CINXE.COM
Yuji Yoshino - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Yuji Yoshino - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Vp-B5z8iiexbStUZ9gb6PEIyu2_e8sQxePzeuek6qgvpXka04CW6FRh6ROcFRwh5N7yKhzgnrI_e6_eQZGFg_g" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="yuji yoshino" /> <meta name="description" content="Yuji Yoshino: 14 Followers, 2 Following, 123 Research papers. Research interests: Pure Mathematics and Algebra." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '5c0ad89eb97b08c8cc061a3cae2630fb26f67005'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14029,"monthly_visitors":"102 million","monthly_visitor_count":102411812,"monthly_visitor_count_in_millions":102,"user_count":283215679,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739997790000); window.Aedu.timeDifference = new Date().getTime() - 1739997790000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/YujiYoshino" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-d2e1f3b718105954b4f74780bccfac5f00781dba3ece3e10d5add9db69fa013a.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":329,"name":"Algebra","url":"https://www.academia.edu/Documents/in/Algebra"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/YujiYoshino","location":"/YujiYoshino","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/YujiYoshino","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-9215c22e-1609-408b-b549-b2f11e2e295a"></div> <div id="ProfileCheckPaperUpdate-react-component-9215c22e-1609-408b-b549-b2f11e2e295a"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Yuji Yoshino</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Yuji" data-follow-user-id="48555361" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="48555361"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">14</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">2</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/YujiYoshino/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/NguyenDuong450"><img class="profile-avatar u-positionAbsolute" alt="Nguyen Duong" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/258161190/110483468/99731014/s200_nguyen.duong.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/NguyenDuong450">Nguyen Duong</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/BridgePhilip"><img class="profile-avatar u-positionAbsolute" alt="Philip Bridge" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/262247698/113985632/103260760/s200_philip.bridge.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/BridgePhilip">Philip Bridge</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cuni.academia.edu/pkalnai"><img class="profile-avatar u-positionAbsolute" alt="Peter Kálnai" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/45332052/14688486/34733203/s200_peter.k_lnai.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cuni.academia.edu/pkalnai">Peter Kálnai</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Charles University, Prague</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cnrs.academia.edu/YvesAndr%C3%A9"><img class="profile-avatar u-positionAbsolute" alt="Yves André" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/138043768/89145900/77854717/s200_yves.andr_.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cnrs.academia.edu/YvesAndr%C3%A9">Yves André</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Centre National de la Recherche Scientifique / French National Centre for Scientific Research</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/BetancourtCristobal"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/BetancourtCristobal">Cristobal Betancourt</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/CarlosParra200"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/CarlosParra200">Carlos Parra</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/WolfgangLueck"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/WolfgangLueck">Wolfgang Lueck</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/sunnyroy61"><img class="profile-avatar u-positionAbsolute" alt="sunny roy" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/70182f150a626ffc5f9b0ca6fb12ecb8?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/sunnyroy61">sunny roy</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/BaruchYoussin"><img class="profile-avatar u-positionAbsolute" alt="Baruch (Boris) Youssin" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/48993338/45607542/35510117/s200_baruch_boris_.youssin.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/BaruchYoussin">Baruch (Boris) Youssin</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/SurjeetKour"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/SurjeetKour">Surjeet Kour</a></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="48555361" href="https://www.academia.edu/Documents/in/Pure_Mathematics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/YujiYoshino","location":"/YujiYoshino","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/YujiYoshino","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Pure Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-3de4ff35-a7d7-41ac-8c04-547767f2a578"></div> <div id="Pill-react-component-3de4ff35-a7d7-41ac-8c04-547767f2a578"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="48555361" href="https://www.academia.edu/Documents/in/Algebra"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Algebra"]}" data-trace="false" data-dom-id="Pill-react-component-75fce28d-16b5-413a-8795-eea814e09cd6"></div> <div