -0.390625 0.875 0.078125 1.484375 0.078125 C 2 0.078125 2.4375 -0.328125 2.578125 -0.484375 C 2.71875 0.0625 3.265625 0.078125 3.359375 0.078125 C 3.734375 0.078125 3.90625 -0.21875 3.96875 -0.359375 C 4.140625 -0.640625 4.25 -1.109375 4.25 -1.140625 C 4.25 -1.1875 4.21875 -1.25 4.125 -1.25 C 4.03125 -1.25 4.015625 -1.1875 3.953125 -1 C 3.84375 -0.5625 3.703125 -0.140625 3.390625 -0.140625 C 3.203125 -0.140625 3.125 -0.296875 3.125 -0.515625 C 3.125 -0.65625 3.203125 -0.921875 3.25 -1.125 C 3.296875 -1.328125 3.421875 -1.796875 3.453125 -1.9375 L 3.609375 -2.546875 C 3.65625 -2.734375 3.734375 -3.078125 3.734375 -3.109375 C 3.734375 -3.296875 3.578125 -3.359375 3.484375 -3.359375 C 3.359375 -3.359375 3.15625 -3.28125 3.125 -3.03125 Z M 2.578125 -0.859375 C 2.1875 -0.3125 1.765625 -0.140625 1.515625 -0.140625 C 1.140625 -0.140625 0.96875 -0.484375 0.96875 -0.890625 C 0.96875 -1.265625 1.171875 -2.125 1.359375 -2.46875 C 1.578125 -2.953125 1.96875 -3.296875 2.34375 -3.296875 C 2.859375 -3.296875 3.015625 -2.703125 3.015625 -2.609375 C 3.015625 -2.578125 2.8125 -1.796875 2.765625 -1.59375 C 2.65625 -1.21875 2.65625 -1.203125 2.578125 -0.859375 Z M 2.578125 -0.859375 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-2"> <path d="M 3.265625 -3.046875 C 2.9375 -3.015625 2.828125 -2.765625 2.828125 -2.609375 C 2.828125 -2.375 3.03125 -2.3125 3.140625 -2.3125 C 3.171875 -2.3125 3.578125 -2.34375 3.578125 -2.828125 C 3.578125 -3.3125 3.0625 -3.515625 2.578125 -3.515625 C 1.453125 -3.515625 0.34375 -2.421875 0.34375 -1.296875 C 0.34375 -0.546875 0.875 0.078125 1.75 0.078125 C 3.015625 0.078125 3.671875 -0.71875 3.671875 -0.828125 C 3.671875 -0.90625 3.59375 -0.953125 3.546875 -0.953125 C 3.5 -0.953125 3.46875 -0.9375 3.4375 -0.890625 C 2.8125 -0.140625 1.90625 -0.140625 1.765625 -0.140625 C 1.34375 -0.140625 1 -0.40625 1 -1.015625 C 1 -1.359375 1.15625 -2.203125 1.53125 -2.703125 C 1.875 -3.140625 2.28125 -3.296875 2.59375 -3.296875 C 2.6875 -3.296875 3.046875 -3.28125 3.265625 -3.046875 Z M 3.265625 -3.046875 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-3"> <path d="M 1.765625 -3.171875 L 2.546875 -3.171875 C 2.6875 -3.171875 2.78125 -3.171875 2.78125 -3.328125 C 2.78125 -3.4375 2.6875 -3.4375 2.546875 -3.4375 L 1.828125 -3.4375 L 2.109375 -4.5625 C 2.140625 -4.6875 2.140625 -4.71875 2.140625 -4.734375 C 2.140625 -4.90625 2.015625 -4.984375 1.875 -4.984375 C 1.609375 -4.984375 1.546875 -4.765625 1.46875 -4.40625 L 1.21875 -3.4375 L 0.453125 -3.4375 C 0.296875 -3.4375 0.203125 -3.4375 0.203125 -3.28125 C 0.203125 -3.171875 0.296875 -3.171875 0.4375 -3.171875 L 1.15625 -3.171875 L 0.671875 -1.265625 C 0.625 -1.0625 0.5625 -0.78125 0.5625 -0.671875 C 0.5625 -0.1875 0.953125 0.078125 1.375 0.078125 C 2.21875 0.078125 2.703125 -1.046875 2.703125 -1.140625 C 2.703125 -1.234375 2.640625 -1.25 2.59375 -1.25 C 2.5 -1.25 2.5 -1.21875 2.4375 -1.09375 C 2.28125 -0.703125 1.875 -0.140625 1.390625 -0.140625 C 1.234375 -0.140625 1.125 -0.25 1.125 -0.515625 C 1.125 -0.671875 1.15625 -0.75 1.171875 -0.859375 Z M 1.765625 -3.171875 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-4"> <path d="M 6.34375 -5.390625 C 6.34375 -5.421875 6.359375 -5.46875 6.359375 -5.515625 C 6.359375 -5.5625 6.3125 -5.609375 6.265625 -5.609375 C 6.203125 -5.609375 6.1875 -5.59375 6.125 -5.515625 L 5.5625 -4.90625 C 5.484375 -5 5.0625 -5.609375 4.140625 -5.609375 C 2.28125 -5.609375 0.421875 -3.890625 0.421875 -2.0625 C 0.421875 -0.671875 1.46875 0.171875 2.734375 0.171875 C 3.78125 0.171875 4.671875 -0.46875 5.09375 -1.09375 C 5.359375 -1.484375 5.46875 -1.859375 5.46875 -1.90625 C 5.46875 -1.984375 5.421875 -2.015625 5.34375 -2.015625 C 5.25 -2.015625 5.234375 -1.96875 5.21875 -1.890625 C 4.875 -0.78125 3.796875 -0.09375 2.84375 -0.09375 C 2.03125 -0.09375 1.171875 -0.578125 1.171875 -1.796875 C 1.171875 -2.046875 1.265625 -3.375 2.15625 -4.375 C 2.75 -5.046875 3.5625 -5.34375 4.1875 -5.34375 C 5.203125 -5.34375 5.609375 -4.546875 5.609375 -3.78125 C 5.609375 -3.671875 5.578125 -3.515625 5.578125 -3.421875 C 5.578125 -3.328125 5.6875 -3.328125 5.71875 -3.328125 C 5.8125 -3.328125 5.828125 -3.359375 5.859375 -3.5 Z M 6.34375 -5.390625 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-5"> <path d="M 1.328125 -0.625 C 1.265625 -0.328125 1.25 -0.265625 0.65625 -0.265625 C 0.5 -0.265625 0.40625 -0.265625 0.40625 -0.109375 C 0.40625 0 0.515625 0 0.640625 0 L 3.390625 0 C 5.0625 0 6.734375 -1.609375 6.734375 -3.390625 C 6.734375 -4.609375 5.921875 -5.4375 4.734375 -5.4375 L 1.953125 -5.4375 C 1.8125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.796875 -5.171875 1.9375 -5.171875 C 2.203125 -5.171875 2.4375 -5.171875 2.4375 -5.046875 C 2.4375 -5.015625 2.421875 -5.015625 2.40625 -4.90625 Z M 3.09375 -4.890625 C 3.15625 -5.15625 3.171875 -5.171875 3.5 -5.171875 L 4.46875 -5.171875 C 5.390625 -5.171875 6.03125 -4.640625 6.03125 -3.671875 C 6.03125 -3.40625 5.90625 -2.109375 5.21875 -1.21875 C 4.875 -0.765625 4.1875 -0.265625 3.25 -0.265625 L 2.0625 -0.265625 C 1.984375 -0.28125 1.953125 -0.28125 1.953125 -0.328125 C 1.953125 -0.390625 1.96875 -0.46875 1.984375 -0.515625 Z M 3.09375 -4.890625 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-6"> <path d="M 4.0625 -1.109375 C 4.8125 -1.921875 5.0625 -2.96875 5.0625 -3.03125 C 5.0625 -3.09375 5.015625 -3.125 4.953125 -3.125 C 4.84375 -3.125 4.84375 -3.09375 4.796875 -2.9375 C 4.5625 -2.125 4.09375 -1.5 4.0625 -1.5 C 4.046875 -1.5 4.046875 -1.703125 4.046875 -1.828125 C 4.03125 -3.234375 3.125 -3.515625 2.578125 -3.515625 C 1.453125 -3.515625 0.34375 -2.421875 0.34375 -1.296875 C 0.34375 -0.515625 0.90625 0.078125 1.75 0.078125 C 2.296875 0.078125 2.890625 -0.125 3.515625 -0.59375 C 3.703125 0.046875 4.15625 0.078125 4.296875 0.078125 C 4.75 0.078125 5.015625 -0.328125 5.015625 -0.484375 C 5.015625 -0.578125 4.921875 -0.578125 4.90625 -0.578125 C 4.8125 -0.578125 4.796875 -0.546875 4.765625 -0.5 C 4.640625 -0.15625 4.375 -0.140625 4.328125 -0.140625 C 4.21875 -0.140625 4.09375 -0.140625 4.0625 -1.109375 Z M 3.46875 -0.859375 C 2.90625 -0.34375 2.234375 -0.140625 1.765625 -0.140625 C 1.359375 -0.140625 1 -0.375 1 -1.015625 C 1 -1.296875 1.125 -2.125 1.5 -2.65625 C 1.8125 -3.09375 2.25 -3.296875 2.578125 -3.296875 C 3.015625 -3.296875 3.265625 -2.984375 3.359375 -2.5 C 3.484375 -1.953125 3.421875 -1.3125 3.46875 -0.859375 Z M 3.46875 -0.859375 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-7"> <path d="M 1.46875 -0.953125 C 1.109375 -0.359375 0.78125 -0.28125 0.5 -0.265625 C 0.421875 -0.25 0.3125 -0.25 0.3125 -0.109375 C 0.3125 -0.09375 0.328125 0 0.4375 0 C 0.5 0 0.546875 -0.03125 1.109375 -0.03125 C 1.65625 -0.03125 1.828125 0 1.875 0 C 1.90625 0 2.03125 0 2.03125 -0.15625 C 2.03125 -0.25 1.921875 -0.265625 1.890625 -0.265625 C 1.71875 -0.265625 1.546875 -0.328125 1.546875 -0.515625 C 1.546875 -0.625 1.625 -0.734375 1.765625 -0.96875 L 2.3125 -1.84375 L 4.5 -1.84375 L 4.65625 -0.5 C 4.65625 -0.375 4.515625 -0.265625 4.140625 -0.265625 C 4.03125 -0.265625 3.921875 -0.265625 3.921875 -0.109375 C 3.921875 -0.109375 3.921875 0 4.0625 0 C 4.140625 0 4.4375 -0.015625 4.515625 -0.03125 L 5.015625 -0.03125 C 5.734375 -0.03125 5.859375 0 5.921875 0 C 5.953125 0 6.09375 0 6.09375 -0.15625 C 6.09375 -0.265625 5.984375 -0.265625 5.859375 -0.265625 C 5.421875 -0.265625 5.40625 -0.328125 5.390625 -0.53125 L 4.75 -5.453125 C 4.734375 -5.640625 4.71875 -5.6875 4.59375 -5.6875 C 4.453125 -5.6875 4.40625 -5.609375 4.34375 -5.53125 Z M 2.484375 -2.109375 L 4.125 -4.71875 L 4.46875 -2.109375 Z M 2.484375 -2.109375 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-8"> <path d="M 0.421875 0.96875 C 0.34375 1.21875 0.328125 1.28125 0.015625 1.28125 C -0.09375 1.28125 -0.1875 1.28125 -0.1875 1.4375 C -0.1875 1.5 -0.125 1.546875 -0.078125 1.546875 C 0 1.546875 0.03125 1.515625 0.625 1.515625 C 1.1875 1.515625 1.359375 1.546875 1.421875 1.546875 C 1.453125 1.546875 1.5625 1.546875 1.5625 1.390625 C 1.5625 1.28125 1.453125 1.28125 1.359375 1.28125 C 0.984375 1.28125 0.984375 1.234375 0.984375 1.15625 C 0.984375 1.109375 1.125 0.546875 1.359375 -0.390625 C 1.46875 -0.203125 1.71875 0.078125 2.140625 0.078125 C 3.125 0.078125 4.140625 -1.046875 4.140625 -2.203125 C 4.140625 -3 3.640625 -3.515625 3 -3.515625 C 2.515625 -3.515625 2.140625 -3.1875 1.90625 -2.953125 C 1.734375 -3.515625 1.203125 -3.515625 1.125 -3.515625 C 0.84375 -3.515625 0.640625 -3.328125 0.515625 -3.078125 C 0.328125 -2.71875 0.234375 -2.3125 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.21875 0.53125 -2.4375 C 0.625 -2.84375 0.765625 -3.296875 1.09375 -3.296875 C 1.296875 -3.296875 1.359375 -3.109375 1.359375 -2.921875 C 1.359375 -2.84375 1.328125 -2.640625 1.3125 -2.578125 Z M 1.875 -2.453125 C 1.921875 -2.59375 1.921875 -2.609375 2.046875 -2.75 C 2.34375 -3.109375 2.6875 -3.296875 2.96875 -3.296875 C 3.375 -3.296875 3.515625 -2.90625 3.515625 -2.546875 C 3.515625 -2.25 3.34375 -1.390625 3.109375 -0.921875 C 2.90625 -0.5 2.515625 -0.140625 2.140625 -0.140625 C 1.609375 -0.140625 1.46875 -0.765625 1.46875 -0.828125 C 1.46875 -0.84375 1.484375 -0.921875 1.5 -0.953125 Z M 1.875 -2.453125 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-9"> <path d="M 1.34375 -0.625 C 1.28125 -0.328125 1.265625 -0.265625 0.671875 -0.265625 C 0.515625 -0.265625 0.421875 -0.265625 0.421875 -0.109375 C 0.421875 0 0.53125 0 0.65625 0 L 3.625 0 C 4.9375 0 5.90625 -0.9375 5.90625 -1.703125 C 5.90625 -2.28125 5.40625 -2.75 4.609375 -2.84375 C 5.53125 -3.015625 6.328125 -3.625 6.328125 -4.328125 C 6.328125 -4.921875 5.75 -5.4375 4.75 -5.4375 L 1.96875 -5.4375 C 1.828125 -5.4375 1.71875 -5.4375 1.71875 -5.296875 C 1.71875 -5.171875 1.8125 -5.171875 1.953125 -5.171875 C 2.21875 -5.171875 2.453125 -5.171875 2.453125 -5.046875 C 2.453125 -5.015625 2.4375 -5.015625 2.421875 -4.90625 Z M 2.59375 -2.9375 L 3.078125 -4.890625 C 3.140625 -5.15625 3.15625 -5.171875 3.484375 -5.171875 L 4.625 -5.171875 C 5.40625 -5.171875 5.59375 -4.671875 5.59375 -4.34375 C 5.59375 -3.671875 4.859375 -2.9375 3.84375 -2.9375 Z M 2.046875 -0.265625 C 1.96875 -0.28125 1.9375 -0.28125 1.9375 -0.328125 C 1.9375 -0.390625 1.953125 -0.46875 1.96875 -0.515625 L 2.53125 -2.71875 L 4.15625 -2.71875 C 4.890625 -2.71875 5.140625 -2.21875 5.140625 -1.765625 C 5.140625 -0.984375 4.375 -0.265625 3.421875 -0.265625 Z M 2.046875 -0.265625 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-0"> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-1"> <path d="M 6.109375 -1.984375 C 6.109375 -3.5625 4.828125 -4.8125 3.296875 -4.8125 C 1.71875 -4.8125 0.46875 -3.53125 0.46875 -1.984375 C 0.46875 -0.421875 1.75 0.828125 3.28125 0.828125 C 4.859375 0.828125 6.109375 -0.453125 6.109375 -1.984375 Z M 1.5625 -3.890625 C 2.1875 -4.46875 2.90625 -4.5625 3.28125 -4.5625 C 3.765625 -4.5625 4.453125 -4.421875 5.015625 -3.890625 L 3.296875 -2.171875 Z M 1.390625 -0.265625 C 0.9375 -0.734375 0.71875 -1.375 0.71875 -1.984375 C 0.71875 -2.59375 0.9375 -3.25 1.390625 -3.71875 L 3.109375 -1.984375 Z M 5.1875 -3.71875 C 5.640625 -3.25 5.859375 -2.609375 5.859375 -1.984375 C 5.859375 -1.390625 5.640625 -0.734375 5.1875 -0.265625 L 3.453125 -1.984375 Z M 5.015625 -0.09375 C 4.390625 0.484375 3.671875 0.578125 3.296875 0.578125 C 2.8125 0.578125 2.125 0.4375 1.5625 -0.09375 L 3.28125 -1.8125 Z M 5.015625 -0.09375 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-0"> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-2"> <path d="M 1.546875 -5.1875 L 1.484375 -5.171875 L 1.421875 -5.140625 L 1.390625 -5.109375 C 0.546875 -3.5625 0 -1.921875 -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.375 -1.734375 0.828125 -3.171875 1.5625 -4.609375 C 1.625 -4.71875 1.71875 -4.828125 1.75 -4.984375 C 1.734375 -5.109375 1.671875 -5.171875 1.546875 -5.1875 Z M 1.546875 -5.1875 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-0"> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-2"> <path d="M 0.203125 0 C 0.015625 -1.78125 -0.4375 -3.25 -1.1875 -4.71875 C -1.25 -4.859375 -1.3125 -5.03125 -1.421875 -5.140625 L -1.484375 -5.171875 L -1.546875 -5.1875 C -1.671875 -5.171875 -1.734375 -5.109375 -1.75 -4.984375 L -1.734375 -4.921875 C -1.0625 -3.609375 -0.515625 -2.15625 -0.28125 -0.640625 C -0.234375 -0.40625 -0.234375 -0.171875 -0.1875 0.0625 L -0.15625 0.125 L -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="3.349" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="16.05" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-2" x="28.006" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="39.438" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="51.393" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-1" x="75.82" y="8.435"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-2" x="80.318324" y="8.435"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-3" x="83.986164" y="8.435"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-1" x="87.044" y="8.435"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-4" x="93.63" y="8.435"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-1" x="123.316" y="12.254"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-1" x="123.316" y="12.254"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 32.032781 2.574094 L 90.923406 2.574094 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-4" x="75.82" y="25.837"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-1" x="82.419" y="25.837"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-1" x="89.005" y="25.837"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-2" x="93.503324" y="25.837"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-3" x="97.171164" y="25.837"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-1" x="123.316" y="17.402"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-1" x="123.316" y="17.402"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 32.032781 -2.574344 L 90.923406 -2.574344 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-5" x="35.382" y="54.371"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-1" x="42.565" y="54.371"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-6" x="49.151" y="54.371"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-1" x="54.59" y="54.371"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-5" x="61.177" y="54.371"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-2" x="32.393" y="81.129"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-2" x="32.393" y="81.129"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00153125 -6.972781 L 0.00153125 -66.300906 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="126.305" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="139.006" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="150.961" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-2" x="143.655" y="81.129"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-2" x="143.655" y="81.129"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 111.26325 -6.972781 L 111.26325 -66.300906 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-1" x="222.743" y="14.828"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-1" x="222.743" y="14.828"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 131.599187 -0.000125 L 190.349187 -0.000125 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="225.732" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="238.433" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-7" x="247.732" y="19.61"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="257.229" y="17.817"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-8" x="249.492" y="53.004"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-2" x="246.503" y="81.129"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-2" x="246.503" y="81.129"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="0.47818 1.45686" stroke-miterlimit="10" d="M 214.110906 -7.769656 L 214.110906 -66.300906 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="2.989" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="15.69" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-3" x="27.645" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="39.798" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="51.753" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-1" x="75.528" y="82.905"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-2" x="80.026324" y="82.905"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-3" x="83.694164" y="82.905"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-1" x="86.752" y="82.905"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-5" x="93.338" y="82.905"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-1" x="123.316" y="86.725"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-1" x="123.316" y="86.725"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 