id="Pill-react-component-75fce28d-16b5-413a-8795-eea814e09cd6"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Yuji Yoshino</h3></div><div class="js-work-strip profile--work_container" data-work-id="125438687"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438687/Primary_decompositions_in_abelian_R_categories"><img alt="Research paper thumbnail of Primary decompositions in abelian R-categories" class="work-thumbnail" src="https://attachments.academia-assets.com/119481578/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438687/Primary_decompositions_in_abelian_R_categories">Primary decompositions in abelian R-categories</a></div><div class="wp-workCard_item"><span>Mathematical journal of Okayama University</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We shall generalize the theory of primary decomposition and associated prime ideals of finitely g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We shall generalize the theory of primary decomposition and associated prime ideals of finitely generated modules over a noetherian ring to general objects in an abelian R-category where R is a noetherian commutative ring. See, for example, [3], or as general references of this section. Let C be a category, where we denote by Ob(C) the object class and by C(X, Y ) the set of morphisms for objects X, Y ∈ Ob(C). By definition, the composition of morphisms in C satisfies the associative law; (f g)h = f (gh), and there is the identity morphism 1 X for any X ∈ Ob(C). Recall that C is called a preadditive category provided C(X, Y ) is an abelian group for X, Y ∈ Ob(C) and the composition of morphisms is bilinear, i.e. f (g + h) = f g + f h, (g + h)f ′ = gf ′ + hf ′ and moreover there exists the null object 0 in C. An additive category is, by definition, a preadditive category with finite coproducts. An additive category C is called an abelian category if the kernel and the cokernel exist for any morphism f and moreover the equality Cok(ker(f )) = Ker(cok(f )) holds. We recall how to construct an ideal quotient of a category. 2.1. Localization. ([4, 7.1],[8, 2.1],[3, chapter 1.3]) Let C be an additive category and let S be a collection of morphisms in C. We say that S is a</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba9e249267ff4419c10833f474b2b2c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481578,"asset_id":125438687,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481578/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438687"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438687"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438687; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438687]").text(description); $(".js-view-count[data-work-id=125438687]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438687; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438687']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba9e249267ff4419c10833f474b2b2c2" } } $('.js-work-strip[data-work-id=125438687]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438687,"title":"Primary decompositions in abelian R-categories","internal_url":"https://www.academia.edu/125438687/Primary_decompositions_in_abelian_R_categories","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481578,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481578/thumbnails/1.jpg","file_name":"mjou_060_091_108.pdf","download_url":"https://www.academia.edu/attachments/119481578/download_file","bulk_download_file_name":"Primary_decompositions_in_abelian_R_cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481578/mjou_060_091_108-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DPrimary_decompositions_in_abelian_R_cate.pdf\u0026Expires=1739982850\u0026Signature=eUhy8Z322aSlGv18r5~UxF~MrJ5cB2MI2AdOnSXhqs-HLMxPIn-ZizIeUBxytd~Ocrtoo8KKbHrJ7TA8XDm0KoaZIrAii9XlxNQxxu231Zg2O9qb6NdVy4wocFkJHw0LKuYyNInkeMfOn1GhPOls2BW9J6t888X42VTxblucFOvG6~HSxv86eMReyc3Q0WIuw1HqKlX1YWtoRmrrGyajckgKYM5zHb9rG-Ekiw3BtfYFphpI4GY4T1w9CkQxDjrub192YZEJXaXHrCUHJtXpvUTZDGQ46ojp4A3eCWEnq1CvuZcBI2hGhtor-~we5UCEXJ0cnrHKxxnO~M7enPydXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481579/thumbnails/1.jpg","file_name":"mjou_060_091_108.pdf","download_url":"https://www.academia.edu/attachments/119481579/download_file","bulk_download_file_name":"Primary_decompositions_in_abelian_R_cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481579/mjou_060_091_108-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DPrimary_decompositions_in_abelian_R_cate.pdf\u0026Expires=1739982850\u0026Signature=gn31ok9wiMe1PnNPpMb0ESW1erQUzT~j1VxJ4pf38OCy4gygD3bHpEvv8rHSgXbXJbRakOEfhxWd3CNqz-~XjubWA6LnMEn0-Uv1NMoGPykDDl78NHbWH1~Jsdalol5KwE-5M7TpXQ1GZQmWY9AG-3ZCF~VxQWCffPl~d0NWHF97ViWI8bhskwUZ0gKXRrnjbZ-OqlkcO4HeKf0DuAfNi2qM2ZAvDDuthSWk02zfGN-HFPazRDOn8m0Xnbie~X2ZQEJnLBcc4cpaoNJeTvMRKo7pRATw2CdtYNIz8hAn0nxlvHhpxmqBOVEKf4oeQTlhkMTtChAs9Pw4mXgy90DL6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438686"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438686/Examples_of_degenerations_of_Cohen_Macaulay_modules"><img alt="Research paper thumbnail of Examples of degenerations of Cohen-Macaulay modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481572/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438686/Examples_of_degenerations_of_Cohen_Macaulay_modules">Examples of degenerations