32.392156 -71.894656 L 90.923406 -71.894656 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-5" x="75.528" y="100.307"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-3-1" x="82.71" y="100.307"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-1" x="89.297" y="100.307"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-2" x="93.795324" y="100.307"></use> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-3" x="97.463164" y="100.307"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-1" x="123.316" y="91.872"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-1" x="123.316" y="91.872"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 32.392156 -77.043094 L 90.923406 -77.043094 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="126.305" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="139.006" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="150.961" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-4-1" x="222.525" y="89.298"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-5-1" x="222.525" y="89.298"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 131.599187 -74.468875 L 190.130437 -74.468875 " transform="matrix(1, 0, 0, -1, 32.393, 14.828)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="225.513" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-1-1" x="238.214" y="92.287"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-2-9" x="247.513" y="94.08"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#tkBTa-oLHfOAUbMlwCAchEKh6ak=-glyph-0-1" x="257.448" y="92.287"></use> </g> </svg> (ii) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi><mo>:</mo><msub><mrow></mrow> <mi>A</mi></msub><msub><mi>C</mi> <mi>A</mi></msub><mo>→</mo><msub><mrow></mrow> <mi>A</mi></msub><msub><mi>D</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">\gamma : {}_A C_A\to {}_A D_A</annotation></semantics></math> is a map of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-bimodules, that is <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="184.754" height="91.495" viewBox="0 0 184.754 91.495"> <defs> <g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-0"> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-1"> <path d="M 2.03125 -1.328125 C 1.609375 -0.625 1.203125 -0.375 0.640625 -0.34375 C 0.5 -0.328125 0.40625 -0.328125 0.40625 -0.125 C 0.40625 -0.046875 0.46875 0 0.546875 0 C 0.765625 0 1.296875 -0.03125 1.515625 -0.03125 C 1.859375 -0.03125 2.25 0 2.578125 0 C 2.65625 0 2.796875 0 2.796875 -0.234375 C 2.796875 -0.328125 2.703125 -0.34375 2.625 -0.34375 C 2.359375 -0.375 2.125 -0.46875 2.125 -0.75 C 2.125 -0.921875 2.203125 -1.046875 2.359375 -1.3125 L 3.265625 -2.828125 L 6.3125 -2.828125 C 6.328125 -2.71875 6.328125 -2.625 6.328125 -2.515625 C 6.375 -2.203125 6.515625 -0.953125 6.515625 -0.734375 C 6.515625 -0.375 5.90625 -0.34375 5.71875 -0.34375 C 5.578125 -0.34375 5.453125 -0.34375 5.453125 -0.125 C 5.453125 0 5.5625 0 5.625 0 C 5.828125 0 6.078125 -0.03125 6.28125 -0.03125 L 6.953125 -0.03125 C 7.6875 -0.03125 8.21875 0 8.21875 0 C 8.3125 0 8.4375 0 8.4375 -0.234375 C 8.4375 -0.34375 8.328125 -0.34375 8.15625 -0.34375 C 7.5 -0.34375 7.484375 -0.453125 7.453125 -0.8125 L 6.71875 -8.265625 C 6.6875 -8.515625 6.640625 -8.53125 6.515625 -8.53125 C 6.390625 -8.53125 6.328125 -8.515625 6.21875 -8.328125 Z M 3.46875 -3.171875 L 5.875 -7.1875 L 6.28125 -3.171875 Z M 3.46875 -3.171875 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-2"> <path d="M 8.921875 -8.3125 C 8.921875 -8.421875 8.84375 -8.421875 8.828125 -8.421875 C 8.796875 -8.421875 8.75 -8.421875 8.65625 -8.296875 L 7.828125 -7.296875 C 7.40625 -8.015625 6.75 -8.421875 5.859375 -8.421875 C 3.28125 -8.421875 0.59375 -5.796875 0.59375 -2.984375 C 0.59375 -0.984375 2 0.25 3.734375 0.25 C 4.703125 0.25 5.53125 -0.15625 6.234375 -0.734375 C 7.265625 -1.609375 7.578125 -2.765625 7.578125 -2.875 C 7.578125 -2.96875 7.484375 -2.96875 7.453125 -2.96875 C 7.34375 -2.96875 7.328125 -2.90625 7.296875 -2.859375 C 6.75 -0.984375 5.140625 -0.09375 3.9375 -0.09375 C 2.671875 -0.09375 1.578125 -0.90625 1.578125 -2.609375 C 1.578125 -2.984375 1.703125 -5.0625 3.046875 -6.640625 C 3.703125 -7.40625 4.828125 -8.0625 5.96875 -8.0625 C 7.28125 -8.0625 7.859375 -6.984375 7.859375 -5.765625 C 7.859375 -5.453125 7.828125 -5.1875 7.828125 -5.140625 C 7.828125 -5.03125 7.953125 -5.03125 7.984375 -5.03125 C 8.109375 -5.03125 8.125 -5.046875 8.171875 -5.265625 Z M 8.921875 -8.3125 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-3"> <path d="M 4.375 -7.34375 C 4.484375 -7.796875 4.53125 -7.8125 5 -7.8125 L 6.546875 -7.8125 C 7.90625 -7.8125 7.90625 -6.671875 7.90625 -6.5625 C 7.90625 -5.59375 6.9375 -4.359375 5.359375 -4.359375 L 3.640625 -4.359375 Z M 6.390625 -4.265625 C 7.703125 -4.5 8.875 -5.421875 8.875 -6.515625 C 8.875 -7.453125 8.0625 -8.15625 6.703125 -8.15625 L 2.875 -8.15625 C 2.640625 -8.15625 2.53125 -8.15625 2.53125 -7.9375 C 2.53125 -7.8125 2.640625 -7.8125 2.828125 -7.8125 C 3.546875 -7.8125 3.546875 -7.71875 3.546875 -7.59375 C 3.546875 -7.5625 3.546875 -7.5 3.5 -7.3125 L 1.890625 -0.890625 C 1.78125 -0.46875 1.75 -0.34375 0.921875 -0.34375 C 0.6875 -0.34375 0.578125 -0.34375 0.578125 -0.125 C 0.578125 0 0.640625 0 0.890625 0 L 4.984375 0 C 6.8125 0 8.21875 -1.390625 8.21875 -2.59375 C 8.21875 -3.578125 7.359375 -4.171875 6.390625 -4.265625 Z M 4.703125 -0.34375 L 3.078125 -0.34375 C 2.921875 -0.34375 2.890625 -0.34375 2.828125 -0.359375 C 2.6875 -0.375 2.671875 -0.390625 2.671875 -0.484375 C 2.671875 -0.578125 2.703125 -0.640625 2.71875 -0.75 L 3.5625 -4.125 L 5.8125 -4.125 C 7.21875 -4.125 7.21875 -2.8125 7.21875 -2.71875 C 7.21875 -1.5625 6.1875 -0.34375 4.703125 -0.34375 Z M 4.703125 -0.34375 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-4"> <path d="M 1.875 -0.890625 C 1.765625 -0.46875 1.75 -0.34375 0.90625 -0.34375 C 0.6875 -0.34375 0.5625 -0.34375 0.5625 -0.125 C 0.5625 0 0.640625 0 0.875 0 L 4.65625 0 C 7.078125 0 9.4375 -2.5 9.4375 -5.15625 C 9.4375 -6.890625 8.40625 -8.15625 6.6875 -8.15625 L 2.859375 -8.15625 C 2.625 -8.15625 2.515625 -8.15625 2.515625 -7.9375 C 2.515625 -7.8125 2.625 -7.8125 2.8125 -7.8125 C 3.53125 -7.8125 3.53125 -7.71875 3.53125 -7.59375 C 3.53125 -7.5625 3.53125 -7.5 3.484375 -7.3125 Z M 4.40625 -7.34375 C 4.5 -7.796875 4.546875 -7.8125 5.015625 -7.8125 L 6.328125 -7.8125 C 7.453125 -7.8125 8.484375 -7.203125 8.484375 -5.5625 C 8.484375 -4.953125 8.25 -2.875 7.09375 -1.5625 C 6.75 -1.171875 5.84375 -0.34375 4.46875 -0.34375 L 3.109375 -0.34375 C 2.9375 -0.34375 2.921875 -0.34375 2.84375 -0.359375 C 2.71875 -0.375 2.703125 -0.390625 2.703125 -0.484375 C 2.703125 -0.578125 2.71875 -0.640625 2.75 -0.75 Z M 4.40625 -7.34375 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-1-0"> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-1-1"> <path d="M 8.625 -2.984375 C 8.625 -5.1875 6.84375 -6.96875 4.65625 -6.96875 C 2.421875 -6.96875 0.65625 -5.15625 0.65625 -2.984375 C 0.65625 -0.78125 2.453125 0.984375 4.640625 0.984375 C 6.859375 0.984375 8.625 -0.8125 8.625 -2.984375 Z M 2.265625 -5.5625 C 2.25 -5.578125 2.15625 -5.671875 2.15625 -5.6875 C 2.15625 -5.734375 3.125 -6.671875 4.640625 -6.671875 C 5.0625 -6.671875 6.15625 -6.609375 7.140625 -5.6875 L 4.65625 -3.1875 Z M 1.921875 -0.484375 C 1.1875 -1.296875 0.953125 -2.21875 0.953125 -2.984375 C 0.953125 -3.90625 1.296875 -4.78125 1.921875 -5.484375 L 4.421875 -2.984375 Z M 7.34375 -5.484375 C 7.921875 -4.875 8.328125 -3.96875 8.328125 -2.984375 C 8.328125 -2.0625 7.984375 -1.1875 7.359375 -0.484375 L 4.859375 -2.984375 Z M 7.015625 -0.421875 C 7.046875 -0.390625 7.125 -0.3125 7.125 -0.28125 C 7.125 -0.234375 6.15625 0.6875 4.65625 0.6875 C 4.234375 0.6875 3.125 0.640625 2.15625 -0.28125 L 4.640625 -2.78125 Z M 7.015625 -0.421875 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-2-0"> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-2-1"> <path d="M 4.0625 -1.109375 C 4.8125 -1.921875 5.0625 -2.96875 5.0625 -3.03125 C 5.0625 -3.09375 5.015625 -3.125 4.953125 -3.125 C 4.84375 -3.125 4.84375 -3.09375 4.796875 -2.9375 C 4.5625 -2.125 4.09375 -1.5 4.0625 -1.5 C 4.046875 -1.5 4.046875 -1.703125 4.046875 -1.828125 C 4.03125 -3.234375 3.125 -3.515625 2.578125 -3.515625 C 1.453125 -3.515625 0.34375 -2.421875 0.34375 -1.296875 C 0.34375 -0.515625 0.90625 0.078125 1.75 0.078125 C 2.296875 0.078125 2.890625 -0.125 3.515625 -0.59375 C 3.703125 0.046875 4.15625 0.078125 4.296875 0.078125 C 4.75 0.078125 5.015625 -0.328125 5.015625 -0.484375 C 5.015625 -0.578125 4.921875 -0.578125 4.90625 -0.578125 C 4.8125 -0.578125 4.796875 -0.546875 4.765625 -0.5 C 4.640625 -0.15625 4.375 -0.140625 4.328125 -0.140625 C 4.21875 -0.140625 4.09375 -0.140625 4.0625 -1.109375 Z M 3.46875 -0.859375 C 2.90625 -0.34375 2.234375 -0.140625 1.765625 -0.140625 C 1.359375 -0.140625 1 -0.375 1 -1.015625 C 1 -1.296875 1.125 -2.125 1.5 -2.65625 C 1.8125 -3.09375 2.25 -3.296875 2.578125 -3.296875 C 3.015625 -3.296875 3.265625 -2.984375 3.359375 -2.5 C 3.484375 -1.953125 3.421875 -1.3125 3.46875 -0.859375 Z M 3.46875 -0.859375 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-2-2"> <path d="M 3.265625 -1.28125 C 3.171875 -2.265625 2.765625 -2.90625 2.765625 -2.921875 C 2.59375 -3.1875 2.296875 -3.515625 1.765625 -3.515625 C 0.734375 -3.515625 0.140625 -2.359375 0.140625 -2.078125 C 0.140625 -2.015625 0.203125 -1.984375 0.265625 -1.984375 C 0.34375 -1.984375 0.359375 -2.015625 0.390625 -2.078125 C 0.625 -2.78125 1.421875 -2.890625 1.65625 -2.890625 C 2.9375 -2.890625 3.03125 -1.5 3.03125 -0.84375 C 3.03125 -0.390625 3.015625 -0.328125 2.953125 -0.140625 C 2.78125 0.421875 2.546875 1.3125 2.546875 1.53125 C 2.546875 1.546875 2.546875 1.71875 2.671875 1.71875 C 2.765625 1.71875 2.84375 1.59375 2.90625 1.390625 C 3.125 0.65625 3.203125 0.125 3.25 -0.234375 C 3.28125 -0.390625 3.71875 -1.734375 4.46875 -3.125 C 4.5625 -3.296875 4.5625 -3.3125 4.5625 -3.34375 C 4.5625 -3.34375 4.5625 -3.4375 4.4375 -3.4375 C 4.40625 -3.4375 4.375 -3.421875 4.34375 -3.40625 C 4.3125 -3.375 3.6875 -2.203125 3.296875 -1.109375 Z M 3.265625 -1.28125 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-3-0"> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-3-1"> <path d="M 6.109375 -1.984375 C 6.109375 -3.5625 4.828125 -4.8125 3.296875 -4.8125 C 1.71875 -4.8125 0.46875 -3.53125 0.46875 -1.984375 C 0.46875 -0.421875 1.75 0.828125 3.28125 0.828125 C 4.859375 0.828125 6.109375 -0.453125 6.109375 -1.984375 Z M 1.5625 -3.890625 C 2.1875 -4.46875 2.90625 -4.5625 3.28125 -4.5625 C 3.765625 -4.5625 4.453125 -4.421875 5.015625 -3.890625 L 3.296875 -2.171875 Z M 1.390625 -0.265625 C 0.9375 -0.734375 0.71875 -1.375 0.71875 -1.984375 C 0.71875 -2.59375 0.9375 -3.25 1.390625 -3.71875 L 3.109375 -1.984375 Z M 5.1875 -3.71875 C 5.640625 -3.25 5.859375 -2.609375 5.859375 -1.984375 C 5.859375 -1.390625 5.640625 -0.734375 5.1875 -0.265625 L 3.453125 -1.984375 Z M 5.015625 -0.09375 C 4.390625 0.484375 3.671875 0.578125 3.296875 0.578125 C 2.8125 0.578125 2.125 0.4375 1.5625 -0.09375 L 3.28125 -1.8125 Z M 5.015625 -0.09375 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-4-0"> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-4-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-4-2"> <path d="M 1.546875 -5.1875 L 1.484375 -5.171875 L 1.421875 -5.140625 L 1.390625 -5.109375 C 0.546875 -3.5625 0 -1.921875 -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.375 -1.734375 0.828125 -3.171875 1.5625 -4.609375 C 1.625 -4.71875 1.71875 -4.828125 1.75 -4.984375 C 1.734375 -5.109375 1.671875 -5.171875 1.546875 -5.1875 Z M 1.546875 -5.1875 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-5-0"> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-5-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="TIKFA5lym6womA1ihfMcLvNvcec=-glyph-5-2"> <path d="M 0.203125 0 C 0.015625 -1.78125 -0.4375 -3.25 -1.1875 -4.71875 C -1.25 -4.859375 -1.3125 -5.03125 -1.421875 -5.140625 L -1.484375 -5.171875 L -1.546875 -5.1875 C -1.671875 -5.171875 -1.734375 -5.109375 -1.75 -4.984375 L -1.734375 -4.921875 C -1.0625 -3.609375 -0.515625 -2.15625 -0.28125 -0.640625 C -0.234375 -0.40625 -0.234375 -0.171875 -0.1875 0.0625 L -0.15625 0.125 L -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-1" x="2.989" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-1-1" x="14.421" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-2" x="26.376" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-1-1" x="38.266" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-1" x="50.221" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-2-1" x="77.372" y="7.804"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-3-1" x="82.811" y="7.804"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-2-2" x="89.398" y="7.804"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-3-1" x="94.23" y="7.804"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-2-1" x="100.816" y="7.804"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-4-1" x="120.515" y="12.342"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-5-1" x="120.515" y="12.342"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 30.991375 -0.00175 L 89.522625 -0.00175 " transform="matrix(1, 0, 0, -1, 30.993, 12.342)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-4-2" x="30.993" y="77.348"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-5-2" x="30.993" y="77.348"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0008125 -6.974406 L -0.0008125 -65.005656 " transform="matrix(1, 0, 0, -1, 30.993, 12.342)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-3" x="123.504" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-1-1" x="135.657" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-4" x="147.612" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-1-1" x="160.313" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-3" x="172.268" y="15.331"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-4-2" x="152.634" y="77.348"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-5-2" x="152.634" y="77.348"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 121.643719 -6.974406 L 121.643719 -65.005656 " transform="matrix(1, 0, 0, -1, 30.993, 12.342)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-2" x="26.376" y="88.506"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-2-2" x="89.398" y="80.979"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-4-1" x="144.623" y="85.517"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-5-1" x="144.623" y="85.517"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 7.604656 -73.173625 L 113.632 -73.173625 " transform="matrix(1, 0, 0, -1, 30.993, 12.342)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#TIKFA5lym6womA1ihfMcLvNvcec=-glyph-0-4" x="147.612" y="88.506"></use> </g> </svg> commutes where the vertical arrows are the combined bimodule actions</p> <p>(iii) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> commutes with counit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>∘</mo><msub><mi>ϵ</mi> <mi>C</mi></msub><mo>=</mo><msub><mi>ϵ</mi> <mi>D</mi></msub><mo>∘</mo><mi>γ</mi></mrow><annotation encoding="application/x-tex">\alpha \circ \epsilon_C = \epsilon_D\circ \gamma</annotation></semantics></math></p> <p>(iv) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>∘</mo><mo stretchy="false">(</mo><mi>γ</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>γ</mi><mo stretchy="false">)</mo><mo>∘</mo><msub><mi>Δ</mi> <mi>C</mi></msub><mo>=</mo><msub><mi>Δ</mi> <mi>D</mi></msub><mo>∘</mo><mi>γ</mi></mrow><annotation encoding="application/x-tex">p\circ (\gamma\otimes_A\gamma)\circ \Delta_C = \Delta_D\circ \gamma</annotation></semantics></math>, or diagramatically, <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="226.936" height="95.004" viewBox="0 0 226.936 95.004"> <defs> <g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-1"> <path d="M 8.921875 -8.3125 C 8.921875 -8.421875 8.84375 -8.421875 8.828125 -8.421875 C 8.796875 -8.421875 8.75 -8.421875 8.65625 -8.296875 L 7.828125 -7.296875 C 7.40625 -8.015625 6.75 -8.421875 5.859375 -8.421875 C 3.28125 -8.421875 0.59375 -5.796875 0.59375 -2.984375 C 0.59375 -0.984375 2 0.25 3.734375 0.25 C 4.703125 0.25 5.53125 -0.15625 6.234375 -0.734375 C 7.265625 -1.609375 7.578125 -2.765625 7.578125 -2.875 C 7.578125 -2.96875 7.484375 -2.96875 7.453125 -2.96875 C 7.34375 -2.96875 7.328125 -2.90625 7.296875 -2.859375 C 6.75 -0.984375 5.140625 -0.09375 3.9375 -0.09375 C 2.671875 -0.09375 1.578125 -0.90625 1.578125 -2.609375 C 1.578125 -2.984375 1.703125 -5.0625 3.046875 -6.640625 C 3.703125 -7.40625 4.828125 -8.0625 5.96875 -8.0625 C 7.28125 -8.0625 7.859375 -6.984375 7.859375 -5.765625 C 7.859375 -5.453125 7.828125 -5.1875 7.828125 -5.140625 C 7.828125 -5.03125 7.953125 -5.03125 7.984375 -5.03125 C 8.109375 -5.03125 8.125 -5.046875 8.171875 -5.265625 Z M 8.921875 -8.3125 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-2"> <path d="M 1.875 -0.890625 C 1.765625 -0.46875 1.75 -0.34375 0.90625 -0.34375 C 0.6875 -0.34375 0.5625 -0.34375 0.5625 -0.125 C 0.5625 0 0.640625 0 0.875 0 L 4.65625 0 C 7.078125 0 9.4375 -2.5 9.4375 -5.15625 C 9.4375 -6.890625 8.40625 -8.15625 6.6875 -8.15625 L 2.859375 -8.15625 C 2.625 -8.15625 2.515625 -8.15625 2.515625 -7.9375 C 2.515625 -7.8125 2.625 -7.8125 2.8125 -7.8125 C 3.53125 -7.8125 3.53125 -7.71875 3.53125 -7.59375 C 3.53125 -7.5625 3.53125 -7.5 3.484375 -7.3125 Z M 4.40625 -7.34375 C 4.5 -7.796875 4.546875 -7.8125 5.015625 -7.8125 L 6.328125 -7.8125 C 7.453125 -7.8125 8.484375 -7.203125 8.484375 -5.5625 C 8.484375 -4.953125 8.25 -2.875 7.09375 -1.5625 C 6.75 -1.171875 5.84375 -0.34375 4.46875 -0.34375 L 3.109375 -0.34375 C 2.9375 -0.34375 2.921875 -0.34375 2.84375 -0.359375 C 2.71875 -0.375 2.703125 -0.390625 2.703125 -0.484375 C 2.703125 -0.578125 2.71875 -0.640625 2.75 -0.75 Z M 4.40625 -7.34375 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-1"> <path d="M 3.265625 -1.28125 C 3.171875 -2.265625 2.765625 -2.90625 2.765625 -2.921875 C 2.59375 -3.1875 2.296875 -3.515625 1.765625 -3.515625 C 0.734375 -3.515625 0.140625 -2.359375 0.140625 -2.078125 C 0.140625 -2.015625 0.203125 -1.984375 0.265625 -1.984375 C 0.34375 -1.984375 0.359375 -2.015625 0.390625 -2.078125 C 0.625 -2.78125 1.421875 -2.890625 1.65625 -2.890625 C 2.9375 -2.890625 3.03125 -1.5 3.03125 -0.84375 C 3.03125 -0.390625 3.015625 -0.328125 2.953125 -0.140625 C 2.78125 0.421875 2.546875 1.3125 2.546875 1.53125 C 2.546875 1.546875 2.546875 1.71875 2.671875 1.71875 C 2.765625 1.71875 2.84375 1.59375 2.90625 1.390625 C 3.125 0.65625 3.203125 0.125 3.25 -0.234375 C 3.28125 -0.390625 3.71875 -1.734375 4.46875 -3.125 C 4.5625 -3.296875 4.5625 -3.3125 4.5625 -3.34375 C 4.5625 -3.34375 4.5625 -3.4375 4.4375 -3.4375 C 4.40625 -3.4375 4.375 -3.421875 4.34375 -3.40625 C 4.3125 -3.375 3.6875 -2.203125 3.296875 -1.109375 Z M 3.265625 -1.28125 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-2"> <path d="M 1.46875 -0.953125 C 1.109375 -0.359375 0.78125 -0.28125 0.5 -0.265625 C 0.421875 -0.25 0.3125 -0.25 0.3125 -0.109375 C 0.3125 -0.09375 0.328125 0 0.4375 0 C 0.5 0 0.546875 -0.03125 1.109375 -0.03125 C 1.65625 -0.03125 1.828125 0 1.875 0 C 1.90625 0 2.03125 0 2.03125 -0.15625 C 2.03125 -0.25 1.921875 -0.265625 1.890625 -0.265625 C 1.71875 -0.265625 1.546875 -0.328125 1.546875 -0.515625 C 1.546875 -0.625 1.625 -0.734375 1.765625 -0.96875 L 2.3125 -1.84375 L 4.5 -1.84375 L 4.65625 -0.5 C 4.65625 -0.375 4.515625 -0.265625 4.140625 -0.265625 C 4.03125 -0.265625 3.921875 -0.265625 3.921875 -0.109375 C 3.921875 -0.109375 3.921875 0 4.0625 0 C 4.140625 0 4.4375 -0.015625 4.515625 -0.03125 L 5.015625 -0.03125 C 5.734375 -0.03125 5.859375 0 5.921875 0 C 5.953125 0 6.09375 0 6.09375 -0.15625 C 6.09375 -0.265625 5.984375 -0.265625 5.859375 -0.265625 C 5.421875 -0.265625 5.40625 -0.328125 5.390625 -0.53125 L 4.75 -5.453125 C 4.734375 -5.640625 4.71875 -5.6875 4.59375 -5.6875 C 4.453125 -5.6875 4.40625 -5.609375 4.34375 -5.53125 Z M 2.484375 -2.109375 L 4.125 -4.71875 L 4.46875 -2.109375 Z M 2.484375 -2.109375 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-3"> <path d="M 0.421875 0.96875 C 0.34375 1.21875 0.328125 1.28125 0.015625 1.28125 C -0.09375 1.28125 -0.1875 1.28125 -0.1875 1.4375 C -0.1875 1.5 -0.125 1.546875 -0.078125 1.546875 C 0 1.546875 0.03125 1.515625 0.625 1.515625 C 1.1875 1.515625 1.359375 1.546875 1.421875 1.546875 C 1.453125 1.546875 1.5625 1.546875 1.5625 1.390625 C 1.5625 1.28125 1.453125 1.28125 1.359375 1.28125 C 0.984375 1.28125 0.984375 1.234375 0.984375 1.15625 C 0.984375 1.109375 1.125 0.546875 1.359375 -0.390625 C 1.46875 -0.203125 1.71875 0.078125 2.140625 0.078125 C 3.125 0.078125 4.140625 -1.046875 4.140625 -2.203125 C 4.140625 -3 3.640625 -3.515625 3 -3.515625 C 2.515625 -3.515625 2.140625 -3.1875 1.90625 -2.953125 C 1.734375 -3.515625 1.203125 -3.515625 1.125 -3.515625 C 0.84375 -3.515625 0.640625 -3.328125 0.515625 -3.078125 C 0.328125 -2.71875 0.234375 -2.3125 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.21875 0.53125 -2.4375 C 0.625 -2.84375 0.765625 -3.296875 1.09375 -3.296875 C 1.296875 -3.296875 1.359375 -3.109375 1.359375 -2.921875 C 1.359375 -2.84375 1.328125 -2.640625 1.3125 -2.578125 Z M 1.875 -2.453125 C 1.921875 -2.59375 1.921875 -2.609375 2.046875 -2.75 C 2.34375 -3.109375 2.6875 -3.296875 2.96875 -3.296875 C 3.375 -3.296875 3.515625 -2.90625 3.515625 -2.546875 C 3.515625 -2.25 3.34375 -1.390625 3.109375 -0.921875 C 2.90625 -0.5 2.515625 -0.140625 2.140625 -0.140625 C 1.609375 -0.140625 1.46875 -0.765625 1.46875 -0.828125 C 1.46875 -0.84375 1.484375 -0.921875 1.5 -0.953125 Z M 1.875 -2.453125 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-4"> <path d="M 1.34375 -0.625 C 1.28125 -0.328125 1.265625 -0.265625 0.671875 -0.265625 C 0.515625 -0.265625 0.421875 -0.265625 0.421875 -0.109375 C 0.421875 0 0.53125 0 0.65625 0 L 3.625 0 C 4.9375 0 5.90625 -0.9375 5.90625 -1.703125 C 5.90625 -2.28125 5.40625 -2.75 4.609375 -2.84375 C 5.53125 -3.015625 6.328125 -3.625 6.328125 -4.328125 C 6.328125 -4.921875 5.75 -5.4375 4.75 -5.4375 L 1.96875 -5.4375 C 1.828125 -5.4375 1.71875 -5.4375 1.71875 -5.296875 C 1.71875 -5.171875 1.8125 -5.171875 1.953125 -5.171875 C 2.21875 -5.171875 2.453125 -5.171875 2.453125 -5.046875 C 2.453125 -5.015625 2.4375 -5.015625 2.421875 -4.90625 Z M 2.59375 -2.9375 L 3.078125 -4.890625 C 3.140625 -5.15625 3.15625 -5.171875 3.484375 -5.171875 L 4.625 -5.171875 C 5.40625 -5.171875 5.59375 -4.671875 5.59375 -4.34375 C 5.59375 -3.671875 4.859375 -2.9375 3.84375 -2.9375 Z M 2.046875 -0.265625 C 1.96875 -0.28125 1.9375 -0.28125 1.9375 -0.328125 C 1.9375 -0.390625 1.953125 -0.46875 1.96875 -0.515625 L 2.53125 -2.71875 L 4.15625 -2.71875 C 4.890625 -2.71875 5.140625 -2.21875 5.140625 -1.765625 C 5.140625 -0.984375 4.375 -0.265625 3.421875 -0.265625 Z M 2.046875 -0.265625 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-1"> <path d="M 1.546875 -5.1875 L 1.484375 -5.171875 L 1.421875 -5.140625 L 1.390625 -5.109375 C 0.546875 -3.5625 0 -1.921875 -0.203125 0 C -0.1875 0.125 -0.125 0.1875 0 0.203125 L 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.375 -1.734375 0.828125 -3.171875 1.5625 -4.609375 C 1.625 -4.71875 1.71875 -4.828125 1.75 -4.984375 C 1.734375 -5.109375 1.671875 -5.171875 1.546875 -5.1875 Z M 1.546875 -5.1875 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-2"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-1"> <path d="M 0.203125 0 C 0.015625 -1.78125 -0.4375 -3.25 -1.1875 -4.71875 C -1.25 -4.859375 -1.3125 -5.03125 -1.421875 -5.140625 L -1.484375 -5.171875 L -1.546875 -5.1875 C -1.671875 -5.171875 -1.734375 -5.109375 -1.75 -4.984375 L -1.734375 -4.921875 C -1.0625 -3.609375 -0.515625 -2.15625 -0.28125 -0.640625 C -0.234375 -0.40625 -0.234375 -0.171875 -0.1875 0.0625 L -0.15625 0.125 L -0.125 0.15625 L -0.0625 0.1875 L 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 Z M 0.203125 0 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-2"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-4-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-4-1"> <path d="M 3.765625 -5.53125 C 3.671875 -5.6875 3.578125 -5.6875 3.515625 -5.6875 C 3.46875 -5.6875 3.375 -5.6875 3.28125 -5.53125 L 0.46875 -0.203125 C 0.40625 -0.109375 0.40625 -0.09375 0.40625 -0.078125 C 0.40625 0 0.46875 0 0.59375 0 L 6.453125 0 C 6.578125 0 6.640625 0 6.640625 -0.078125 C 6.640625 -0.09375 6.640625 -0.109375 6.578125 -0.203125 Z M 3.265625 -4.90625 L 5.53125 -0.625 L 0.984375 -0.625 Z M 3.265625 -4.90625 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-5-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-5-1"> <path d="M 5.3125 -4.046875 C 5.328125 -4.09375 5.34375 -4.125 5.34375 -4.125 C 5.34375 -4.140625 5.328125 -4.21875 5.25 -4.21875 C 5.203125 -4.21875 5.1875 -4.203125 5.140625 -4.140625 L 4.6875 -3.671875 C 4.359375 -4.078125 3.921875 -4.21875 3.5 -4.21875 C 1.96875 -4.21875 0.515625 -2.9375 0.515625 -1.59375 C 0.515625 -0.5625 1.34375 0.125 2.453125 0.125 C 3.078125 0.125 3.625 -0.125 3.984375 -0.40625 C 4.578125 -0.875 4.671875 -1.40625 4.671875 -1.4375 C 4.671875 -1.5 4.609375 -1.53125 4.5625 -1.53125 C 4.484375 -1.53125 4.46875 -1.5 4.453125 -1.4375 C 4.15625 -0.515625 3.21875 -0.109375 2.5625 -0.109375 C 2.109375 -0.109375 1.140625 -0.296875 1.140625 -1.4375 C 1.140625 -1.671875 1.1875 -2.5 1.84375 -3.21875 C 2.171875 -3.578125 2.8125 -3.96875 3.546875 -3.96875 C 4.328125 -3.96875 4.734375 -3.421875 4.734375 -2.796875 C 4.734375 -2.6875 4.703125 -2.578125 4.703125 -2.578125 C 4.703125 -2.484375 4.796875 -2.484375 4.828125 -2.484375 C 4.90625 -2.484375 4.9375 -2.484375 4.96875 -2.609375 Z M 5.3125 -4.046875 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-5-2"> <path d="M 1.359375 -0.734375 C 1.125 -0.390625 0.921875 -0.265625 0.59375 -0.234375 C 0.5 -0.234375 0.4375 -0.234375 0.4375 -0.09375 C 0.4375 -0.03125 0.484375 0 0.515625 0 C 0.6875 0 0.890625 -0.03125 1.0625 -0.03125 C 1.203125 -0.03125 1.5625 0 1.703125 0 C 1.765625 0 1.828125 -0.03125 1.828125 -0.15625 C 1.828125 -0.234375 1.75 -0.234375 1.734375 -0.234375 C 1.578125 -0.25 1.453125 -0.28125 1.453125 -0.40625 C 1.453125 -0.484375 1.515625 -0.59375 1.53125 -0.625 L 2.03125 -1.359375 L 3.828125 -1.359375 L 3.984375 -0.390625 C 3.984375 -0.234375 3.640625 -0.234375 3.578125 -0.234375 C 3.5 -0.234375 3.40625 -0.234375 3.40625 -0.09375 C 3.40625 -0.0625 3.4375 0 3.5 0 C 3.6875 0 4.125 -0.03125 4.296875 -0.03125 C 4.421875 -0.03125 4.53125 -0.015625 4.65625 -0.015625 C 4.78125 -0.015625 4.90625 0 5.015625 0 C 5.0625 0 5.15625 0 5.15625 -0.15625 C 5.15625 -0.234375 5.078125 -0.234375 4.984375 -0.234375 C 4.609375 -0.234375 4.609375 -0.28125 4.578125 -0.4375 L 3.984375 -4.109375 C 3.96875 -4.21875 3.96875 -4.265625 3.828125 -4.265625 C 3.703125 -4.265625 3.671875 -4.21875 3.609375 -4.140625 Z M 2.1875 -1.59375 L 3.484375 -3.546875 L 3.78125 -1.59375 Z M 2.1875 -1.59375 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-5-3"> <path d="M 1.25 -0.5 C 1.203125 -0.28125 1.1875 -0.234375 0.734375 -0.234375 C 0.609375 -0.234375 0.59375 -0.234375 0.5625 -0.21875 C 0.53125 -0.203125 0.515625 -0.125 0.515625 -0.078125 C 0.53125 0 0.59375 0 0.703125 0 L 2.953125 0 C 4.3125 0 5.65625 -1.171875 5.65625 -2.5 C 5.65625 -3.453125 4.953125 -4.09375 3.96875 -4.09375 L 1.6875 -4.09375 C 1.5625 -4.09375 1.484375 -4.09375 1.484375 -3.9375 C 1.484375 -3.84375 1.5625 -3.84375 1.671875 -3.84375 C 1.78125 -3.84375 1.9375 -3.84375 2.0625 -3.8125 C 2.0625 -3.75 2.0625 -3.703125 2.03125 -3.609375 Z M 2.609375 -3.640625 C 2.65625 -3.84375 2.65625 -3.84375 2.90625 -3.84375 L 3.75 -3.84375 C 4.453125 -3.84375 5.0625 -3.515625 5.0625 -2.6875 C 5.0625 -2.484375 4.984375 -1.53125 4.40625 -0.890625 C 4.09375 -0.546875 3.546875 -0.234375 2.84375 -0.234375 L 1.96875 -0.234375 C 1.84375 -0.234375 1.84375 -0.234375 1.765625 -0.25 Z M 2.609375 -3.640625 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-6-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-6-1"> <path d="M 8.625 -2.984375 C 8.625 -5.1875 6.84375 -6.96875 4.65625 -6.96875 C 2.421875 -6.96875 0.65625 -5.15625 0.65625 -2.984375 C 0.65625 -0.78125 2.453125 0.984375 4.640625 0.984375 C 6.859375 0.984375 8.625 -0.8125 8.625 -2.984375 Z M 2.265625 -5.5625 C 2.25 -5.578125 2.15625 -5.671875 2.15625 -5.6875 C 2.15625 -5.734375 3.125 -6.671875 4.640625 -6.671875 C 5.0625 -6.671875 6.15625 -6.609375 7.140625 -5.6875 L 4.65625 -3.1875 Z M 1.921875 -0.484375 C 1.1875 -1.296875 0.953125 -2.21875 0.953125 -2.984375 C 0.953125 -3.90625 1.296875 -4.78125 1.921875 -5.484375 L 4.421875 -2.984375 Z M 7.34375 -5.484375 C 7.921875 -4.875 8.328125 -3.96875 8.328125 -2.984375 C 8.328125 -2.0625 7.984375 -1.1875 7.359375 -0.484375 L 4.859375 -2.984375 Z M 7.015625 -0.421875 C 7.046875 -0.390625 7.125 -0.3125 7.125 -0.28125 C 7.125 -0.234375 6.15625 0.6875 4.65625 0.6875 C 4.234375 0.6875 3.125 0.640625 2.15625 -0.28125 L 4.640625 -2.78125 Z M 7.015625 -0.421875 "></path> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-7-0"> </g> <g id="oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-7-1"> <path d="M 6.109375 -1.984375 C 6.109375 -3.5625 4.828125 -4.8125 3.296875 -4.8125 C 1.71875 -4.8125 0.46875 -3.53125 0.46875 -1.984375 C 0.46875 -0.421875 1.75 0.828125 3.28125 0.828125 C 4.859375 0.828125 6.109375 -0.453125 6.109375 -1.984375 Z M 1.5625 -3.890625 C 2.1875 -4.46875 2.90625 -4.5625 3.28125 -4.5625 C 3.765625 -4.5625 4.453125 -4.421875 5.015625 -3.890625 L 3.296875 -2.171875 Z M 1.390625 -0.265625 C 0.9375 -0.734375 0.71875 -1.375 0.71875 -1.984375 C 0.71875 -2.59375 0.9375 -3.25 1.390625 -3.71875 L 3.109375 -1.984375 Z M 5.1875 -3.71875 C 5.640625 -3.25 5.859375 -2.609375 5.859375 -1.984375 C 5.859375 -1.390625 5.640625 -0.734375 5.1875 -0.265625 L 3.453125 -1.984375 Z M 5.015625 -0.09375 C 4.390625 0.484375 3.671875 0.578125 3.296875 0.578125 C 2.8125 0.578125 2.125 0.4375 1.5625 -0.09375 L 3.28125 -1.8125 Z M 5.015625 -0.09375 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-1" x="3.394" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-1" x="11" y="50.939"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-1" x="8.011" y="79.064"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-1" x="8.011" y="79.064"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00071875 -5.979188 L 0.00071875 -66.2995 " transform="matrix(1, 0, 0, -1, 8.011, 12.763)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-4-1" x="46.13" y="8.435"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-5-1" x="53.187" y="9.774"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-2" x="74.552" y="12.763"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-2" x="74.552" y="12.763"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 7.606188 0.00128125 L 66.539781 0.00128125 " transform="matrix(1, 0, 0, -1, 8.011, 12.763)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-1" x="77.541" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-6-1" x="89.431" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-2" x="98.729" y="17.545"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-1" x="108.227" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-1" x="139.093" y="8.225"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-7-1" x="143.925" y="8.225"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-5-2" x="150.512" y="9.564"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-1" x="156.533" y="8.225"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-2" x="179.198" y="12.763"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-2" x="179.198" y="12.763"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 112.438219 0.00128125 L 171.188219 0.00128125 " transform="matrix(1, 0, 0, -1, 8.011, 12.763)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-2" x="182.187" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-6-1" x="194.888" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-2" x="204.187" y="17.545"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-2" x="213.684" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-3" x="195.706" y="50.939"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-1" x="202.958" y="79.064"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-1" x="202.958" y="79.064"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 194.946031 -7.772156 L 194.946031 -66.2995 " transform="matrix(1, 0, 0, -1, 8.011, 12.763)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-2" x="2.989" y="90.222"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-4-1" x="98.626" y="82.905"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-5-3" x="105.683" y="84.244"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-2-2" x="178.98" y="87.233"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-3-2" x="178.98" y="87.233"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 8.012438 -74.471375 L 170.969469 -74.471375 " transform="matrix(1, 0, 0, -1, 8.011, 12.763)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-2" x="181.968" y="90.222"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-6-1" x="194.669" y="90.222"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-1-4" x="203.968" y="92.015"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#oU7HNqHD1ieLDPMtcMp4zp8gnMM=-glyph-0-2" x="213.903" y="90.222"></use> </g> </svg> Map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>⊗</mo><mi>c</mi><mo>⊗</mo><mi>b</mi><mo>′</mo><mo>↦</mo><mi>b</mi><mi>γ</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mi>b</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">b\otimes c\otimes b'\mapsto b\gamma(c)b'</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">B\otimes_A C\otimes_A B\to D</annotation></semantics></math> from the base extension of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> is by construction a map of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-bimodules (externally we just use the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-actions on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> and on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> which are compatible by action axioms) and the conditions (iii),(iv) express that this map of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-bimodules is a morphism of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-corings.