of Cohen-Macaulay modules</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 24, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the degeneration problem for maximal Cohen-Macaulay modules and give several examples of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the degeneration problem for maximal Cohen-Macaulay modules and give several examples of such degenerations. It is proved that such degenerations over an even-dimensional simple hypersurface singularity of type (An) are given by extensions. We also prove that all extended degenerations of maximal Cohen-Macaulay modules over a Cohen-Macaulay complete local algebra of finite representation type are obtained by iteration of extended degenerations of Auslander-Reiten sequences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="94dae55af5486d2dc103a4469d7657b1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481572,"asset_id":125438686,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481572/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438686"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438686"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438686; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438686]").text(description); $(".js-view-count[data-work-id=125438686]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438686; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438686']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "94dae55af5486d2dc103a4469d7657b1" } } $('.js-work-strip[data-work-id=125438686]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438686,"title":"Examples of degenerations of Cohen-Macaulay modules","internal_url":"https://www.academia.edu/125438686/Examples_of_degenerations_of_Cohen_Macaulay_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481572/thumbnails/1.jpg","file_name":"1012.pdf","download_url":"https://www.academia.edu/attachments/119481572/download_file","bulk_download_file_name":"Examples_of_degenerations_of_Cohen_Macau.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481572/1012-libre.pdf?1731530670=\u0026response-content-disposition=attachment%3B+filename%3DExamples_of_degenerations_of_Cohen_Macau.pdf\u0026Expires=1740001389\u0026Signature=bOx4syLoR2k4zrkSn~NpjRMadLCITU35GK2iYtums4sa6B0jSM53J7N~gmRJMceiZTPiSCjWYt0bs7uuW29Iarmzh~KI~INXkb9Dp-byRuY6VDCUfZ4LIra9vUJsLJNl1ioRHfnxvUqzIg2AWpXAmdNd6CuDlUa3yaR-kQ1TC1fke9hHEFOZdqxvxwZQPHzzEO0ipiiwsjymwZj3UPLNArBEm9ZjvF~TH1cTl25vgHnIt6s8Wtwtlu~n-UgRbOUVqIruJh2s2fdk3zvkiEcDGsw3DO06EC9NvOBmJpEIOAHAWBdxBY0vADcRts~z8YZwigiYu486e4T3ps0KYYA4QA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481574/thumbnails/1.jpg","file_name":"1012.pdf","download_url":"https://www.academia.edu/attachments/119481574/download_file","bulk_download_file_name":"Examples_of_degenerations_of_Cohen_Macau.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481574/1012-libre.pdf?1731530667=\u0026response-content-disposition=attachment%3B+filename%3DExamples_of_degenerations_of_Cohen_Macau.pdf\u0026Expires=1740001389\u0026Signature=Pg1h7yr9d1H3Ys4QP4vknCC8W9gC1z6H2~DjLz~WH63W~4AWmFf1OLJGFYBgS4pEi8rizNcYJ0fMrNxiiFHvBtwSQC0~jzKGTdqKSf6Q2ePIGbqOJx~f4WHuAjkvFfQvvHrmqtMmalmQOWo4GGL9FYf~7XinZJS1BQo5dQkIy~ox1p3MApKQWDomJbnlXHW2tak0~Za-~N-gbfXJsdpwZKXDnvr-MRVmPGCEYSH7wiYyP4vnuwQKFjs5Bs5tfIG-ous6V0wK0DEZ8TTYyRIs1Yr16XYFGIm2kWyT~o9DsN2F1h15b2~ofe0fR~1WO2ABRVSbvLjUV4rVUzIRci9mEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438685"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438685/Na%C3%AFve_liftings_of_DG_modules"><img alt="Research paper thumbnail of Naïve liftings of DG modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481577/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438685/Na%C3%AFve_liftings_of_DG_modules">Naïve liftings of DG modules</a></div><div class="wp-workCard_item"><span>Mathematische Zeitschrift</span><span>, Jan 13, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let n be a positive integer, and let A be a strongly commutative differential graded (DG) algebra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let n be a positive integer, and let A be a strongly commutative differential graded (DG) algebra over a commutative ring R. Assume that (a) B = A[X 1 , . . . , Xn] is a polynomial extension of A, where X 1 , . . . , Xn are variables of positive degrees; or (b) A is a divided power DG R-algebra and B = A X 1 , . . . , Xn is a free extension of A obtained by adjunction of variables X 1 , . . . , Xn of positive degrees. In this paper, we study naïve liftability of DG modules along the natural injection A → B using the notions of diagonal ideals and homotopy limits. We prove that if N is a bounded below semifree DG B-module such that Ext i B (N, N ) = 0 for all i 1, then N is naïvely liftable to A. This implies that N is a direct summand of a DG B-module that is liftable to A. Also, the relation between naïve liftability of DG modules and the Auslander-Reiten Conjecture has been described.