</p> <p>Morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\alpha,\gamma)</annotation></semantics></math> factorizes into a morphism of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-corings <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mrow></mrow> <mi>A</mi></msub><msub><mi>C</mi> <mi>A</mi></msub><mo>→</mo><msub><mrow></mrow> <mi>A</mi></msub><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><msub><mi>B</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">{}_A C_A\to {}_A B\otimes_A C\otimes_A B_A</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>c</mi><mo>↦</mo><mn>1</mn><mo>⊗</mo><mi>c</mi><mo>⊗</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">c\mapsto 1\otimes c\otimes 1</annotation></semantics></math> into the base extension coring (determined by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>), followed by a morphism of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>-corings <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mrow></mrow> <mi>B</mi></msub><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><msub><mi>B</mi> <mi>B</mi></msub><mo>→</mo><msub><mrow></mrow> <mi>B</mi></msub><msub><mi>D</mi> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">{}_B B\otimes_A C\otimes_A B_B\to {}_B D_B</annotation></semantics></math>.</p> <p>Every morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\alpha,\gamma)</annotation></semantics></math> as above induces an <strong>induction functor</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mrow></mrow> <mi>C</mi></msup><mi>ℳ</mi><mo>→</mo><msup><mrow></mrow> <mi>D</mi></msup><mi>ℳ</mi></mrow><annotation encoding="application/x-tex">{}^C\mathcal{M}\to{}^D\mathcal{M}</annotation></semantics></math>, among the categories of (say, left) comodules, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mo>↦</mo><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>M</mi></mrow><annotation encoding="application/x-tex">M\mapsto B\otimes_A M</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>↦</mo><msub><mi>id</mi> <mi>B</mi></msub><mo>⊗</mo><mi>f</mi></mrow><annotation encoding="application/x-tex">f\mapsto id_B\otimes f</annotation></semantics></math> with, which for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-coaction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ρ</mi> <mi>M</mi></msup><mo>:</mo><mi>M</mi><mo>→</mo><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>M</mi><mo>,</mo><mi>m</mi><mo>↦</mo><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><msub><mi>m</mi> <mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo>⊗</mo><msub><mi>m</mi> <mrow><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\rho^M: M\to C\otimes_A M, m\mapsto \sum m_{(-1)}\otimes m_{(0)}</annotation></semantics></math> gives <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>-comodule structure</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>M</mi><mo>→</mo><mi>D</mi><msub><mo>⊗</mo> <mi>B</mi></msub><mi>B</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>M</mi><mo>≅</mo><mi>D</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>M</mi><mo>,</mo><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mi>b</mi><mo>⊗</mo><mi>m</mi><mo>↦</mo><mi>b</mi><mi>γ</mi><mo stretchy="false">(</mo><msub><mi>m</mi> <mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mo>⊗</mo><msub><mi>m</mi> <mrow><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></msub><mo>.</mo></mrow><annotation encoding="application/x-tex"> B\otimes_A M \to D\otimes_B B\otimes_A M\cong D\otimes_A M,\,\,\, b\otimes m \mapsto b\gamma(m_{(-1)}) \otimes m_{(0)}. </annotation></semantics></math></div> <p>Similarly, one defines the induction functor for right comodules, and in particular coaction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mo>′</mo><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mo>→</mo><mi>M</mi><mo>′</mo><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><msub><mo>⊗</mo> <mi>B</mi></msub><mi>D</mi><mo>≅</mo><mi>M</mi><mo>′</mo><msub><mo>⊗</mo> <mi>A</mi></msub><mi>D</mi></mrow><annotation encoding="application/x-tex">M'\otimes_A B\to M'\otimes_A B\otimes_B D\cong M'\otimes_A D</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>′</mo><mo>⊗</mo><mi>b</mi><mo>↦</mo><msub><mi>m</mi> <mrow><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></msub><mo>⊗</mo><mi>γ</mi><mo stretchy="false">(</mo><msub><mi>m</mi> <mrow><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">m'\otimes b\mapsto m_{(0)}\otimes\gamma(m_{(1)})b</annotation></semantics></math>. In particular, one can start with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>C</mi></msub></mrow><annotation encoding="application/x-tex">\Delta_C</annotation></semantics></math> and induce <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>B</mi><mo>→</mo><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>D</mi></mrow><annotation encoding="application/x-tex">C\otimes_A B\to C\otimes_A D</annotation></semantics></math> via <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>c</mi><mo>⊗</mo><mi>b</mi><mo>↦</mo><msub><mi>c</mi> <mrow><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></msub><mo>⊗</mo><mi>γ</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mrow><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">)</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">c\otimes b\mapsto c_{(1)}\otimes \gamma(c_{(2)})b</annotation></semantics></math>.</p> <p>Under the assumption that the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\alpha,\gamma)</annotation></semantics></math> is a pure morphism of corings (left hand version), which is for example satisfied automatically when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is flat as a right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-module, the induction functor has a right adjoint, the coinduction functor. It is given by a cotensor product which is a comodule under the purity condition. Thus if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math> is a left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>-comodule, consider the cotensor product written in two ways as the equalizer <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="389.208" height="34.76" viewBox="0 0 389.208 34.76"> <defs> <g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-0-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-0-1"> <path d="M 3.890625 2.90625 C 3.890625 2.875 3.890625 2.84375 3.6875 2.640625 C 2.484375 1.4375 1.8125 -0.53125 1.8125 -2.96875 C 1.8125 -5.296875 2.375 -7.296875 3.765625 -8.703125 C 3.890625 -8.8125 3.890625 -8.828125 3.890625 -8.875 C 3.890625 -8.9375 3.828125 -8.96875 3.78125 -8.96875 C 3.625 -8.96875 2.640625 -8.109375 2.0625 -6.9375 C 1.453125 -5.71875 1.171875 -4.453125 1.171875 -2.96875 C 1.171875 -1.90625 1.34375 -0.484375 1.953125 0.78125 C 2.671875 2.21875 3.640625 3 3.78125 3 C 3.828125 3 3.890625 2.96875 3.890625 2.90625 Z M 3.890625 2.90625 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-0-2"> <path d="M 3.375 -2.96875 C 3.375 -3.890625 3.25 -5.359375 2.578125 -6.75 C 1.875 -8.1875 0.890625 -8.96875 0.765625 -8.96875 C 0.71875 -8.96875 0.65625 -8.9375 0.65625 -8.875 C 0.65625 -8.828125 0.65625 -8.8125 0.859375 -8.609375 C 2.0625 -7.40625 2.71875 -5.421875 2.71875 -2.984375 C 2.71875 -0.671875 2.15625 1.328125 0.78125 2.734375 C 0.65625 2.84375 0.65625 2.875 0.65625 2.90625 C 0.65625 2.96875 0.71875 3 0.765625 3 C 0.921875 3 1.90625 2.140625 2.484375 0.96875 C 3.09375 -0.25 3.375 -1.546875 3.375 -2.96875 Z M 3.375 -2.96875 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-1"> <path d="M 8.921875 -8.3125 C 8.921875 -8.421875 8.84375 -8.421875 8.828125 -8.421875 C 8.796875 -8.421875 8.75 -8.421875 8.65625 -8.296875 L 7.828125 -7.296875 C 7.40625 -8.015625 6.75 -8.421875 5.859375 -8.421875 C 3.28125 -8.421875 0.59375 -5.796875 0.59375 -2.984375 C 0.59375 -0.984375 2 0.25 3.734375 0.25 C 4.703125 0.25 5.53125 -0.15625 6.234375 -0.734375 C 7.265625 -1.609375 7.578125 -2.765625 7.578125 -2.875 C 7.578125 -2.96875 7.484375 -2.96875 7.453125 -2.96875 C 7.34375 -2.96875 7.328125 -2.90625 7.296875 -2.859375 C 6.75 -0.984375 5.140625 -0.09375 3.9375 -0.09375 C 2.671875 -0.09375 1.578125 -0.90625 1.578125 -2.609375 C 1.578125 -2.984375 1.703125 -5.0625 3.046875 -6.640625 C 3.703125 -7.40625 4.828125 -8.0625 5.96875 -8.0625 C 7.28125 -8.0625 7.859375 -6.984375 7.859375 -5.765625 C 7.859375 -5.453125 7.828125 -5.1875 7.828125 -5.140625 C 7.828125 -5.03125 7.953125 -5.03125 7.984375 -5.03125 C 8.109375 -5.03125 8.125 -5.046875 8.171875 -5.265625 Z M 8.921875 -8.3125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-2"> <path d="M 4.375 -7.34375 C 4.484375 -7.796875 4.53125 -7.8125 5 -7.8125 L 6.546875 -7.8125 C 7.90625 -7.8125 7.90625 -6.671875 7.90625 -6.5625 C 7.90625 -5.59375 6.9375 -4.359375 5.359375 -4.359375 L 3.640625 -4.359375 Z M 6.390625 -4.265625 C 7.703125 -4.5 8.875 -5.421875 8.875 -6.515625 C 8.875 -7.453125 8.0625 -8.15625 6.703125 -8.15625 L 2.875 -8.15625 C 2.640625 -8.15625 2.53125 -8.15625 2.53125 -7.9375 C 2.53125 -7.8125 2.640625 -7.8125 2.828125 -7.8125 C 3.546875 -7.8125 3.546875 -7.71875 3.546875 -7.59375 C 3.546875 -7.5625 3.546875 -7.5 3.5 -7.3125 L 1.890625 -0.890625 C 1.78125 -0.46875 1.75 -0.34375 0.921875 -0.34375 C 0.6875 -0.34375 0.578125 -0.34375 0.578125 -0.125 C 0.578125 0 0.640625 0 0.890625 0 L 4.984375 0 C 6.8125 0 8.21875 -1.390625 8.21875 -2.59375 C 8.21875 -3.578125 7.359375 -4.171875 6.390625 -4.265625 Z M 4.703125 -0.34375 L 3.078125 -0.34375 C 2.921875 -0.34375 2.890625 -0.34375 2.828125 -0.359375 C 2.6875 -0.375 2.671875 -0.390625 2.671875 -0.484375 C 2.671875 -0.578125 2.703125 -0.640625 2.71875 -0.75 L 3.5625 -4.125 L 5.8125 -4.125 C 7.21875 -4.125 7.21875 -2.8125 7.21875 -2.71875 C 7.21875 -1.5625 6.1875 -0.34375 4.703125 -0.34375 Z M 4.703125 -0.34375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-3"> <path d="M 8.84375 -6.90625 C 8.984375 -7.421875 9.171875 -7.78125 10.078125 -7.8125 C 10.109375 -7.8125 10.25 -7.828125 10.25 -8.03125 C 10.25 -8.15625 10.140625 -8.15625 10.09375 -8.15625 C 9.859375 -8.15625 9.25 -8.140625 9.015625 -8.140625 L 8.4375 -8.140625 C 8.265625 -8.140625 8.0625 -8.15625 7.890625 -8.15625 C 7.8125 -8.15625 7.671875 -8.15625 7.671875 -7.9375 C 7.671875 -7.8125 7.765625 -7.8125 7.859375 -7.8125 C 8.578125 -7.796875 8.625 -7.515625 8.625 -7.296875 C 8.625 -7.203125 8.609375 -7.15625 8.578125 -7 L 7.21875 -1.609375 L 4.65625 -7.953125 C 4.578125 -8.15625 4.5625 -8.15625 4.296875 -8.15625 L 2.84375 -8.15625 C 2.609375 -8.15625 2.5 -8.15625 2.5 -7.9375 C 2.5 -7.8125 2.578125 -7.8125 2.8125 -7.8125 C 2.875 -7.8125 3.578125 -7.8125 3.578125 -7.703125 C 3.578125 -7.6875 3.546875 -7.59375 3.53125 -7.546875 L 1.953125 -1.21875 C 1.8125 -0.640625 1.515625 -0.375 0.734375 -0.34375 C 0.671875 -0.34375 0.546875 -0.328125 0.546875 -0.125 C 0.546875 0 0.671875 0 0.703125 0 C 0.9375 0 1.546875 -0.03125 1.796875 -0.03125 L 2.359375 -0.03125 C 2.53125 -0.03125 2.734375 0 2.90625 0 C 2.984375 0 3.125 0 3.125 -0.234375 C 3.125 -0.328125 3 -0.34375 2.953125 -0.34375 C 2.5625 -0.359375 2.171875 -0.4375 2.171875 -0.859375 C 2.171875 -0.953125 2.203125 -1.0625 2.21875 -1.15625 L 3.84375 -7.546875 C 3.90625 -7.4375 3.90625 -7.40625 3.953125 -7.296875 L 6.796875 -0.21875 C 6.859375 -0.078125 6.890625 0 7 0 C 7.109375 0 7.125 -0.03125 7.171875 -0.234375 Z M 8.84375 -6.90625 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-4"> <path d="M 1.875 -0.890625 C 1.765625 -0.46875 1.75 -0.34375 0.90625 -0.34375 C 0.6875 -0.34375 0.5625 -0.34375 0.5625 -0.125 C 0.5625 0 0.640625 0 0.875 0 L 4.65625 0 C 7.078125 0 9.4375 -2.5 9.4375 -5.15625 C 9.4375 -6.890625 8.40625 -8.15625 6.6875 -8.15625 L 2.859375 -8.15625 C 2.625 -8.15625 2.515625 -8.15625 2.515625 -7.9375 C 2.515625 -7.8125 2.625 -7.8125 2.8125 -7.8125 C 3.53125 -7.8125 3.53125 -7.71875 3.53125 -7.59375 C 3.53125 -7.5625 3.53125 -7.5 3.484375 -7.3125 Z M 4.40625 -7.34375 C 4.5 -7.796875 4.546875 -7.8125 5.015625 -7.8125 L 6.328125 -7.8125 C 7.453125 -7.8125 8.484375 -7.203125 8.484375 -5.5625 C 8.484375 -4.953125 8.25 -2.875 7.09375 -1.5625 C 6.75 -1.171875 5.84375 -0.34375 4.46875 -0.34375 L 3.109375 -0.34375 C 2.9375 -0.34375 2.921875 -0.34375 2.84375 -0.359375 C 2.71875 -0.375 2.703125 -0.390625 2.703125 -0.484375 C 2.703125 -0.578125 2.71875 -0.640625 2.75 -0.75 Z M 4.40625 -7.34375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-1"> <path d="M 8.625 -2.984375 C 8.625 -5.1875 6.84375 -6.96875 4.65625 -6.96875 C 2.421875 -6.96875 0.65625 -5.15625 0.65625 -2.984375 C 0.65625 -0.78125 2.453125 0.984375 4.640625 0.984375 C 6.859375 0.984375 8.625 -0.8125 8.625 -2.984375 Z M 2.265625 -5.5625 C 2.25 -5.578125 2.15625 -5.671875 2.15625 -5.6875 C 2.15625 -5.734375 3.125 -6.671875 4.640625 -6.671875 C 5.0625 -6.671875 6.15625 -6.609375 7.140625 -5.6875 L 4.65625 -3.1875 Z M 1.921875 -0.484375 C 1.1875 -1.296875 0.953125 -2.21875 0.953125 -2.984375 C 0.953125 -3.90625 1.296875 -4.78125 1.921875 -5.484375 L 4.421875 -2.984375 Z M 7.34375 -5.484375 C 7.921875 -4.875 8.328125 -3.96875 8.328125 -2.984375 C 8.328125 -2.0625 7.984375 -1.1875 7.359375 -0.484375 L 4.859375 -2.984375 Z M 7.015625 -0.421875 C 7.046875 -0.390625 7.125 -0.3125 7.125 -0.28125 C 7.125 -0.234375 6.15625 0.6875 4.65625 0.6875 C 4.234375 0.6875 3.125 0.640625 2.15625 -0.28125 L 4.640625 -2.78125 Z M 7.015625 -0.421875 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-1"> <path d="M 1.46875 -0.953125 C 1.109375 -0.359375 0.78125 -0.28125 0.5 -0.265625 C 0.421875 -0.25 0.3125 -0.25 0.3125 -0.109375 C 0.3125 -0.09375 0.328125 0 0.4375 0 C 0.5 0 0.546875 -0.03125 1.109375 -0.03125 C 1.65625 -0.03125 1.828125 0 1.875 0 C 1.90625 0 2.03125 0 2.03125 -0.15625 C 2.03125 -0.25 1.921875 -0.265625 1.890625 -0.265625 C 1.71875 -0.265625 1.546875 -0.328125 1.546875 -0.515625 C 1.546875 -0.625 1.625 -0.734375 1.765625 -0.96875 L 2.3125 -1.84375 L 4.5 -1.84375 L 4.65625 -0.5 C 4.65625 -0.375 4.515625 -0.265625 4.140625 -0.265625 C 4.03125 -0.265625 3.921875 -0.265625 3.921875 -0.109375 C 3.921875 -0.109375 3.921875 0 4.0625 0 C 4.140625 0 4.4375 -0.015625 4.515625 -0.03125 L 5.015625 -0.03125 C 5.734375 -0.03125 5.859375 0 5.921875 0 C 5.953125 0 6.09375 0 6.09375 -0.15625 C 6.09375 -0.265625 5.984375 -0.265625 5.859375 -0.265625 C 5.421875 -0.265625 5.40625 -0.328125 5.390625 -0.53125 L 4.75 -5.453125 C 4.734375 -5.640625 4.71875 -5.6875 4.59375 -5.6875 C 4.453125 -5.6875 4.40625 -5.609375 4.34375 -5.53125 Z M 2.484375 -2.109375 L 4.125 -4.71875 L 4.46875 -2.109375 Z M 2.484375 -2.109375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-2"> <path d="M 1.328125 -0.625 C 1.265625 -0.328125 1.25 -0.265625 0.65625 -0.265625 C 0.5 -0.265625 0.40625 -0.265625 0.40625 -0.109375 C 0.40625 0 0.515625 0 0.640625 0 L 3.390625 0 C 5.0625 0 6.734375 -1.609375 6.734375 -3.390625 C 6.734375 -4.609375 5.921875 -5.4375 4.734375 -5.4375 L 1.953125 -5.4375 C 1.8125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.796875 -5.171875 1.9375 -5.171875 C 2.203125 -5.171875 2.4375 -5.171875 2.4375 -5.046875 C 2.4375 -5.015625 2.421875 -5.015625 2.40625 -4.90625 Z M 3.09375 -4.890625 C 3.15625 -5.15625 3.171875 -5.171875 3.5 -5.171875 L 4.46875 -5.171875 C 5.390625 -5.171875 6.03125 -4.640625 6.03125 -3.671875 C 6.03125 -3.40625 5.90625 -2.109375 5.21875 -1.21875 C 4.875 -0.765625 4.1875 -0.265625 3.25 -0.265625 L 2.0625 -0.265625 C 1.984375 -0.28125 1.953125 -0.28125 1.953125 -0.328125 C 1.953125 -0.390625 1.96875 -0.46875 1.984375 -0.515625 Z M 3.09375 -4.890625 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-3"> <path d="M 1.34375 -0.625 C 1.28125 -0.328125 1.265625 -0.265625 0.671875 -0.265625 C 0.515625 -0.265625 0.421875 -0.265625 0.421875 -0.109375 C 0.421875 0 0.53125 0 0.65625 0 L 3.625 0 C 4.9375 0 5.90625 -0.9375 5.90625 -1.703125 C 5.90625 -2.28125 5.40625 -2.75 4.609375 -2.84375 C 5.53125 -3.015625 6.328125 -3.625 6.328125 -4.328125 C 6.328125 -4.921875 5.75 -5.4375 4.75 -5.4375 L 1.96875 -5.4375 C 1.828125 -5.4375 1.71875 -5.4375 1.71875 -5.296875 C 1.71875 -5.171875 1.8125 -5.171875 1.953125 -5.171875 C 2.21875 -5.171875 2.453125 -5.171875 2.453125 -5.046875 C 2.453125 -5.015625 2.4375 -5.015625 2.421875 -4.90625 Z M 2.59375 -2.9375 L 3.078125 -4.890625 C 3.140625 -5.15625 3.15625 -5.171875 3.484375 -5.171875 L 4.625 -5.171875 C 5.40625 -5.171875 5.59375 -4.671875 5.59375 -4.34375 C 5.59375 -3.671875 4.859375 -2.9375 3.84375 -2.9375 Z M 2.046875 -0.265625 C 1.96875 -0.28125 1.9375 -0.28125 1.9375 -0.328125 C 1.9375 -0.390625 1.953125 -0.46875 1.96875 -0.515625 L 2.53125 -2.71875 L 4.15625 -2.71875 C 4.890625 -2.71875 5.140625 -2.21875 5.140625 -1.765625 C 5.140625 -0.984375 4.375 -0.265625 3.421875 -0.265625 Z M 2.046875 -0.265625 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-4"> <path d="M 6.34375 -5.390625 C 6.34375 -5.421875 6.359375 -5.46875 6.359375 -5.515625 C 6.359375 -5.5625 6.3125 -5.609375 6.265625 -5.609375 C 6.203125 -5.609375 6.1875 -5.59375 6.125 -5.515625 L 5.5625 -4.90625 C 5.484375 -5 5.0625 -5.609375 4.140625 -5.609375 C 2.28125 -5.609375 0.421875 -3.890625 0.421875 -2.0625 C 0.421875 -0.671875 1.46875 0.171875 2.734375 0.171875 C 3.78125 0.171875 4.671875 -0.46875 5.09375 -1.09375 C 5.359375 -1.484375 5.46875 -1.859375 5.46875 -1.90625 C 5.46875 -1.984375 5.421875 -2.015625 5.34375 -2.015625 C 5.25 -2.015625 5.234375 -1.96875 5.21875 -1.890625 C 4.875 -0.78125 3.796875 -0.09375 2.84375 -0.09375 C 2.03125 -0.09375 1.171875 -0.578125 1.171875 -1.796875 C 1.171875 -2.046875 1.265625 -3.375 2.15625 -4.375 C 2.75 -5.046875 3.5625 -5.34375 4.1875 -5.34375 C 5.203125 -5.34375 5.609375 -4.546875 5.609375 -3.78125 C 5.609375 -3.671875 5.578125 -3.515625 5.578125 -3.421875 C 5.578125 -3.328125 5.6875 -3.328125 5.71875 -3.328125 C 5.8125 -3.328125 5.828125 -3.359375 5.859375 -3.5 Z M 6.34375 -5.390625 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-5"> <path d="M 0.296875 1.28125 C 0.265625 1.40625 0.265625 1.453125 0.265625 1.46875 C 0.265625 1.671875 0.421875 1.71875 0.515625 1.71875 C 0.5625 1.71875 0.734375 1.703125 0.84375 1.5 C 0.890625 1.40625 1.046875 0.671875 1.328125 -0.421875 C 1.421875 -0.25 1.6875 0.078125 2.171875 0.078125 C 3.140625 0.078125 4.21875 -0.984375 4.21875 -2.1875 C 4.21875 -3.078125 3.625 -3.515625 3 -3.515625 C 2.265625 -3.515625 1.328125 -2.859375 1.046875 -1.703125 Z M 2.15625 -0.140625 C 1.609375 -0.140625 1.4375 -0.71875 1.4375 -0.828125 C 1.4375 -0.859375 1.640625 -1.671875 1.65625 -1.734375 C 2.015625 -3.140625 2.765625 -3.296875 3 -3.296875 C 3.375 -3.296875 3.59375 -2.953125 3.59375 -2.515625 C 3.59375 -2.21875 3.4375 -1.421875 3.203125 -0.9375 C 2.96875 -0.484375 2.546875 -0.140625 2.15625 -0.140625 Z M 2.15625 -0.140625 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-6"> <path d="M 3.265625 -3.046875 C 2.9375 -3.015625 2.828125 -2.765625 2.828125 -2.609375 C 2.828125 -2.375 3.03125 -2.3125 3.140625 -2.3125 C 3.171875 -2.3125 3.578125 -2.34375 3.578125 -2.828125 C 3.578125 -3.3125 3.0625 -3.515625 2.578125 -3.515625 C 1.453125 -3.515625 0.34375 -2.421875 0.34375 -1.296875 C 0.34375 -0.546875 0.875 0.078125 1.75 0.078125 C 3.015625 0.078125 3.671875 -0.71875 3.671875 -0.828125 C 3.671875 -0.90625 3.59375 -0.953125 3.546875 -0.953125 C 3.5 -0.953125 3.46875 -0.9375 3.4375 -0.890625 C 2.8125 -0.140625 1.90625 -0.140625 1.765625 -0.140625 C 1.34375 -0.140625 1 -0.40625 1 -1.015625 C 1 -1.359375 1.15625 -2.203125 1.53125 -2.703125 C 1.875 -3.140625 2.28125 -3.296875 2.59375 -3.296875 C 2.6875 -3.296875 3.046875 -3.28125 3.265625 -3.046875 Z M 3.265625 -3.046875 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-7"> <path d="M 1.9375 -5.296875 C 1.953125 -5.3125 1.96875 -5.40625 1.96875 -5.421875 C 1.96875 -5.453125 1.9375 -5.53125 1.84375 -5.53125 C 1.8125 -5.53125 1.5625 -5.5 1.390625 -5.484375 L 0.9375 -5.453125 C 0.765625 -5.4375 0.6875 -5.4375 0.6875 -5.296875 C 0.6875 -5.171875 0.796875 -5.171875 0.890625 -5.171875 C 1.28125 -5.171875 1.28125 -5.125 1.28125 -5.0625 C 1.28125 -5.015625 1.1875 -4.6875 1.140625 -4.515625 L 0.453125 -1.734375 C 0.390625 -1.46875 0.390625 -1.34375 0.390625 -1.21875 C 0.390625 -0.390625 0.890625 0.078125 1.5 0.078125 C 2.484375 0.078125 3.5 -1.046875 3.5 -2.203125 C 3.5 -3 3 -3.515625 2.359375 -3.515625 C 1.90625 -3.515625 1.5625 -3.234375 1.390625 -3.078125 Z M 1.5 -0.140625 C 1.21875 -0.140625 0.9375 -0.359375 0.9375 -0.953125 C 0.9375 -1.15625 0.96875 -1.359375 1.0625 -1.75 C 1.109375 -1.96875 1.171875 -2.203125 1.234375 -2.4375 C 1.28125 -2.578125 1.28125 -2.59375 1.375 -2.703125 C 1.640625 -3.046875 2 -3.296875 2.328125 -3.296875 C 2.734375 -3.296875 2.890625 -2.90625 2.890625 -2.546875 C 2.890625 -2.25 2.703125 -1.390625 2.46875 -0.921875 C 2.265625 -0.5 1.875 -0.140625 1.5 -0.140625 Z M 1.5 -0.140625 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-8"> <path d="M 1.59375 -1.3125 C 1.625 -1.421875 1.703125 -1.734375 1.71875 -1.84375 C 1.828125 -2.28125 1.828125 -2.28125 2.015625 -2.546875 C 2.28125 -2.9375 2.65625 -3.296875 3.1875 -3.296875 C 3.46875 -3.296875 3.640625 -3.125 3.640625 -2.75 C 3.640625 -2.3125 3.3125 -1.40625 3.15625 -1.015625 C 3.046875 -0.75 3.046875 -0.703125 3.046875 -0.59375 C 3.046875 -0.140625 3.421875 0.078125 3.765625 0.078125 C 4.546875 0.078125 4.875 -1.03125 4.875 -1.140625 C 4.875 -1.21875 4.8125 -1.25 4.75 -1.25 C 4.65625 -1.25 4.640625 -1.1875 4.625 -1.109375 C 4.4375 -0.453125 4.09375 -0.140625 3.796875 -0.140625 C 3.671875 -0.140625 3.609375 -0.21875 3.609375 -0.40625 C 3.609375 -0.59375 3.671875 -0.765625 3.75 -0.96875 C 3.859375 -1.265625 4.21875 -2.1875 4.21875 -2.625 C 4.21875 -3.234375 3.796875 -3.515625 3.234375 -3.515625 C 2.578125 -3.515625 2.171875 -3.125 1.9375 -2.828125 C 1.875 -3.265625 1.53125 -3.515625 1.125 -3.515625 C 0.84375 -3.515625 0.640625 -3.328125 0.515625 -3.078125 C 0.3125 -2.703125 0.234375 -2.3125 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.21875 0.53125 -2.4375 C 0.625 -2.828125 0.765625 -3.296875 1.09375 -3.296875 C 1.3125 -3.296875 1.359375 -3.09375 1.359375 -2.921875 C 1.359375 -2.765625 1.3125 -2.625 1.25 -2.359375 C 1.234375 -2.296875 1.109375 -1.828125 1.078125 -1.71875 L 0.78125 -0.515625 C 0.75 -0.390625 0.703125 -0.203125 0.703125 -0.171875 C 0.703125 0.015625 0.859375 0.078125 0.96875 0.078125 C 1.109375 0.078125 1.234375 -0.015625 1.28125 -0.109375 C 1.3125 -0.15625 1.375 -0.4375 1.40625 -0.59375 Z M 1.59375 -1.3125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-9"> <path d="M 3.265625 -1.28125 C 3.171875 -2.265625 2.765625 -2.90625 2.765625 -2.921875 C 2.59375 -3.1875 2.296875 -3.515625 1.765625 -3.515625 C 0.734375 -3.515625 0.140625 -2.359375 0.140625 -2.078125 C 0.140625 -2.015625 0.203125 -1.984375 0.265625 -1.984375 C 0.34375 -1.984375 0.359375 -2.015625 0.390625 -2.078125 C 0.625 -2.78125 1.421875 -2.890625 1.65625 -2.890625 C 2.9375 -2.890625 3.03125 -1.5 3.03125 -0.84375 C 3.03125 -0.390625 3.015625 -0.328125 2.953125 -0.140625 C 2.78125 0.421875 2.546875 1.3125 2.546875 1.53125 C 2.546875 1.546875 2.546875 1.71875 2.671875 1.71875 C 2.765625 1.71875 2.84375 1.59375 2.90625 1.390625 C 3.125 0.65625 3.203125 0.125 3.25 -0.234375 C 3.28125 -0.390625 3.71875 -1.734375 4.46875 -3.125 C 4.5625 -3.296875 4.5625 -3.3125 4.5625 -3.34375 C 4.5625 -3.34375 4.5625 -3.4375 4.4375 -3.4375 C 4.40625 -3.4375 4.375 -3.421875 4.34375 -3.40625 C 4.3125 -3.375 3.6875 -2.203125 3.296875 -1.109375 Z M 3.265625 -1.28125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-4-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-4-1"> <path d="M 8.625 -7.796875 C 8.625 -8.15625 8.578125 -8.21875 8.203125 -8.21875 L 1.09375 -8.21875 C 0.71875 -8.21875 0.671875 -8.171875 0.671875 -7.796875 L 0.671875 -0.4375 C 0.671875 -0.046875 0.703125 0 1.09375 0 L 8.1875 0 C 8.578125 0 8.625 -0.03125 8.625 -0.421875 Z M 1.140625 -7.734375 L 8.140625 -7.734375 L 8.140625 -0.484375 L 1.140625 -0.484375 Z M 1.140625 -7.734375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-5-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-5-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-6-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-6-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1"> <path d="M 6.109375 -1.984375 C 6.109375 -3.5625 4.828125 -4.8125 3.296875 -4.8125 C 1.71875 -4.8125 0.46875 -3.53125 0.46875 -1.984375 C 0.46875 -0.421875 1.75 0.828125 3.28125 0.828125 C 4.859375 0.828125 6.109375 -0.453125 6.109375 -1.984375 Z M 1.5625 -3.890625 C 2.1875 -4.46875 2.90625 -4.5625 3.28125 -4.5625 C 3.765625 -4.5625 4.453125 -4.421875 5.015625 -3.890625 L 3.296875 -2.171875 Z M 1.390625 -0.265625 C 0.9375 -0.734375 0.71875 -1.375 0.71875 -1.984375 C 0.71875 -2.59375 0.9375 -3.25 1.390625 -3.71875 L 3.109375 -1.984375 Z M 5.1875 -3.71875 C 5.640625 -3.25 5.859375 -2.609375 5.859375 -1.984375 C 5.859375 -1.390625 5.640625 -0.734375 5.1875 -0.265625 L 3.453125 -1.984375 Z M 5.015625 -0.09375 C 4.390625 0.484375 3.671875 0.578125 3.296875 0.578125 C 2.8125 0.578125 2.125 0.4375 1.5625 -0.09375 L 3.28125 -1.8125 Z M 5.015625 -0.09375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-2"> <path d="M 0.84375 -1.8125 C 0.921875 -1.8125 1.0625 -1.828125 1.0625 -1.984375 C 1.0625 -2.15625 0.9375 -2.171875 0.84375 -2.171875 L 0.84375 -3.203125 C 0.84375 -3.328125 0.84375 -3.5 0.65625 -3.5 C 0.46875 -3.5 0.46875 -3.328125 0.46875 -3.203125 L 0.46875 -0.78125 C 0.46875 -0.65625 0.46875 -0.484375 0.65625 -0.484375 C 0.84375 -0.484375 0.84375 -0.65625 0.84375 -0.78125 Z M 0.84375 -1.8125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-3"> <path d="M 6.953125 -1.8125 C 6.6875 -1.609375 6.4375 -1.359375 6.25 -1.0625 C 5.90625 -0.546875 5.8125 -0.046875 5.8125 -0.015625 C 5.8125 0.109375 5.921875 0.109375 6 0.109375 C 6.09375 0.109375 6.15625 0.109375 6.1875 0.015625 C 6.390625 -0.875 6.90625 -1.546875 7.859375 -1.875 C 7.921875 -1.890625 8 -1.90625 8 -1.984375 C 8 -2.078125 7.921875 -2.09375 7.890625 -2.109375 C 6.828125 -2.46875 6.359375 -3.21875 6.203125 -3.90625 C 6.15625 -4.078125 6.15625 -4.09375 6 -4.09375 C 5.921875 -4.09375 5.8125 -4.09375 5.8125 -3.96875 C 5.8125 -3.953125 5.890625 -3.4375 6.25 -2.90625 C 6.484375 -2.578125 6.75 -2.328125 6.953125 -2.171875 L 0.765625 -2.171875 C 0.640625 -2.171875 0.46875 -2.171875 0.46875 -1.984375 C 0.46875 -1.8125 0.640625 -1.8125 0.765625 -1.8125 Z M 6.953125 -1.8125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-8-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-8-1"> <path d="M 1.359375 -0.734375 C 1.125 -0.390625 0.921875 -0.265625 0.59375 -0.234375 C 0.5 -0.234375 0.4375 -0.234375 0.4375 -0.09375 C 0.4375 -0.03125 0.484375 0 0.515625 0 C 0.6875 0 0.890625 -0.03125 1.0625 -0.03125 C 1.203125 -0.03125 1.5625 0 1.703125 0 C 1.765625 0 1.828125 -0.03125 1.828125 -0.15625 C 1.828125 -0.234375 1.75 -0.234375 1.734375 -0.234375 C 1.578125 -0.25 1.453125 -0.28125 1.453125 -0.40625 C 1.453125 -0.484375 1.515625 -0.59375 1.53125 -0.625 L 2.03125 -1.359375 L 3.828125 -1.359375 L 3.984375 -0.390625 C 3.984375 -0.234375 3.640625 -0.234375 3.578125 -0.234375 C 3.5 -0.234375 3.40625 -0.234375 3.40625 -0.09375 C 3.40625 -0.0625 3.4375 0 3.5 0 C 3.6875 0 4.125 -0.03125 4.296875 -0.03125 C 4.421875 -0.03125 4.53125 -0.015625 4.65625 -0.015625 C 4.78125 -0.015625 4.90625 0 5.015625 0 C 5.0625 0 5.15625 0 5.15625 -0.15625 C 5.15625 -0.234375 5.078125 -0.234375 4.984375 -0.234375 C 4.609375 -0.234375 4.609375 -0.28125 4.578125 -0.4375 L 3.984375 -4.109375 C 3.96875 -4.21875 3.96875 -4.265625 3.828125 -4.265625 C 3.703125 -4.265625 3.671875 -4.21875 3.609375 -4.140625 Z M 2.1875 -1.59375 L 3.484375 -3.546875 L 3.78125 -1.59375 Z M 2.1875 -1.59375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-8-2"> <path d="M 1.25 -0.5 C 1.203125 -0.28125 1.1875 -0.234375 0.734375 -0.234375 C 0.609375 -0.234375 0.59375 -0.234375 0.578125 -0.21875 C 0.546875 -0.203125 0.515625 -0.125 0.515625 -0.078125 C 0.53125 0 0.59375 0 0.71875 0 L 3.140625 0 C 4.1875 0 5 -0.671875 5 -1.28125 C 5 -1.640625 4.671875 -2.046875 3.921875 -2.140625 C 4.609375 -2.25 5.296875 -2.6875 5.296875 -3.234375 C 5.296875 -3.65625 4.828125 -4.09375 3.984375 -4.09375 L 1.6875 -4.09375 C 1.578125 -4.09375 1.484375 -4.09375 1.484375 -3.9375 C 1.484375 -3.84375 1.578125 -3.84375 1.6875 -3.84375 C 1.796875 -3.84375 1.9375 -3.84375 2.0625 -3.8125 C 2.0625 -3.75 2.0625 -3.703125 2.046875 -3.609375 Z M 2.234375 -2.21875 L 2.59375 -3.640625 C 2.640625 -3.84375 2.640625 -3.84375 2.890625 -3.84375 L 3.890625 -3.84375 C 4.5 -3.84375 4.6875 -3.46875 4.6875 -3.21875 C 4.6875 -2.734375 4.0625 -2.21875 3.328125 -2.21875 Z M 1.953125 -0.234375 C 1.84375 -0.234375 1.828125 -0.234375 1.75 -0.25 L 2.1875 -2.03125 L 3.484375 -2.03125 C 4.25 -2.03125 4.375 -1.546875 4.375 -1.296875 C 4.375 -0.734375 3.734375 -0.234375 2.984375 -0.234375 Z M 1.953125 -0.234375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-8-3"> <path d="M 5.265625 -3.421875 C 5.328125 -3.6875 5.453125 -3.828125 5.90625 -3.84375 C 5.9375 -3.84375 6.03125 -3.859375 6.03125 -3.984375 C 6.03125 -4.046875 6 -4.09375 5.9375 -4.09375 C 5.796875 -4.09375 5.453125 -4.0625 5.296875 -4.0625 L 4.96875 -4.0625 C 4.859375 -4.0625 4.734375 -4.09375 4.640625 -4.09375 C 4.53125 -4.09375 4.5 -4.015625 4.5 -3.9375 C 4.5 -3.84375 4.609375 -3.84375 4.65625 -3.84375 C 4.9375 -3.84375 5.046875 -3.765625 5.046875 -3.609375 C 5.046875 -3.578125 5.03125 -3.546875 5.03125 -3.515625 L 4.375 -0.890625 L 2.734375 -3.984375 C 2.6875 -4.078125 2.671875 -4.09375 2.53125 -4.09375 L 1.671875 -4.09375 C 1.5625 -4.09375 1.46875 -4.09375 1.46875 -3.9375 C 1.46875 -3.84375 1.546875 -3.84375 1.6875 -3.84375 C 1.71875 -3.84375 1.921875 -3.84375 2.078125 -3.8125 L 1.28125 -0.671875 C 1.21875 -0.4375 1.125 -0.25 0.640625 -0.234375 C 0.5625 -0.234375 0.5 -0.203125 0.5 -0.078125 C 0.515625 -0.0625 0.515625 0 0.609375 0 C 0.75 0 1.09375 -0.03125 1.25 -0.03125 L 1.578125 -0.015625 C 1.6875 -0.015625 1.8125 0 1.90625 0 C 2.03125 0 2.046875 -0.125 2.046875 -0.15625 C 2.015625 -0.234375 1.96875 -0.234375 1.890625 -0.234375 C 1.609375 -0.25 1.5 -0.328125 1.5 -0.484375 C 1.5 -0.515625 1.5 -0.53125 1.515625 -0.609375 L 2.28125 -3.65625 L 4.171875 -0.109375 C 4.203125 -0.015625 4.21875 0 4.296875 0 C 4.40625 0 4.421875 -0.03125 4.4375 -0.140625 Z M 5.265625 -3.421875 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-1"> <path d="M 2.375 1.359375 C 1.71875 0.84375 1.1875 -0.09375 1.1875 -1.5 C 1.1875 -2.875 1.71875 -3.84375 2.375 -4.34375 C 2.375 -4.34375 2.40625 -4.375 2.40625 -4.40625 C 2.40625 -4.4375 2.375 -4.484375 2.296875 -4.484375 C 2.203125 -4.484375 0.75 -3.546875 0.75 -1.5 C 0.75 0.546875 2.1875 1.5 2.296875 1.5 C 2.375 1.5 2.40625 1.453125 2.40625 1.40625 C 2.40625 1.375 2.375 1.359375 2.375 1.359375 Z M 2.375 1.359375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-2"> <path d="M 2.140625 -3.796875 C 2.140625 -3.984375 2.125 -3.984375 1.9375 -3.984375 C 1.546875 -3.59375 0.9375 -3.59375 0.71875 -3.59375 L 0.71875 -3.359375 C 0.875 -3.359375 1.28125 -3.359375 1.640625 -3.53125 L 1.640625 -0.515625 C 1.640625 -0.3125 1.640625 -0.234375 1.015625 -0.234375 L 0.765625 -0.234375 L 0.765625 0 C 1.09375 -0.03125 1.5625 -0.03125 1.890625 -0.03125 C 2.21875 -0.03125 2.6875 -0.03125 3.015625 0 L 3.015625 -0.234375 L 2.765625 -0.234375 C 2.140625 -0.234375 2.140625 -0.3125 2.140625 -0.515625 Z M 2.140625 -3.796875 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-3"> <path d="M 2.125 -1.5 C 2.125 -3.546875 0.6875 -4.484375 0.5625 -4.484375 C 0.5 -4.484375 0.484375 -4.4375 0.484375 -4.40625 C 0.484375 -4.375 0.484375 -4.359375 0.59375 -4.265625 C 1.125 -3.8125 1.6875 -2.921875 1.6875 -1.5 C 1.6875 -0.234375 1.25 0.71875 0.5625 1.296875 C 0.484375 1.375 0.484375 1.375 0.484375 1.40625 C 0.484375 1.4375 0.5 1.5 0.5625 1.5 C 0.671875 1.5 2.125 0.5625 2.125 -1.5 Z M 2.125 -1.5 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-4"> <path d="M 3.21875 -1.125 L 3 -1.125 C 2.984375 -1.03125 2.921875 -0.640625 2.84375 -0.578125 C 2.796875 -0.53125 2.3125 -0.53125 2.21875 -0.53125 L 1.109375 -0.53125 L 1.875 -1.15625 C 2.078125 -1.328125 2.609375 -1.703125 2.796875 -1.890625 C 2.96875 -2.0625 3.21875 -2.375 3.21875 -2.796875 C 3.21875 -3.546875 2.546875 -3.984375 1.734375 -3.984375 C 0.96875 -3.984375 0.4375 -3.46875 0.4375 -2.90625 C 0.4375 -2.609375 0.6875 -2.5625 0.75 -2.5625 C 0.90625 -2.5625 1.078125 -2.671875 1.078125 -2.890625 C 1.078125 -3.015625 1 -3.21875 0.734375 -3.21875 C 0.875 -3.515625 1.234375 -3.75 1.65625 -3.75 C 2.28125 -3.75 2.609375 -3.28125 2.609375 -2.796875 C 2.609375 -2.375 2.328125 -1.9375 1.921875 -1.546875 L 0.5 -0.25 C 0.4375 -0.1875 0.4375 -0.1875 0.4375 0 L 3.03125 0 Z M 3.21875 -1.125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-10-0"> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-10-1"> <path