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="36b99b9df6fb33ef65acba99aa077f45" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481577,"asset_id":125438685,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481577/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438685"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438685"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438685; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438685]").text(description); $(".js-view-count[data-work-id=125438685]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438685; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438685']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "36b99b9df6fb33ef65acba99aa077f45" } } $('.js-work-strip[data-work-id=125438685]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438685,"title":"Naïve liftings of DG modules","internal_url":"https://www.academia.edu/125438685/Na%C3%AFve_liftings_of_DG_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481577/thumbnails/1.jpg","file_name":"2102.pdf","download_url":"https://www.academia.edu/attachments/119481577/download_file","bulk_download_file_name":"Naive_liftings_of_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481577/2102-libre.pdf?1731530676=\u0026response-content-disposition=attachment%3B+filename%3DNaive_liftings_of_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=UojORpAYHrEcllieRB9l0~qvb4uGzycsovdDSZrILoasN3gFJnPYR07SEMgEf1f-L2FIQtAhUUEn7Q7J4-jXIYF7F3poCPgdvfMI27oZjycvskjv3eL1eU4jo3TUEsrJ8zuP6dIKVUGP-sM3RsFyTsa90~z5eJ7vU03OYAnlxxwUYPDAy~81JJWwGJKYT1D-RgdN0ZcIQ-S9FACb53tKwSAV09e5x-NGiJ3VqhBaTfpDoi5neJ2UHESJLGUHvJonWK9x0oBG8qpTY6P6MyUGv7M3GnuZuk3Ek7uGiCZ5fttB60awbpzD6zyDfJHWqpxu8eqZsc7iHyTnWIL8qolt7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481573/thumbnails/1.jpg","file_name":"2102.pdf","download_url":"https://www.academia.edu/attachments/119481573/download_file","bulk_download_file_name":"Naive_liftings_of_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481573/2102-libre.pdf?1731530676=\u0026response-content-disposition=attachment%3B+filename%3DNaive_liftings_of_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=TpqfxtcmnE04UZ~U9IKTWxDEKW~FYAjqDShpdw66hs-pkD8Q3-uPGYQhvcls-Ac7rFsMqJdedqOOxI64MpJ23YQm1VFec6Mzua4vDn7aFnd6k-gGPLi5bW7G3qqqqY09cCFMBDv42mzuzMQiOYV6d9NvWyJ9vJAgUVsNJ9b9uGOPoLUSpHT9Jlx7PzbhbVVnvD3ym3Uxd6sUM5TvQy1f0T1KVM~~WKSROW9MqdJNeg-sGjKDZWPPj29rQXJ~3ZCh4y~rVb6ksKpo3Hn~J5chiw6kafCFCdHxkNnmEB9rb~I4pSEHSANSDWmwDtP6Nvao3iB97IVbk8wzpBRIgZVtkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438684"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438684/A_local_duality_principle_in_derived_categories_of_commutative_Noetherian_rings"><img alt="Research paper thumbnail of A local duality principle in derived categories of commutative Noetherian rings" class="work-thumbnail" src="https://attachments.academia-assets.com/119481575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438684/A_local_duality_principle_in_derived_categories_of_commutative_Noetherian_rings">A local duality principle in derived categories of commutative Noetherian rings</a></div><div class="wp-workCard_item"><span>Journal of Pure and Applied Algebra</span><span>, Sep 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let R be a commutative Noetherian ring. We introduce the notion of colocalization functors γ W wi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let R be a commutative Noetherian ring. We introduce the notion of colocalization functors γ W with supports in arbitrary subsets W of Spec R. If W is a specialization-closed subset, then γ W coincides with the right derived functor RΓ W of the section functor Γ W with support in W . We prove that the local duality theorem and the vanishing theorem of Grothendieck type hold for γ W with W being an arbitrary subset.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8ff479195d0d3b274295797a3fd81719" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481575,"asset_id":125438684,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481575/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438684"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438684"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438684; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438684]").text(description); $(".js-view-count[data-work-id=125438684]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438684; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438684']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8ff479195d0d3b274295797a3fd81719" } } $('.js-work-strip[data-work-id=125438684]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438684,"title":"A local duality principle in derived categories of commutative Noetherian rings","internal_url":"https://www.academia.edu/125438684/A_local_duality_principle_in_derived_categories_of_commutative_Noetherian_rings","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481575/thumbnails/1.jpg","file_name":"1610.pdf","download_url":"https://www.academia.edu/attachments/119481575/download_file","bulk_download_file_name":"A_local_duality_principle_in_derived_cat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481575/1610-libre.pdf?1731530666=\u0026response-content-disposition=attachment%3B+filename%3DA_local_duality_principle_in_derived_cat.pdf\u0026Expires=1739982850\u0026Signature=WZruqtn6jD1-oTt0oH1GW7VduwDywiz2GJG02tNrggQBnNO4bSvQ1Ck6KbrjpVSdyaBzJxRlDkWykZFoG-hbHuHCS94eQySRH7WgoSWw~zRTnYNgTxdw6pTFIVHkINyYmsDdH~cS4jPuExNoaboSxf5y2S9GrcBDIaviNDH4QP~1O-pzmfP6PGwt7kECLWR0ZyTzNtYFjiqOAgxs5pCXPpJEVQMLZJQwMdDtCwt0BsXgQAQosBnRqTgoP-b6Z8W6ITCidHKpAdKJo~faDPwWIUbxYvPlxXlC3t1tetCDdoYfgzrrM~~AkPBwLoLmIbadOYbRO7pXN4RtW9qP1fKRzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438683"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438683/Tensor_products_of_matrix_factorizations"><img alt="Research paper thumbnail of Tensor products of matrix factorizations" class="work-thumbnail" src="https://attachments.academia-assets.com/119481576/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438683/Tensor_products_of_matrix_factorizations">Tensor products of matrix factorizations</a></div><div class="wp-workCard_item"><span>Nagoya Mathematical Journal</span><span>, Dec 1, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let K be a field and let / 6 K[[xι,x 2 , . ,x r ]] and g 6 #[[2/1,2/2, , y s ]] be non-zero and n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let K be a field and let / 6 K[[xι,x 2 , . ,x r ]] and g 6 #[[2/1,2/2, , y s ]] be non-zero and non-invertible elements. If X (resp. Y) is a matrix factorization of / (resp. g), then we can construct the matrix factorization X §> Y of /-+• g over K [[xiyX2, -> ,x r ,yi,y2, -,ys]]i which we call the tensor product of X and y. After showing several general properties of tensor products, we will prove theorems which give bounds for the number of indecomposable components in the direct decomposition of X < §> Y.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f761e24e012ec7f38d95a7913882b49a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481576,"asset_id":125438683,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481576/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438683"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438683"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438683; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438683]").text(description); $(".js-view-count[data-work-id=125438683]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438683; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438683']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f761e24e012ec7f38d95a7913882b49a" } } $('.js-work-strip[data-work-id=125438683]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438683,"title":"Tensor products of matrix factorizations","internal_url":"https://www.academia.edu/125438683/Tensor_products_of_matrix_factorizations","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481576/thumbnails/1.jpg","file_name":"div-class-title-tensor-products-of-matrix-factorizations-div.pdf","download_url":"https://www.academia.edu/attachments/119481576/download_file","bulk_download_file_name":"Tensor_products_of_matrix_factorizations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481576/div-class-title-tensor-products-of-matrix-factorizations-div-libre.pdf?1731530678=\u0026response-content-disposition=attachment%3B+filename%3DTensor_products_of_matrix_factorizations.pdf\u0026Expires=1739982850\u0026Signature=Q6xt~dwncAnE5TyNEoZ-EELwwdB4YhTR1USFqxDDBxI1jWyBs~MYlAGgkk~YQ3ZlB1ZwgU6TslJv7-nycVgHqBH8ELYpT6wLLvXsq~ro8SCZKN7sTIAxnNjgWBnw6yyu7GOyVZ7U-ZLnP0ZL7NTqhzZMv8QZmt-z3wJCVoAYqorb7whi3sDFX2z0Mk4JO9tEiLBW~q0aoDrKiV33MLiJsrq~6k7A3IyXlAI3Kim-9yXpJBP4LfkanyLQjZPbktIT2UKZ2JmrLK~1kfhmWW3kiB9m2t~3eUMQJjWMZ9o34X~DCimISw9uki0phuec7nFncwgTzK5iXUCFNyDAZBzfJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481580/thumbnails/1.jpg","file_name":"div-class-title-tensor-products-of-matrix-factorizations-div.pdf","download_url":"https://www.academia.edu/attachments/119481580/download_file","bulk_download_file_name":"Tensor_products_of_matrix_factorizations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481580/div-class-title-tensor-products-of-matrix-factorizations-div-libre.pdf?1731530679=\u0026response-content-disposition=attachment%3B+filename%3DTensor_products_of_matrix_factorizations.pdf\u0026Expires=1739982850\u0026Signature=CEwtnY39QimkPrP03BZV~p608qEyEj9FKu8AtNw2nbrY2yBT752E3G-q3y4DDplQtZrFa4ubJe6YCZq6u4GEwFW3bo4g5MwG7121hLBzi9tMscFcw45ID9TRLtJu6v-3yXbZ8mzsBEGqBJS7iT7sUSi~sXvHH~RmI2gZ~jx8lmNAPFTL7b036gsItm-X9-zSWY3tyNYYNnLlA6npINaQpA7VT~~Qrbg~y7Vx1dSUKkrqLg2ncz7kDKseJ-RfbW6rcc~Gv3MAcMwDVqfoqWYXYkIHwO3lp09WC0fpknFecWug1IhhuO9UiAe2J538wkrKOWnppQbhDEQgH-1MBLqV0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438682"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438682/Obstruction_to_naive_liftability_of_DG_modules"><img alt="Research paper thumbnail of Obstruction to naive liftability of DG modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438682/Obstruction_to_naive_liftability_of_DG_modules">Obstruction to naive liftability of DG modules</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of naïve liftability of DG modules is introduced in [10] and . The main purpose of thi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of naïve liftability of DG modules is introduced in [10] and . The main purpose of this paper is to explicitly describe the obstruction to naïve liftability along extensions A → B of DG algebras, where B is projective as an underlying graded A-module. In particular, we give an explicit description of a DG B-module homomorphism which defines the obstruction to naïve liftability of a semifree DG B-module N as a certain cohomology class in Ext 1 B (N, N ⊗ B J), where J is the diagonal ideal. Our results on the obstruction class enable us to give concrete examples of DG modules that do and do not satisfy the naïve lifting property.