d="M 2.5 -5.078125 C 2.5 -5.296875 2.484375 -5.296875 2.265625 -5.296875 C 1.9375 -4.984375 1.515625 -4.796875 0.765625 -4.796875 L 0.765625 -4.53125 C 0.984375 -4.53125 1.40625 -4.53125 1.875 -4.734375 L 1.875 -0.65625 C 1.875 -0.359375 1.84375 -0.265625 1.09375 -0.265625 L 0.8125 -0.265625 L 0.8125 0 C 1.140625 -0.03125 1.828125 -0.03125 2.1875 -0.03125 C 2.546875 -0.03125 3.234375 -0.03125 3.5625 0 L 3.5625 -0.265625 L 3.28125 -0.265625 C 2.53125 -0.265625 2.5 -0.359375 2.5 -0.65625 Z M 2.5 -5.078125 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-10-2"> <path d="M 2.65625 1.984375 C 2.71875 1.984375 2.8125 1.984375 2.8125 1.890625 C 2.8125 1.859375 2.8125 1.859375 2.703125 1.75 C 1.609375 0.71875 1.34375 -0.75 1.34375 -1.984375 C 1.34375 -4.28125 2.28125 -5.359375 2.6875 -5.734375 C 2.8125 -5.828125 2.8125 -5.84375 2.8125 -5.875 C 2.8125 -5.921875 2.78125 -5.96875 2.703125 -5.96875 C 2.578125 -5.96875 2.171875 -5.5625 2.109375 -5.5 C 1.046875 -4.375 0.828125 -2.953125 0.828125 -1.984375 C 0.828125 -0.203125 1.5625 1.234375 2.65625 1.984375 Z M 2.65625 1.984375 "></path> </g> <g id="FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-10-3"> <path d="M 2.46875 -1.984375 C 2.46875 -2.75 2.328125 -3.65625 1.84375 -4.59375 C 1.453125 -5.328125 0.71875 -5.96875 0.578125 -5.96875 C 0.5 -5.96875 0.484375 -5.921875 0.484375 -5.875 C 0.484375 -5.84375 0.484375 -5.828125 0.578125 -5.734375 C 1.6875 -4.671875 1.9375 -3.21875 1.9375 -1.984375 C 1.9375 0.296875 1 1.375 0.59375 1.75 C 0.484375 1.84375 0.484375 1.859375 0.484375 1.890625 C 0.484375 1.9375 0.5 1.984375 0.578125 1.984375 C 0.703125 1.984375 1.109375 1.578125 1.171875 1.515625 C 2.234375 0.390625 2.46875 -1.03125 2.46875 -1.984375 Z M 2.46875 -1.984375 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-0-1" x="2.989" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-1" x="7.541" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-1" x="19.431" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-1" x="28.73" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-2" x="38.228" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-0-2" x="47.724" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-4-1" x="52.276" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-2" x="61.575" y="15.649"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-3" x="69.255" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-5-1" x="141.397" y="16.999"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-6-1" x="141.397" y="16.999"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 41.434188 -0.001 L 99.961531 -0.001 " transform="matrix(1, 0, 0, -1, 41.433, 16.999)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-1" x="144.386" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-1" x="156.276" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-1" x="165.574" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-2" x="175.072" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-1" x="187.225" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-3" x="196.523" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-3" x="206.458" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-4" x="232.24" y="9.887"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1" x="238.839" y="9.887"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-8-1" x="245.425" y="11.226"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-3" x="251.447" y="9.887"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1" x="258.227" y="9.887"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-8-2" x="264.814" y="11.226"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-5" x="271.136" y="9.887"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-8-3" x="275.473" y="7.074"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-5-1" x="278.6" y="14.425"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-6-1" x="278.6" y="14.425"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 178.637313 2.573219 L 237.164656 2.573219 " transform="matrix(1, 0, 0, -1, 41.433, 16.999)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-6" x="204.622" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1" x="208.29" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-7" x="214.876" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1" x="218.499" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-8" x="225.085" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-2" x="230.224" y="28.539"></use> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-3" x="230.224" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-6" x="238.692" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-1" x="242.36" y="30.277"></use> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-2" x="245.238214" y="30.277"></use> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-3" x="248.891126" y="30.277"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1" x="252.267" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-10-1" x="258.853" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1" x="263.088" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-9" x="269.674" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-10-2" x="274.506" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-6" x="277.799" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-1" x="281.467" y="30.277"></use> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-4" x="284.345214" y="30.277"></use> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-9-3" x="287.998126" y="30.277"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-10-3" x="291.374" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-7" x="294.668" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-7-1" x="298.29" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-8" x="304.877" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-5-1" x="278.6" y="19.573"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-6-1" x="278.6" y="19.573"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 178.637313 -2.575219 L 237.164656 -2.575219 " transform="matrix(1, 0, 0, -1, 41.433, 16.999)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-1" x="281.589" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-1" x="293.479" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-1" x="302.777" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-2" x="312.275" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-1" x="324.428" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-3" x="333.726" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-4" x="343.661" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-2-1" x="356.363" y="19.988"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-3-3" x="365.661" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#FZmbVvekR6b6Ms1okmIzY4gjAUk=-glyph-1-3" x="375.596" y="19.988"></use> </g> </svg> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="390.942" height="33.52" viewBox="0 0 390.942 33.52"> <defs> <g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-0-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-0-1"> <path d="M 3.890625 2.90625 C 3.890625 2.875 3.890625 2.84375 3.6875 2.640625 C 2.484375 1.4375 1.8125 -0.53125 1.8125 -2.96875 C 1.8125 -5.296875 2.375 -7.296875 3.765625 -8.703125 C 3.890625 -8.8125 3.890625 -8.828125 3.890625 -8.875 C 3.890625 -8.9375 3.828125 -8.96875 3.78125 -8.96875 C 3.625 -8.96875 2.640625 -8.109375 2.0625 -6.9375 C 1.453125 -5.71875 1.171875 -4.453125 1.171875 -2.96875 C 1.171875 -1.90625 1.34375 -0.484375 1.953125 0.78125 C 2.671875 2.21875 3.640625 3 3.78125 3 C 3.828125 3 3.890625 2.96875 3.890625 2.90625 Z M 3.890625 2.90625 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-0-2"> <path d="M 3.375 -2.96875 C 3.375 -3.890625 3.25 -5.359375 2.578125 -6.75 C 1.875 -8.1875 0.890625 -8.96875 0.765625 -8.96875 C 0.71875 -8.96875 0.65625 -8.9375 0.65625 -8.875 C 0.65625 -8.828125 0.65625 -8.8125 0.859375 -8.609375 C 2.0625 -7.40625 2.71875 -5.421875 2.71875 -2.984375 C 2.71875 -0.671875 2.15625 1.328125 0.78125 2.734375 C 0.65625 2.84375 0.65625 2.875 0.65625 2.90625 C 0.65625 2.96875 0.71875 3 0.765625 3 C 0.921875 3 1.90625 2.140625 2.484375 0.96875 C 3.09375 -0.25 3.375 -1.546875 3.375 -2.96875 Z M 3.375 -2.96875 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-1"> <path d="M 8.921875 -8.3125 C 8.921875 -8.421875 8.84375 -8.421875 8.828125 -8.421875 C 8.796875 -8.421875 8.75 -8.421875 8.65625 -8.296875 L 7.828125 -7.296875 C 7.40625 -8.015625 6.75 -8.421875 5.859375 -8.421875 C 3.28125 -8.421875 0.59375 -5.796875 0.59375 -2.984375 C 0.59375 -0.984375 2 0.25 3.734375 0.25 C 4.703125 0.25 5.53125 -0.15625 6.234375 -0.734375 C 7.265625 -1.609375 7.578125 -2.765625 7.578125 -2.875 C 7.578125 -2.96875 7.484375 -2.96875 7.453125 -2.96875 C 7.34375 -2.96875 7.328125 -2.90625 7.296875 -2.859375 C 6.75 -0.984375 5.140625 -0.09375 3.9375 -0.09375 C 2.671875 -0.09375 1.578125 -0.90625 1.578125 -2.609375 C 1.578125 -2.984375 1.703125 -5.0625 3.046875 -6.640625 C 3.703125 -7.40625 4.828125 -8.0625 5.96875 -8.0625 C 7.28125 -8.0625 7.859375 -6.984375 7.859375 -5.765625 C 7.859375 -5.453125 7.828125 -5.1875 7.828125 -5.140625 C 7.828125 -5.03125 7.953125 -5.03125 7.984375 -5.03125 C 8.109375 -5.03125 8.125 -5.046875 8.171875 -5.265625 Z M 8.921875 -8.3125 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-2"> <path d="M 4.375 -7.34375 C 4.484375 -7.796875 4.53125 -7.8125 5 -7.8125 L 6.546875 -7.8125 C 7.90625 -7.8125 7.90625 -6.671875 7.90625 -6.5625 C 7.90625 -5.59375 6.9375 -4.359375 5.359375 -4.359375 L 3.640625 -4.359375 Z M 6.390625 -4.265625 C 7.703125 -4.5 8.875 -5.421875 8.875 -6.515625 C 8.875 -7.453125 8.0625 -8.15625 6.703125 -8.15625 L 2.875 -8.15625 C 2.640625 -8.15625 2.53125 -8.15625 2.53125 -7.9375 C 2.53125 -7.8125 2.640625 -7.8125 2.828125 -7.8125 C 3.546875 -7.8125 3.546875 -7.71875 3.546875 -7.59375 C 3.546875 -7.5625 3.546875 -7.5 3.5 -7.3125 L 1.890625 -0.890625 C 1.78125 -0.46875 1.75 -0.34375 0.921875 -0.34375 C 0.6875 -0.34375 0.578125 -0.34375 0.578125 -0.125 C 0.578125 0 0.640625 0 0.890625 0 L 4.984375 0 C 6.8125 0 8.21875 -1.390625 8.21875 -2.59375 C 8.21875 -3.578125 7.359375 -4.171875 6.390625 -4.265625 Z M 4.703125 -0.34375 L 3.078125 -0.34375 C 2.921875 -0.34375 2.890625 -0.34375 2.828125 -0.359375 C 2.6875 -0.375 2.671875 -0.390625 2.671875 -0.484375 C 2.671875 -0.578125 2.703125 -0.640625 2.71875 -0.75 L 3.5625 -4.125 L 5.8125 -4.125 C 7.21875 -4.125 7.21875 -2.8125 7.21875 -2.71875 C 7.21875 -1.5625 6.1875 -0.34375 4.703125 -0.34375 Z M 4.703125 -0.34375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-3"> <path d="M 8.84375 -6.90625 C 8.984375 -7.421875 9.171875 -7.78125 10.078125 -7.8125 C 10.109375 -7.8125 10.25 -7.828125 10.25 -8.03125 C 10.25 -8.15625 10.140625 -8.15625 10.09375 -8.15625 C 9.859375 -8.15625 9.25 -8.140625 9.015625 -8.140625 L 8.4375 -8.140625 C 8.265625 -8.140625 8.0625 -8.15625 7.890625 -8.15625 C 7.8125 -8.15625 7.671875 -8.15625 7.671875 -7.9375 C 7.671875 -7.8125 7.765625 -7.8125 7.859375 -7.8125 C 8.578125 -7.796875 8.625 -7.515625 8.625 -7.296875 C 8.625 -7.203125 8.609375 -7.15625 8.578125 -7 L 7.21875 -1.609375 L 4.65625 -7.953125 C 4.578125 -8.15625 4.5625 -8.15625 4.296875 -8.15625 L 2.84375 -8.15625 C 2.609375 -8.15625 2.5 -8.15625 2.5 -7.9375 C 2.5 -7.8125 2.578125 -7.8125 2.8125 -7.8125 C 2.875 -7.8125 3.578125 -7.8125 3.578125 -7.703125 C 3.578125 -7.6875 3.546875 -7.59375 3.53125 -7.546875 L 1.953125 -1.21875 C 1.8125 -0.640625 1.515625 -0.375 0.734375 -0.34375 C 0.671875 -0.34375 0.546875 -0.328125 0.546875 -0.125 C 0.546875 0 0.671875 0 0.703125 0 C 0.9375 0 1.546875 -0.03125 1.796875 -0.03125 L 2.359375 -0.03125 C 2.53125 -0.03125 2.734375 0 2.90625 0 C 2.984375 0 3.125 0 3.125 -0.234375 C 3.125 -0.328125 3 -0.34375 2.953125 -0.34375 C 2.5625 -0.359375 2.171875 -0.4375 2.171875 -0.859375 C 2.171875 -0.953125 2.203125 -1.0625 2.21875 -1.15625 L 3.84375 -7.546875 C 3.90625 -7.4375 3.90625 -7.40625 3.953125 -7.296875 L 6.796875 -0.21875 C 6.859375 -0.078125 6.890625 0 7 0 C 7.109375 0 7.125 -0.03125 7.171875 -0.234375 Z M 8.84375 -6.90625 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-4"> <path d="M 1.875 -0.890625 C 1.765625 -0.46875 1.75 -0.34375 0.90625 -0.34375 C 0.6875 -0.34375 0.5625 -0.34375 0.5625 -0.125 C 0.5625 0 0.640625 0 0.875 0 L 4.65625 0 C 7.078125 0 9.4375 -2.5 9.4375 -5.15625 C 9.4375 -6.890625 8.40625 -8.15625 6.6875 -8.15625 L 2.859375 -8.15625 C 2.625 -8.15625 2.515625 -8.15625 2.515625 -7.9375 C 2.515625 -7.8125 2.625 -7.8125 2.8125 -7.8125 C 3.53125 -7.8125 3.53125 -7.71875 3.53125 -7.59375 C 3.53125 -7.5625 3.53125 -7.5 3.484375 -7.3125 Z M 4.40625 -7.34375 C 4.5 -7.796875 4.546875 -7.8125 5.015625 -7.8125 L 6.328125 -7.8125 C 7.453125 -7.8125 8.484375 -7.203125 8.484375 -5.5625 C 8.484375 -4.953125 8.25 -2.875 7.09375 -1.5625 C 6.75 -1.171875 5.84375 -0.34375 4.46875 -0.34375 L 3.109375 -0.34375 C 2.9375 -0.34375 2.921875 -0.34375 2.84375 -0.359375 C 2.71875 -0.375 2.703125 -0.390625 2.703125 -0.484375 C 2.703125 -0.578125 2.71875 -0.640625 2.75 -0.75 Z M 4.40625 -7.34375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-2-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-2-1"> <path d="M 8.625 -2.984375 C 8.625 -5.1875 6.84375 -6.96875 4.65625 -6.96875 C 2.421875 -6.96875 0.65625 -5.15625 0.65625 -2.984375 C 0.65625 -0.78125 2.453125 0.984375 4.640625 0.984375 C 6.859375 0.984375 8.625 -0.8125 8.625 -2.984375 Z M 2.265625 -5.5625 C 2.25 -5.578125 2.15625 -5.671875 2.15625 -5.6875 C 2.15625 -5.734375 3.125 -6.671875 4.640625 -6.671875 C 5.0625 -6.671875 6.15625 -6.609375 7.140625 -5.6875 L 4.65625 -3.1875 Z M 1.921875 -0.484375 C 1.1875 -1.296875 0.953125 -2.21875 0.953125 -2.984375 C 0.953125 -3.90625 1.296875 -4.78125 1.921875 -5.484375 L 4.421875 -2.984375 Z M 7.34375 -5.484375 C 7.921875 -4.875 8.328125 -3.96875 8.328125 -2.984375 C 8.328125 -2.0625 7.984375 -1.1875 7.359375 -0.484375 L 4.859375 -2.984375 Z M 7.015625 -0.421875 C 7.046875 -0.390625 7.125 -0.3125 7.125 -0.28125 C 7.125 -0.234375 6.15625 0.6875 4.65625 0.6875 C 4.234375 0.6875 3.125 0.640625 2.15625 -0.28125 L 4.640625 -2.78125 Z M 7.015625 -0.421875 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-1"> <path d="M 1.46875 -0.953125 C 1.109375 -0.359375 0.78125 -0.28125 0.5 -0.265625 C 0.421875 -0.25 0.3125 -0.25 0.3125 -0.109375 C 0.3125 -0.09375 0.328125 0 0.4375 0 C 0.5 0 0.546875 -0.03125 1.109375 -0.03125 C 1.65625 -0.03125 1.828125 0 1.875 0 C 1.90625 0 2.03125 0 2.03125 -0.15625 C 2.03125 -0.25 1.921875 -0.265625 1.890625 -0.265625 C 1.71875 -0.265625 1.546875 -0.328125 1.546875 -0.515625 C 1.546875 -0.625 1.625 -0.734375 1.765625 -0.96875 L 2.3125 -1.84375 L 4.5 -1.84375 L 4.65625 -0.5 C 4.65625 -0.375 4.515625 -0.265625 4.140625 -0.265625 C 4.03125 -0.265625 3.921875 -0.265625 3.921875 -0.109375 C 3.921875 -0.109375 3.921875 0 4.0625 0 C 4.140625 0 4.4375 -0.015625 4.515625 -0.03125 L 5.015625 -0.03125 C 5.734375 -0.03125 5.859375 0 5.921875 0 C 5.953125 0 6.09375 0 6.09375 -0.15625 C 6.09375 -0.265625 5.984375 -0.265625 5.859375 -0.265625 C 5.421875 -0.265625 5.40625 -0.328125 5.390625 -0.53125 L 4.75 -5.453125 C 4.734375 -5.640625 4.71875 -5.6875 4.59375 -5.6875 C 4.453125 -5.6875 4.40625 -5.609375 4.34375 -5.53125 Z M 2.484375 -2.109375 L 4.125 -4.71875 L 4.46875 -2.109375 Z M 2.484375 -2.109375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-2"> <path d="M 1.328125 -0.625 C 1.265625 -0.328125 1.25 -0.265625 0.65625 -0.265625 C 0.5 -0.265625 0.40625 -0.265625 0.40625 -0.109375 C 0.40625 0 0.515625 0 0.640625 0 L 3.390625 0 C 5.0625 0 6.734375 -1.609375 6.734375 -3.390625 C 6.734375 -4.609375 5.921875 -5.4375 4.734375 -5.4375 L 1.953125 -5.4375 C 1.8125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.796875 -5.171875 1.9375 -5.171875 C 2.203125 -5.171875 2.4375 -5.171875 2.4375 -5.046875 C 2.4375 -5.015625 2.421875 -5.015625 2.40625 -4.90625 Z M 3.09375 -4.890625 C 3.15625 -5.15625 3.171875 -5.171875 3.5 -5.171875 L 4.46875 -5.171875 C 5.390625 -5.171875 6.03125 -4.640625 6.03125 -3.671875 C 6.03125 -3.40625 5.90625 -2.109375 5.21875 -1.21875 C 4.875 -0.765625 4.1875 -0.265625 3.25 -0.265625 L 2.0625 -0.265625 C 1.984375 -0.28125 1.953125 -0.28125 1.953125 -0.328125 C 1.953125 -0.390625 1.96875 -0.46875 1.984375 -0.515625 Z M 3.09375 -4.890625 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-3"> <path d="M 6.34375 -5.390625 C 6.34375 -5.421875 6.359375 -5.46875 6.359375 -5.515625 C 6.359375 -5.5625 6.3125 -5.609375 6.265625 -5.609375 C 6.203125 -5.609375 6.1875 -5.59375 6.125 -5.515625 L 5.5625 -4.90625 C 5.484375 -5 5.0625 -5.609375 4.140625 -5.609375 C 2.28125 -5.609375 0.421875 -3.890625 0.421875 -2.0625 C 0.421875 -0.671875 1.46875 0.171875 2.734375 0.171875 C 3.78125 0.171875 4.671875 -0.46875 5.09375 -1.09375 C 5.359375 -1.484375 5.46875 -1.859375 5.46875 -1.90625 C 5.46875 -1.984375 5.421875 -2.015625 5.34375 -2.015625 C 5.25 -2.015625 5.234375 -1.96875 5.21875 -1.890625 C 4.875 -0.78125 3.796875 -0.09375 2.84375 -0.09375 C 2.03125 -0.09375 1.171875 -0.578125 1.171875 -1.796875 C 1.171875 -2.046875 1.265625 -3.375 2.15625 -4.375 C 2.75 -5.046875 3.5625 -5.34375 4.1875 -5.34375 C 5.203125 -5.34375 5.609375 -4.546875 5.609375 -3.78125 C 5.609375 -3.671875 5.578125 -3.515625 5.578125 -3.421875 C 5.578125 -3.328125 5.6875 -3.328125 5.71875 -3.328125 C 5.8125 -3.328125 5.828125 -3.359375 5.859375 -3.5 Z M 6.34375 -5.390625 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-4"> <path d="M 0.296875 1.28125 C 0.265625 1.40625 0.265625 1.453125 0.265625 1.46875 C 0.265625 1.671875 0.421875 1.71875 0.515625 1.71875 C 0.5625 1.71875 0.734375 1.703125 0.84375 1.5 C 0.890625 1.40625 1.046875 0.671875 1.328125 -0.421875 C 1.421875 -0.25 1.6875 0.078125 2.171875 0.078125 C 3.140625 0.078125 4.21875 -0.984375 4.21875 -2.1875 C 4.21875 -3.078125 3.625 -3.515625 3 -3.515625 C 2.265625 -3.515625 1.328125 -2.859375 1.046875 -1.703125 Z M 2.15625 -0.140625 C 1.609375 -0.140625 1.4375 -0.71875 1.4375 -0.828125 C 1.4375 -0.859375 1.640625 -1.671875 1.65625 -1.734375 C 2.015625 -3.140625 2.765625 -3.296875 3 -3.296875 C 3.375 -3.296875 3.59375 -2.953125 3.59375 -2.515625 C 3.59375 -2.21875 3.4375 -1.421875 3.203125 -0.9375 C 2.96875 -0.484375 2.546875 -0.140625 2.15625 -0.140625 Z M 2.15625 -0.140625 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-5"> <path d="M 0.421875 0.96875 C 0.34375 1.21875 0.328125 1.28125 0.015625 1.28125 C -0.09375 1.28125 -0.1875 1.28125 -0.1875 1.4375 C -0.1875 1.5 -0.125 1.546875 -0.078125 1.546875 C 0 1.546875 0.03125 1.515625 0.625 1.515625 C 1.1875 1.515625 1.359375 1.546875 1.421875 1.546875 C 1.453125 1.546875 1.5625 1.546875 1.5625 1.390625 C 1.5625 1.28125 1.453125 1.28125 1.359375 1.28125 C 0.984375 1.28125 0.984375 1.234375 0.984375 1.15625 C 0.984375 1.109375 1.125 0.546875 1.359375 -0.390625 C 1.46875 -0.203125 1.71875 0.078125 2.140625 0.078125 C 3.125 0.078125 4.140625 -1.046875 4.140625 -2.203125 C 4.140625 -3 3.640625 -3.515625 3 -3.515625 C 2.515625 -3.515625 2.140625 -3.1875 1.90625 -2.953125 C 1.734375 -3.515625 1.203125 -3.515625 1.125 -3.515625 C 0.84375 -3.515625 0.640625 -3.328125 0.515625 -3.078125 C 0.328125 -2.71875 0.234375 -2.3125 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.21875 0.53125 -2.4375 C 0.625 -2.84375 0.765625 -3.296875 1.09375 -3.296875 C 1.296875 -3.296875 1.359375 -3.109375 1.359375 -2.921875 C 1.359375 -2.84375 1.328125 -2.640625 1.3125 -2.578125 Z M 1.875 -2.453125 C 1.921875 -2.59375 1.921875 -2.609375 2.046875 -2.75 C 2.34375 -3.109375 2.6875 -3.296875 2.96875 -3.296875 C 3.375 -3.296875 3.515625 -2.90625 3.515625 -2.546875 C 3.515625 -2.25 3.34375 -1.390625 3.109375 -0.921875 C 2.90625 -0.5 2.515625 -0.140625 2.140625 -0.140625 C 1.609375 -0.140625 1.46875 -0.765625 1.46875 -0.828125 C 1.46875 -0.84375 1.484375 -0.921875 1.5 -0.953125 Z M 1.875 -2.453125 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-6"> <path d="M 3.265625 -1.28125 C 3.171875 -2.265625 2.765625 -2.90625 2.765625 -2.921875 C 2.59375 -3.1875 2.296875 -3.515625 1.765625 -3.515625 C 0.734375 -3.515625 0.140625 -2.359375 0.140625 -2.078125 C 0.140625 -2.015625 0.203125 -1.984375 0.265625 -1.984375 C 0.34375 -1.984375 0.359375 -2.015625 0.390625 -2.078125 C 0.625 -2.78125 1.421875 -2.890625 1.65625 -2.890625 C 2.9375 -2.890625 3.03125 -1.5 3.03125 -0.84375 C 3.03125 -0.390625 3.015625 -0.328125 2.953125 -0.140625 C 2.78125 0.421875 2.546875 1.3125 2.546875 1.53125 C 2.546875 1.546875 2.546875 1.71875 2.671875 1.71875 C 2.765625 1.71875 2.84375 1.59375 2.90625 1.390625 C 3.125 0.65625 3.203125 0.125 3.25 -0.234375 C 3.28125 -0.390625 3.71875 -1.734375 4.46875 -3.125 C 4.5625 -3.296875 4.5625 -3.3125 4.5625 -3.34375 C 4.5625 -3.34375 4.5625 -3.4375 4.4375 -3.4375 C 4.40625 -3.4375 4.375 -3.421875 4.34375 -3.40625 C 4.3125 -3.375 3.6875 -2.203125 3.296875 -1.109375 Z M 3.265625 -1.28125 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-7"> <path d="M 6.3125 -4.578125 C 6.40625 -4.96875 6.578125 -5.15625 7.15625 -5.171875 C 7.234375 -5.171875 7.296875 -5.234375 7.296875 -5.328125 C 7.296875 -5.375 7.265625 -5.4375 7.1875 -5.4375 C 7.125 -5.4375 6.96875 -5.421875 6.390625 -5.421875 C 5.75 -5.421875 5.640625 -5.4375 5.5625 -5.4375 C 5.4375 -5.4375 5.421875 -5.359375 5.421875 -5.296875 C 5.421875 -5.1875 5.515625 -5.171875 5.59375 -5.171875 C 6.078125 -5.15625 6.078125 -4.953125 6.078125 -4.84375 C 6.078125 -4.796875 6.078125 -4.75 6.046875 -4.625 L 5.171875 -1.140625 L 3.25 -5.296875 C 3.1875 -5.4375 3.171875 -5.4375 2.984375 -5.4375 L 1.9375 -5.4375 C 1.796875 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.796875 -5.171875 1.953125 -5.171875 C 2.03125 -5.171875 2.265625 -5.171875 2.453125 -5.125 L 1.375 -0.859375 C 1.28125 -0.453125 1.078125 -0.28125 0.546875 -0.265625 C 0.5 -0.265625 0.390625 -0.25 0.390625 -0.109375 C 0.390625 -0.0625 0.4375 0 0.515625 0 C 0.546875 0 0.734375 -0.03125 1.3125 -0.03125 C 1.9375 -0.03125 2.0625 0 2.125 0 C 2.15625 0 2.28125 0 2.28125 -0.15625 C 2.28125 -0.25 2.1875 -0.265625 2.140625 -0.265625 C 1.84375 -0.265625 1.609375 -0.3125 1.609375 -0.59375 C 1.609375 -0.640625 1.640625 -0.75 1.640625 -0.75 L 2.671875 -4.921875 L 2.6875 -4.921875 L 4.90625 -0.140625 C 4.953125 -0.015625 4.96875 0 5.046875 0 C 5.15625 0 5.171875 -0.03125 5.203125 -0.171875 Z M 6.3125 -4.578125 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-8"> <path d="M 1.34375 -0.625 C 1.28125 -0.328125 1.265625 -0.265625 0.671875 -0.265625 C 0.515625 -0.265625 0.421875 -0.265625 0.421875 -0.109375 C 0.421875 0 0.53125 0 0.65625 0 L 3.625 0 C 4.9375 0 5.90625 -0.9375 5.90625 -1.703125 C 5.90625 -2.28125 5.40625 -2.75 4.609375 -2.84375 C 5.53125 -3.015625 6.328125 -3.625 6.328125 -4.328125 C 6.328125 -4.921875 5.75 -5.4375 4.75 -5.4375 L 1.96875 -5.4375 C 1.828125 -5.4375 1.71875 -5.4375 1.71875 -5.296875 C 1.71875 -5.171875 1.8125 -5.171875 1.953125 -5.171875 C 2.21875 -5.171875 2.453125 -5.171875 2.453125 -5.046875 C 2.453125 -5.015625 2.4375 -5.015625 2.421875 -4.90625 Z M 2.59375 -2.9375 L 3.078125 -4.890625 C 3.140625 -5.15625 3.15625 -5.171875 3.484375 -5.171875 L 4.625 -5.171875 C 5.40625 -5.171875 5.59375 -4.671875 5.59375 -4.34375 C 5.59375 -3.671875 4.859375 -2.9375 3.84375 -2.9375 Z M 2.046875 -0.265625 C 1.96875 -0.28125 1.9375 -0.28125 1.9375 -0.328125 C 1.9375 -0.390625 1.953125 -0.46875 1.96875 -0.515625 L 2.53125 -2.71875 L 4.15625 -2.71875 C 4.890625 -2.71875 5.140625 -2.21875 5.140625 -1.765625 C 5.140625 -0.984375 4.375 -0.265625 3.421875 -0.265625 Z M 2.046875 -0.265625 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-4-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-4-1"> <path d="M 8.625 -7.796875 C 8.625 -8.15625 8.578125 -8.21875 8.203125 -8.21875 L 1.09375 -8.21875 C 0.71875 -8.21875 0.671875 -8.171875 0.671875 -7.796875 L 0.671875 -0.4375 C 0.671875 -0.046875 0.703125 0 1.09375 0 L 8.1875 0 C 8.578125 0 8.625 -0.03125 8.625 -0.421875 Z M 1.140625 -7.734375 L 8.140625 -7.734375 L 8.140625 -0.484375 L 1.140625 -0.484375 Z M 1.140625 -7.734375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-5-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-5-1"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-6-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-6-1"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-1"> <path d="M 6.109375 -1.984375 C 6.109375 -3.5625 4.828125 -4.8125 3.296875 -4.8125 C 1.71875 -4.8125 0.46875 -3.53125 0.46875 -1.984375 C 0.46875 -0.421875 1.75 0.828125 3.28125 0.828125 C 4.859375 0.828125 6.109375 -0.453125 6.109375 -1.984375 Z M 1.5625 -3.890625 C 2.1875 -4.46875 2.90625 -4.5625 3.28125 -4.5625 C 3.765625 -4.5625 4.453125 -4.421875 5.015625 -3.890625 L 3.296875 -2.171875 Z M 1.390625 -0.265625 C 0.9375 -0.734375 0.71875 -1.375 0.71875 -1.984375 C 0.71875 -2.59375 0.9375 -3.25 1.390625 -3.71875 L 3.109375 -1.984375 Z M 5.1875 -3.71875 C 5.640625 -3.25 5.859375 -2.609375 5.859375 -1.984375 C 5.859375 -1.390625 5.640625 -0.734375 5.1875 -0.265625 L 3.453125 -1.984375 Z M 5.015625 -0.09375 C 4.390625 0.484375 3.671875 0.578125 3.296875 0.578125 C 2.8125 0.578125 2.125 0.4375 1.5625 -0.09375 L 3.28125 -1.8125 Z M 5.015625 -0.09375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-2"> <path d="M 3.75 -1.984375 C 3.75 -2.90625 3.015625 -3.640625 2.109375 -3.640625 C 1.203125 -3.640625 0.46875 -2.90625 0.46875 -1.984375 C 0.46875 -1.078125 1.203125 -0.34375 2.109375 -0.34375 C 3.015625 -0.34375 3.75 -1.078125 3.75 -1.984375 Z M 2.109375 -0.703125 C 1.40625 -0.703125 0.84375 -1.28125 0.84375 -1.984375 C 0.84375 -2.703125 1.40625 -3.28125 2.109375 -3.28125 C 2.828125 -3.28125 3.390625 -2.703125 3.390625 -1.984375 C 3.390625 -1.28125 2.828125 -0.703125 2.109375 -0.703125 Z M 2.109375 -0.703125 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-1"> <path d="M 1.359375 -0.734375 C 1.125 -0.390625 0.921875 -0.265625 0.59375 -0.234375 C 0.5 -0.234375 0.4375 -0.234375 0.4375 -0.09375 C 0.4375 -0.03125 0.484375 0 0.515625 0 C 0.6875 0 0.890625 -0.03125 1.0625 -0.03125 C 1.203125 -0.03125 1.5625 0 1.703125 0 C 1.765625 0 1.828125 -0.03125 1.828125 -0.15625 C 1.828125 -0.234375 1.75 -0.234375 1.734375 -0.234375 C 1.578125 -0.25 1.453125 -0.28125 1.453125 -0.40625 C 1.453125 -0.484375 1.515625 -0.59375 1.53125 -0.625 L 2.03125 -1.359375 L 3.828125 -1.359375 L 3.984375 -0.390625 C 3.984375 -0.234375 3.640625 -0.234375 3.578125 -0.234375 C 3.5 -0.234375 3.40625 -0.234375 3.40625 -0.09375 C 3.40625 -0.0625 3.4375 0 3.5 0 C 3.6875 0 4.125 -0.03125 4.296875 -0.03125 C 4.421875 -0.03125 4.53125 -0.015625 4.65625 -0.015625 C 4.78125 -0.015625 4.90625 0 5.015625 0 C 5.0625 0 5.15625 0 5.15625 -0.15625 C 5.15625 -0.234375 5.078125 -0.234375 4.984375 -0.234375 C 4.609375 -0.234375 4.609375 -0.28125 4.578125 -0.4375 L 3.984375 -4.109375 C 3.96875 -4.21875 3.96875 -4.265625 3.828125 -4.265625 C 3.703125 -4.265625 3.671875 -4.21875 3.609375 -4.140625 Z M 2.1875 -1.59375 L 3.484375 -3.546875 L 3.78125 -1.59375 Z M 2.1875 -1.59375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-2"> <path d="M 5.265625 -3.421875 C 5.328125 -3.6875 5.453125 -3.828125 5.90625 -3.84375 C 5.9375 -3.84375 6.03125 -3.859375 6.03125 -3.984375 C 6.03125 -4.046875 6 -4.09375 5.9375 -4.09375 C 5.796875 -4.09375 5.453125 -4.0625 5.296875 -4.0625 L 4.96875 -4.0625 C 4.859375 -4.0625 4.734375 -4.09375 4.640625 -4.09375 C 4.53125 -4.09375 4.5 -4.015625 4.5 -3.9375 C 4.5 -3.84375 4.609375 -3.84375 4.65625 -3.84375 C 4.9375 -3.84375 5.046875 -3.765625 5.046875 -3.609375 C 5.046875 -3.578125 5.03125 -3.546875 5.03125 -3.515625 L 4.375 -0.890625 L 2.734375 -3.984375 C 2.6875 -4.078125 2.671875 -4.09375 2.53125 -4.09375 L 1.671875 -4.09375 C 1.5625 -4.09375 1.46875 -4.09375 1.46875 -3.9375 C 1.46875 -3.84375 1.546875 -3.84375 1.6875 -3.84375 C 1.71875 -3.84375 1.921875 -3.84375 2.078125 -3.8125 L 1.28125 -0.671875 C 1.21875 -0.4375 1.125 -0.25 0.640625 -0.234375 C 0.5625 -0.234375 0.5 -0.203125 0.5 -0.078125 C 0.515625 -0.0625 0.515625 0 0.609375 0 C 0.75 0 1.09375 -0.03125 1.25 -0.03125 L 1.578125 -0.015625 C 1.6875 -0.015625 1.8125 0 1.90625 0 C 2.03125 0 2.046875 -0.125 2.046875 -0.15625 C 2.015625 -0.234375 1.96875 -0.234375 1.890625 -0.234375 C 1.609375 -0.25 1.5 -0.328125 1.5 -0.484375 C 1.5 -0.515625 1.5 -0.53125 1.515625 -0.609375 L 2.28125 -3.65625 L 4.171875 -0.109375 C 4.203125 -0.015625 4.21875 0 4.296875 0 C 4.40625 0 4.421875 -0.03125 4.4375 -0.140625 Z M 5.265625 -3.421875 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-0"> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-1"> <path d="M 2.65625 1.984375 C 2.71875 1.984375 2.8125 1.984375 2.8125 1.890625 C 2.8125 1.859375 2.8125 1.859375 2.703125 1.75 C 1.609375 0.71875 1.34375 -0.75 1.34375 -1.984375 C 1.34375 -4.28125 2.28125 -5.359375 2.6875 -5.734375 C 2.8125 -5.828125 2.8125 -5.84375 2.8125 -5.875 C 2.8125 -5.921875 2.78125 -5.96875 2.703125 -5.96875 C 2.578125 -5.96875 2.171875 -5.5625 2.109375 -5.5 C 1.046875 -4.375 0.828125 -2.953125 0.828125 -1.984375 C 0.828125 -0.203125 1.5625 1.234375 2.65625 1.984375 Z M 2.65625 1.984375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-2"> <path d="M 2.46875 -1.984375 C 2.46875 -2.75 2.328125 -3.65625 1.84375 -4.59375 C 1.453125 -5.328125 0.71875 -5.96875 0.578125 -5.96875 C 0.5 -5.96875 0.484375 -5.921875 0.484375 -5.875 C 0.484375 -5.84375 0.484375 -5.828125 0.578125 -5.734375 C 1.6875 -4.671875 1.9375 -3.21875 1.9375 -1.984375 C 1.9375 0.296875 1 1.375 0.59375 1.75 C 0.484375 1.84375 0.484375 1.859375 0.484375 1.890625 C 0.484375 1.9375 0.5 1.984375 0.578125 1.984375 C 0.703125 1.984375 1.109375 1.578125 1.171875 1.515625 C 2.234375 0.390625 2.46875 -1.03125 2.46875 -1.984375 Z M 2.46875 -1.984375 "></path> </g> <g id="r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-3"> <path d="M 3.765625 -5.53125 C 3.671875 -5.6875 3.578125 -5.6875 3.515625 -5.6875 C 3.46875 -5.6875 3.375 -5.6875 3.28125 -5.53125 L 0.46875 -0.203125 C 0.40625 -0.109375 0.40625 -0.09375 0.40625 -0.078125 C 0.40625 0 0.46875 0 0.59375 0 L 6.453125 0 C 6.578125 0 6.640625 0 6.640625 -0.078125 C 6.640625 -0.09375 6.640625 -0.109375 6.578125 -0.203125 Z M 3.265625 -4.90625 L 5.53125 -0.625 L 0.984375 -0.625 Z M 3.265625 -4.90625 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-0-1" x="2.989" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-1" x="7.541" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-2-1" x="19.431" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-1" x="28.73" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-2" x="38.228" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-0-2" x="47.724" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-4-1" x="52.276" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-2" x="61.575" y="15.649"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-3" x="69.255" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-5-1" x="141.397" y="16.999"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-6-1" x="141.397" y="16.999"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 41.434188 -0.001 L 99.961531 -0.001 " transform="matrix(1, 0, 0, -1, 41.433, 16.999)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-1" x="144.386" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-2-1" x="156.276" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-1" x="165.574" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-3" x="175.072" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-3" x="242.952" y="9.886"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-1" x="249.551" y="9.886"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-1" x="256.137" y="11.226"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-4" x="262.159" y="9.886"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-2" x="266.496" y="7.074"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-5-1" x="311.721" y="14.425"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-6-1" x="311.721" y="14.425"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 147.250594 2.573219 L 270.28575 2.573219 " transform="matrix(1, 0, 0, -1, 41.433, 16.999)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-1" x="196.61" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-3" x="199.904" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-1" x="206.502" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-1" x="213.089" y="29.878"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-5" x="219.111" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-2" x="223.373" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-2" x="226.667" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-1" x="230.901" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-3" x="234.194" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-1" x="240.793" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-1" x="247.379" y="29.878"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-6" x="253.401" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-1" x="258.233" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-1" x="264.82" y="29.878"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-7" x="270.841" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-2" x="278.412" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-2" x="281.705" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-1" x="285.939" y="28.539"></use> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-3" x="289.232245" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-7-1" x="296.289" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-8-1" x="302.876" y="29.878"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-7" x="308.898" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-9-2" x="316.468" y="28.539"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-5-1" x="311.721" y="19.572"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-6-1" x="311.721" y="19.572"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 147.250594 -2.575219 L 270.28575 -2.575219 " transform="matrix(1, 0, 0, -1, 41.433, 16.999)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-1" x="314.71" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-2-1" x="326.6" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-1" x="335.898" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-4" x="345.396" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-2-1" x="358.097" y="19.987"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-3-8" x="367.396" y="21.781"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#r_-VIgc1C56oApjaHVQfj-QwypE=-glyph-1-3" x="377.331" y="19.987"></use> </g> </svg> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>D</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>N</mi><mo>→</mo><mi>D</mi><msub><mo>⊗</mo> <mi>B</mi></msub><mi>N</mi></mrow><annotation encoding="application/x-tex">p:D\otimes_A N\to D\otimes_B N</annotation></semantics></math> is the canonical projection.