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7abd2c4f58fdd3d7a1dff11491cc1d01" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481569,"asset_id":125438682,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481569/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438682"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438682"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438682; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438682]").text(description); $(".js-view-count[data-work-id=125438682]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438682; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438682']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7abd2c4f58fdd3d7a1dff11491cc1d01" } } $('.js-work-strip[data-work-id=125438682]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438682,"title":"Obstruction to naive liftability of DG modules","internal_url":"https://www.academia.edu/125438682/Obstruction_to_naive_liftability_of_DG_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481569/thumbnails/1.jpg","file_name":"2109.pdf","download_url":"https://www.academia.edu/attachments/119481569/download_file","bulk_download_file_name":"Obstruction_to_naive_liftability_of_DG_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481569/2109-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DObstruction_to_naive_liftability_of_DG_m.pdf\u0026Expires=1739982850\u0026Signature=CZnBJGt4u14QT1vjtkXvrJK6u6uvROKqGRlllIA7Frtnn1i-Vl8E2iccsiswPvYC7mH3vaPBIex503q4O6o1MAWegSXoVoccZpSJ-YKFqZmpqaVvsM2ZVD0S2UcmpiPAitPnOcE0T8jDfYEOYk8-WiWr9DrIJC6A1bvWvqpnY3ivnyKU3n~JrxGAF~wzrMsxKcMEiuCJzytXI3F5CusWUGnDykxagAw2JhYbJPcH~SgGw0mocugEojWcW~-DxIJ3MSvW6BCY5S~8OlBYO9MwKFyaAZHcfMul4ECcapYW804RB9ZIBojDHaEQahsv~pKKV-zd6R4vdlWAHtsw8hS3UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481571/thumbnails/1.jpg","file_name":"2109.pdf","download_url":"https://www.academia.edu/attachments/119481571/download_file","bulk_download_file_name":"Obstruction_to_naive_liftability_of_DG_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481571/2109-libre.pdf?1731530666=\u0026response-content-disposition=attachment%3B+filename%3DObstruction_to_naive_liftability_of_DG_m.pdf\u0026Expires=1739982850\u0026Signature=b0gy4KVlYg2WpUGZ~G6BER9HePmnlrTJMVEuCOHLnArF6S0MNz16ekHuuyIjym465y7s13Hr2-XVDXcHDcVd8qSwofKvvHZGjTCpVGngsXj8zFBXUudVtHjNSZRDPpa771vCXC9hW9rpoKVRX0ot6~Gvy6Y-qBqo3XgI2hxwHUtLFVFavkxkErtOSiMxtRwM3CBcXUguee5e9LXdAx6wEno2yC~GEPdXbes6puuvNNrotcDZSwnuwguuNBa5Rx0RCyq3s2P5ZGrlXsHBCdhOVwu3FvnAHmKkA9-g8JaX1D18KbzEEGQOq7IfOuKfqMKaymtQ7RMWmwCulPsW8hzpLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438681"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438681/An_Auslander_Reiten_principle_in_derived_categories"><img alt="Research paper thumbnail of An Auslander–Reiten principle in derived categories" class="work-thumbnail" src="https://attachments.academia-assets.com/119481570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438681/An_Auslander_Reiten_principle_in_derived_categories">An Auslander–Reiten principle in derived categories</a></div><div class="wp-workCard_item"><span>Journal of Pure and Applied Algebra</span><span>, Jun 1, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="868d6bf5f61a28fac22e3f17754c8296" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481570,"asset_id":125438681,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481570/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438681"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438681"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438681; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438681]").text(description); $(".js-view-count[data-work-id=125438681]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438681; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438681']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "868d6bf5f61a28fac22e3f17754c8296" } } $('.js-work-strip[data-work-id=125438681]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438681,"title":"An Auslander–Reiten principle in derived categories","internal_url":"https://www.academia.edu/125438681/An_Auslander_Reiten_principle_in_derived_categories","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481570/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481570/download_file","bulk_download_file_name":"An_Auslander_Reiten_principle_in_derived.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481570/1805-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DAn_Auslander_Reiten_principle_in_derived.pdf\u0026Expires=1739982850\u0026Signature=GbmDN50bbxXPBbQuJQzm5LK0V7X0x7LEhiFo9sSPTv~EaMcLqRD~43g9-~dSDr9K4cCO2UyYPXh-IkjDlfK-tb4JC~8OBpGW0EN8VRIV1gyqwtP2NOIbvWe0vQ3mc~Lx~ycsZuHsWpqV1Fs-HBS4gcKLHGTCMlL3aTa68oJkDxKrR2Fk2QXTgMFPKeCW4PyJJHQD68lofKAA39uxgeZHHcYpCPY2Zal2yDrQBGCiyZaQbX2z-2XOSdGkJ7q4ckungMLO2EoxR-iF6NrUL8r0P4c0eHh-lgDdhwQg70LNoHg3ipl~fe5t7g8A0cgrKH-5KMUeCEGKtqjLxV6GvxdlxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481568/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481568/download_file","bulk_download_file_name":"An_Auslander_Reiten_principle_in_derived.