</p> <h3 id="comodules_over_a_coring">Comodules over a coring</h3> <p>Given an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-coring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mrow></mrow> <mi>A</mi></msub><msub><mi>C</mi> <mi>A</mi></msub><mo>,</mo><mi>Δ</mi><mo>,</mo><mi>ϵ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C = ({}_A C_A, \Delta,\epsilon)</annotation></semantics></math>, a left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-comodule <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> is a left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-module with a map of left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-modules <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ν</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi><msub><mo>⊗</mo> <mi>A</mi></msub><msub><mrow></mrow> <mi>A</mi></msub><msub><mi>C</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">\nu: M\to M\otimes_A {}_A C_A</annotation></semantics></math> (left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-coaction), such that the composition <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mover><mo>→</mo><mi>ρ</mi></mover><mi>M</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><mover><mo>→</mo><mrow><mi>ρ</mi><mo>⊗</mo><mi>C</mi></mrow></mover><mo stretchy="false">(</mo><mi>M</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><mo stretchy="false">)</mo><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi></mrow><annotation encoding="application/x-tex">M\stackrel{\rho}\to M\otimes_A C \stackrel{\rho\otimes C}\to (M\otimes_A C)\otimes_A C</annotation></semantics></math> after rebracketing becomes identical to the composition <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mover><mo>→</mo><mi>ρ</mi></mover><mi>M</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><mover><mo>→</mo><mrow><mi>M</mi><mo>⊗</mo><msub><mi>Δ</mi> <mi>C</mi></msub></mrow></mover><mi>M</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mo stretchy="false">(</mo><mi>C</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">M\stackrel{\rho}\to M\otimes_A C \stackrel{M\otimes \Delta_C}\to M\otimes_A (C \otimes_A C)</annotation></semantics></math> and the counitality axiom holds.</p> <p>A morphism of left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-comodules <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><msup><mi>ρ</mi> <mi>M</mi></msup><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">(</mo><mi>N</mi><mo>,</mo><msup><mi>ρ</mi> <mi>N</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f:(M,\rho^M)\to(N,\rho^N)</annotation></semantics></math> is a morphism of underlying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-modules <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">f:M\to N</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>f</mi><mo stretchy="false">)</mo><mo>∘</mo><msup><mi>ρ</mi> <mi>M</mi></msup><mo>=</mo><msup><mi>ρ</mi> <mi>N</mi></msup><mo>∘</mo><mi>f</mi></mrow><annotation encoding="application/x-tex">(M\otimes_A f)\circ\rho^M = \rho^N\circ f</annotation></semantics></math>. Thus there is a category of left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-comodules equipped with a forgetful functor to the category of left <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-modules.</p> <p>The functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>M</mi><mo>↦</mo><mi>M</mi><msub><mo>⊗</mo> <mi>A</mi></msub><mi>C</mi></mrow><annotation encoding="application/x-tex">F: M\mapsto M\otimes_A C</annotation></semantics></math> is canonically a comonad on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mrow></mrow> <mi>A</mi></msub><mi>Mod</mi></mrow><annotation encoding="application/x-tex">{}_A Mod</annotation></semantics></math> with comultiplication <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Δ</mi> <mi>F</mi></msup><mo>=</mo><mi>Id</mi><msub><mo>⊗</mo> <mi>A</mi></msub><msub><mi>Δ</mi> <mi>C</mi></msub><mo>:</mo><mi>F</mi><mo>→</mo><mi>F</mi><mi>F</mi></mrow><annotation encoding="application/x-tex">\Delta^F = Id\otimes_A\Delta_C : F\to F F</annotation></semantics></math> and the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Moore+category">Eilenberg-Moore category</a> of the comonad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is isomorphic to the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-comodules.</p> <p>Analogously, one considers right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-comodules as right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-comodules with right <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-coactions.</p> <h2 id="examples">Examples</h2> <h3 id="canonical_sweedler_coring">Canonical (Sweedler) coring</h3> <p>The classical example of a coring is the canonical or <a class="existingWikiWord" href="/nlab/show/Sweedler+coring">Sweedler coring</a> corresponding to an extension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>↪</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">R\hookrightarrow S</annotation></semantics></math> of unital rings. The category of <a class="existingWikiWord" href="/nlab/show/descent">descent</a> data for this ring extension is equivalent to the category of <a class="existingWikiWord" href="/nlab/show/comodule"> comodules</a> over the canonical coring.</p> <p>Corings are in general useful for the treatment of <a class="existingWikiWord" href="/nlab/show/descent+in+noncommutative+algebraic+geometry">descent in noncommutative algebraic geometry</a>.</p> <h3 id="coring_of_a_projective_module">Coring of a projective module</h3> <p>Suppose we are given ring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>,</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">R,S</annotation></semantics></math> and an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-bimodule, finitely generated as right projective <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-module <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mo>=</mo><msub><mrow></mrow> <mi>S</mi></msub><msub><mi>M</mi> <mi>R</mi></msub></mrow><annotation encoding="application/x-tex">M = {}_S M_R</annotation></semantics></math>. Clearly, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>M</mi> <mo>*</mo></msup><mo>=</mo><msub><mi>Hom</mi> <mi>R</mi></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">M^* = Hom_R(M,R)</annotation></semantics></math> is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>-bimodule. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> be given as a direct summand of a free module <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>=</mo><msub><mo>⊕</mo> <mi>i</mi></msub><msub><mi>R</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">F = \oplus_i R_i</annotation></semantics></math>; the decomposition <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>=</mo><mi>M</mi><mo>⊕</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">F = M\oplus L</annotation></semantics></math> induces projection <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>:</mo><mi>F</mi><mo>→</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">p:F\to M</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>i</mi></msub><msub><mi>r</mi> <mi>i</mi></msub><mo>↦</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>i</mi></msub><msub><mi>r</mi> <mi>i</mi></msub><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\sum_i r_i\mapsto \sum_i r_i x_i</annotation></semantics></math>, a section <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo>:</mo><mi>M</mi><mo>↪</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">s: M\hookrightarrow F</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>i</mi></msub><msubsup><mi>x</mi> <mi>i</mi> <mo>*</mo></msubsup><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo><mo>∈</mo><msub><mo>⊕</mo> <mi>i</mi></msub><msub><mi>R</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">s(m) = \sum_i x_i^*(m)\in\oplus_i R_i</annotation></semantics></math>, and <a class="existingWikiWord" href="/nlab/show/dual+basis">dual basis</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>∈</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">x_1,\ldots,x_n\in M</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>x</mi> <mn>1</mn> <mo>*</mo></msubsup><mo>,</mo><mi>…</mi><mo>,</mo><msubsup><mi>x</mi> <mi>n</mi> <mo>*</mo></msubsup><mo>∈</mo><msub><mi>Hom</mi> <mi>R</mi></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x_1^*,\ldots,x_n^*\in Hom_R(M,R)</annotation></semantics></math> characterized by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>=</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>i</mi></msub><msubsup><mi>x</mi> <mi>i</mi> <mo>*</mo></msubsup><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">m = \sum_i x_i^*(m) x_i</annotation></semantics></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>∈</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">m\in M</annotation></semantics></math>. Then define an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-coring <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-bimodule <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>M</mi> <mo>*</mo></msup><msub><mo>⊗</mo> <mi>S</mi></msub><mi>M</mi></mrow><annotation encoding="application/x-tex">M^*\otimes_S M</annotation></semantics></math> with comultiplication</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo>:</mo><msup><mi>M</mi> <mo>*</mo></msup><msub><mo>⊗</mo> <mi>S</mi></msub><mi>M</mi><mo>→</mo><mo stretchy="false">(</mo><msup><mi>M</mi> <mo>*</mo></msup><msub><mo>⊗</mo> <mi>S</mi></msub><mi>M</mi><mo stretchy="false">)</mo><msub><mo>⊗</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msup><mi>M</mi> <mo>*</mo></msup><msub><mo>⊗</mo> <mi>S</mi></msub><mi>M</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \Delta : M^*\otimes_S M\to (M^*\otimes_S M)\otimes_R(M^*\otimes_S M) </annotation></semantics></math></div><div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo stretchy="false">(</mo><mi>f</mi><mo>⊗</mo><mi>m</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>n</mi></munderover><mi>f</mi><mo>⊗</mo><msubsup><mi>x</mi> <mi>i</mi> <mo>*</mo></msubsup><mo>⊗</mo><msub><mi>x</mi> <mi>i</mi></msub><mo>⊗</mo><mi>m</mi></mrow><annotation encoding="application/x-tex"> \Delta(f\otimes m) = \sum_{i=1}^n f\otimes x_i^*\otimes x_i\otimes m </annotation></semantics></math></div> <p>and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi><mo>:</mo><msup><mi>M</mi> <mo>*</mo></msup><msub><mo>⊗</mo> <mi>S</mi></msub><mi>M</mi><mo>,</mo><mi>f</mi><mo>⊗</mo><mi>m</mi><mo>↦</mo><mi>f</mi><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">\epsilon:M^*\otimes_S M, f\otimes m\mapsto f(m)\in R</annotation></semantics></math>.</p> <h3 id="matrix_coring">Matrix coring</h3> <p>Another major class of examples are the so-called <span class="newWikiWord"> matrix corings<a href="/nlab/new/matrix+coring">?</a></span>.</p> <h2 id="references">References</h2> <p>The notion of an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-coring is introduced by M. Sweedler and recently lived through a renaissance in works of <a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, R. Wisbauer, <a class="existingWikiWord" href="/nlab/show/G.+B%C3%B6hm">G. Böhm</a>, L. Kaoutit, Gómez-Torrecillas, S. Caenepeel, J. Y. Abuhlail, J. Vercruysse and others, including the creation of Galois theory for corings. Some prefer to speak about <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/cocategory">cocategories</a>.</p> <p>There is already a monograph:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, R. Wisbauer, <em>Corings and comodules</em>, London Math. Soc. Lec. Note Series <strong>309</strong>, Cambridge 2003.</li> </ul> <p>Special topics:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, <em>Descent cohomology and corings</em>, Comm. Algebra 36:1894-1900, 2008, <a href="http://arxiv.org/abs/math.RA/0601491">arxiv:math.RA/0601491</a></p> </li> <li> <p>L. El Kaoutit, J. Gomez-Torrecillas, <em>On the set of grouplikes of a coring</em>, <a href="http://arxiv.org/abs/0901.4291">arxiv/0901.4291</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, <em>Flat connections and (co)modules</em>, [in:] New Techniques in Hopf Algebras and Graded Ring Theory, S Caenepeel and F Van Oystaeyen (eds), Universa Press, Wetteren, 2007 pp. 35-52 <a href="http://arxiv.org/abs/math.QA/0608170">arxiv:math.QA/0608170</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, <em>The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties</em>, Algebras and Representation Theory <strong>5</strong> (2002) 389-410, <a href="http://arxiv.org/abs/math.QA/0002105">math.QA/0002105</a></p> </li> <li> <p>Lars Kadison, <em>Depth two and Galois coring</em>, <a href="http://arxiv.org/abs/math.RA/0408155">math.RA/0408155</a></p> </li> <li id="BergmanHausknecht96"> <p><a class="existingWikiWord" href="/nlab/show/George+M.+Bergman">George M. Bergman</a>, Adam O. Hausknecht, <em>Cogroups and co-rings in categories of associative rings</em>, A.M.S. Math. Surveys and Monographs <strong>45</strong> (1996) &lbrack;ISBN 0-8218-0495-2, <a href="https://bookstore.ams.org/surv-45">ams:surv-45</a>, <a href="http://www.ams.org/mathscinet-getitem?mr=97k:16001">MR 97k:16001</a>, <a href="http://math.berkeley.edu/~gbergman/papers/updates/coalg.html">errata and updates</a>&rbrack;</p> <blockquote> <p>(discussion <a class="existingWikiWord" href="/nlab/show/internalization">internal to</a> the <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/associative+algebras">associative algebras</a>)</p> </blockquote> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, L. Kadison, <a class="existingWikiWord" href="/nlab/show/R.+Wisbauer">R. Wisbauer</a>, <em>On coseparable and biseparable corings</em>, Hopf algebras in noncommutative geometry and physics, 71–87, Lecture Notes in Pure and Appl. Math., 239, Dekker, New York, 2005.</p> </li> <li> <p>T. Brzeziński, L. El Kaoutit, J. Gómez-Torrecillas, <em>The bicategories of corings</em>, J. Pure &amp; Appl. Alg. <strong>205</strong>:3 (2006) 510-541 <a href="https://doi.org/10.1016/j.jpaa.2005.07.013">doi:10.1016/j.jpaa.2005.07.013</a> <a href="https://arxiv.org/abs/math/0408042">math.RA/0408042</a></p> </li> </ul> <p>There is a generalization of corings:</p> <ul> <li>Jawad Y. Abuhlail, <em>Semicorings and semicomodules</em>, <a href="http://arxiv.org/abs/1303.3924">arxiv/1303.3924</a></li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/algebra">algebra</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on January 13, 2024 at 05:25:51. See the <a href="/nlab/history/coring" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/coring" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3869/#Item_6">Discuss</a><span class="backintime"><a href="/nlab/revision/coring/20" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/coring" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/coring" accesskey="S" class="navlink" id="history" rel="nofollow">History (20 revisions)</a> <a href="/nlab/show/coring/cite" style="color: black">Cite</a> <a href="/nlab/print/coring" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/coring" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10