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481568/1805-libre.pdf?1731530670=\u0026response-content-disposition=attachment%3B+filename%3DAn_Auslander_Reiten_principle_in_derived.pdf\u0026Expires=1739982850\u0026Signature=TgvrgyVuFzZdveFt1dDc0~dhXkIDl-DxrAZO2rMWPbKO8RnY5ZxPRhHMuzdeljO0601adr86dsYKT-kn~ZzD1bW4V99w1P2s6ugTCrvvF5vGCoOIw2YRhPbZWTv-69ELlokbxNbK3nOWMvcvlNJ3KMayPiHUMglaOktZWizqjUqXRT9inliIpeiXV54T1kzb5cZDcF5qaUbwGm07XxA0uIK~Ua2G83Pk-TMEJyW2FCycVeZZkVgpX1th32iABG6sS-QwCCXIVDw~LyW1tiLeh5f7Qm2o2lb-xe566qmCc8WOU19Qzi9LPhdDaHD8egkusQRAgYIlcQm9UQhFHw63jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438680"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438680/On_degenerations_of_modules"><img alt="Research paper thumbnail of On degenerations of modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481591/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438680/On_degenerations_of_modules">On degenerations of modules</a></div><div class="wp-workCard_item"><span>Journal of Algebra</span><span>, Aug 1, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We generalize a result of Zwara concerning the degeneration of modules over Artinian algebras to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We generalize a result of Zwara concerning the degeneration of modules over Artinian algebras to that over general algebras. In fact, let R be any algebra over a field and let M and N be finitely generated left R-modules. Then, we show that M degenerates to N if and only if there is a short exact sequence of finitely generated left R-modules 0 → Z ( φ ψ ) --→ M ⊕ Z → N → 0 such that the endomorphism ψ on Z is nilpotent. We give several applications of this theorem to commutative ring theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1bd55cd61657719d7c21d336ecc3b77c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481591,"asset_id":125438680,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481591/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438680"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438680"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438680; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438680]").text(description); $(".js-view-count[data-work-id=125438680]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438680; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438680']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1bd55cd61657719d7c21d336ecc3b77c" } } $('.js-work-strip[data-work-id=125438680]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438680,"title":"On degenerations of modules","internal_url":"https://www.academia.edu/125438680/On_degenerations_of_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481591,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481591/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMTg2OTMwMzAwNzU0Mw__.pdf","download_url":"https://www.academia.edu/attachments/119481591/download_file","bulk_download_file_name":"On_degenerations_of_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481591/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMTg2OTMwMzAwNzU0Mw__-libre.pdf?1731530660=\u0026response-content-disposition=attachment%3B+filename%3DOn_degenerations_of_modules.pdf\u0026Expires=1740001389\u0026Signature=dkO3WNTIRAuOditPFde0QftWtZIt2GNClWSVzyRU8nFHaxMV2kYpZIv9zdIXGiL5nj~MSgcQF8Rs1dojdZawGqPsITwXfLl6wGOvv-21B-bAHYogJqsffDWO--iuljIWUgsKr68pla~6DsR9V2uYsQEdlGtU4P3ycytr17VxsIfYFF4KR1Kx-UjdgC8ZZdeJDkpOoHsgs57ywCDWkgVloaDrtNXKKMtfHWh1v4Htli1uLjEDEQbI2YHgdeIr2jAB4ur9f70f2QNSkxGfC0YkCjnCtnrPyAJUZKsg~PbubrX5nQqlDpDWKFEBRhgzXIDzdKO~IDwlq~NRA7vm1cvhZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438679/A_functorial_approach_to_modules_of_G_dimension_zero"><img alt="Research paper thumbnail of A functorial approach to modules of G-dimension zero" class="work-thumbnail" src="https://attachments.academia-assets.com/119481590/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438679/A_functorial_approach_to_modules_of_G_dimension_zero">A functorial approach to modules of G-dimension zero</a></div><div class="wp-workCard_item"><span>Illinois Journal of Mathematics</span><span>, Apr 1, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e2f80113566b94d81da5ec49a5151757" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481590,"asset_id":125438679,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481590/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438679]").text(description); $(".js-view-count[data-work-id=125438679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e2f80113566b94d81da5ec49a5151757" } } $('.js-work-strip[data-work-id=125438679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438679,"title":"A functorial approach to modules of G-dimension zero","internal_url":"https://www.academia.edu/125438679/A_functorial_approach_to_modules_of_G_dimension_zero","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481590,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481590/thumbnails/1.jpg","file_name":"0408162.pdf","download_url":"https://www.academia.edu/attachments/119481590/download_file","bulk_download_file_name":"A_functorial_approach_to_modules_of_G_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481590/0408162-libre.pdf?1731530676=\u0026response-content-disposition=attachment%3B+filename%3DA_functorial_approach_to_modules_of_G_di.pdf\u0026Expires=1739982850\u0026Signature=Q6vseRqmosTNPLBXj9868e7U6uWEGUorgAJ48mnC4CHuU~A-2noSimUdTYyeO5M6A2MqkPMwF4bUW~u3bJRby6PnpRNmzFGhfNLic6zG0oWXvvQIt9zesO0-RhRFF96AnmX1csSej4uq0D2SOBi9WwmfBVLvKQoqxRfwSIjMmnU7~gtNHp7d62~hfK736qNSrLyhzAsFUcFjrAmoLmb2W0qU8OV3H15CyYtjOzkiUvMPnG8h4A199Uce7ItVY40fuwn7lLCWYWVzwppP09be-85i-N-SMgdg1gknNUXUQFVnkPSc~qrXmAye4KL1baLwP3Bju6iJFM4e0eIDzoLaAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438678/A_lifting_problem_for_DG_modules"><img alt="Research paper thumbnail of A lifting problem for DG modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481567/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438678/A_lifting_problem_for_DG_modules">A lifting problem for DG modules</a></div><div class="wp-workCard_item"><span>Journal of Algebra</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let B = A X|dX = t be an extended DG algebra by the adjunction of variable of positive even degre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let B = A X|dX = t be an extended DG algebra by the adjunction of variable of positive even degree n, and let N be a semi-free DG B-module that is assumed to be bounded below as a graded module. We prove in this paper that N is liftable to A if Ext n+1 B (N, N ) = 0. Furthermore such a lifting is unique up to DG isomorphisms if Ext n B (N, N ) = 0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="198628a43c92eb4b6a1f4f14c128c75b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481567,"asset_id":125438678,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481567/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438678]").text(description); $(".js-view-count[data-work-id=125438678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "198628a43c92eb4b6a1f4f14c128c75b" } } $('.js-work-strip[data-work-id=125438678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438678,"title":"A lifting problem for DG modules","internal_url":"https://www.academia.edu/125438678/A_lifting_problem_for_DG_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481567,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481567/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481567/download_file","bulk_download_file_name":"A_lifting_problem_for_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481567/1805-libre.pdf?1731530671=\u0026response-content-disposition=attachment%3B+filename%3DA_lifting_problem_for_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=MbUf7Q9SONHQPM3RVSVB5Na6EoXfZ~OD5SQrjlxQAs2hu1pLojvhNiQSNoOEyAuZUJkMNGp3tmtXsWb9LnlwnOnBRZP1Y6Uh1BF7jXRsHOHxdQMhpmHtWObCouoWS8XpG0Od1tCQab7CFBkTm9ZLI72IyySdVjT-83apQKjtlF-pZbQ4Ddj4E75kD02IAQM-AUBPR7aE5ovVTNgmCnqY9cfAFR7P6yNx6HfsVydaZSiwwHRI9yqqDE3ZsavyXM9XvpgE-PqChjPUNfN-YJATRvMz5zL~Sbny-DvfRIRsjTZ~UOiSPNEv-v1s3KdTc3v9Ake8kCcuISZnbaTHaqSf~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481566,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481566/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481566/download_file","bulk_download_file_name":"A_lifting_problem_for_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481566/1805-libre.pdf?1731530677=\u0026response-content-disposition=attachment%3B+filename%3DA_lifting_problem_for_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=HbbCotDZU8n3rWcIofkgTtCsomfyQvu9md2PtldA7fydXagUuSEZjRG2Ht-RwpQ3qF6rXQPEWVJJ4P7MEqCMRhV1TMrQjIGSC-gjW0O3T6D4KChQs9Q1nT19pMWW9unSegE6Y82k56AlXO-cwJxFxiKKsZFnIMiwfGtuwYpxnjaf~wbHtt4ZK4and~ndeXTAEzAZcO4~sX-RuZh0cwqSZFHpNSHuEXAwrPQ0~b4BSREb85hUfgthJEMftRwkEByJ4-oLZfA5OlTVg2w-2gCK3IpNqVUAXvyFei6pCKfjy6aXmeKw-Yjcmx0lcv1do6JvF344n8faQw39gBzZHmclwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438677"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438677/On_the_existence_of_embeddings_into_modules_of_finite_homological_dimensions"><img alt="Research paper thumbnail of On the existence of embeddings into modules of finite homological dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/119481565/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438677/On_the_existence_of_embeddings_into_modules_of_finite_homological_dimensions">On the existence of embeddings into modules of finite homological dimensions</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, Feb 23, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="498374fab4b4f6393e2a50bf863672c4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481565,"asset_id":125438677,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481565/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438677"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438677"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438677; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438677]").text(description); $(".js-view-count[data-work-id=125438677]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438677; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438677']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "498374fab4b4f6393e2a50bf863672c4" } } $('.js-work-strip[data-work-id=125438677]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438677,"title":"On the existence of embeddings into modules of finite homological dimensions","internal_url":"https://www.academia.edu/125438677/On_the_existence_of_embeddings_into_modules_of_finite_homological_dimensions","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481565,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481565/thumbnails/1.jpg","file_name":"S0002-9939-10-10323-2.pdf","download_url":"https://www.academia.edu/attachments/119481565/download_file","bulk_download_file_name":"On_the_existence_of_embeddings_into_modu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481565/S0002-9939-10-10323-2-libre.pdf?1731530664=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_existence_of_embeddings_into_modu.pdf\u0026Expires=1739982851\u0026Signature=RYC69lR19UJ~uy1mdHPGwNJHqIB5f7iYu-65JpZx4qO6oqjZ87IOfvvwAwPlyWTdK4pWzmDYgJ2Jg8eXmITl2nDsrugk3b4BmLd~mfs-h~7TnrsqkdH~N5dBWrNWEtV-9yzwWMW4hgx~F71gLcL8kVGQ2bQ1RlwS9l1c9O1WCmURxl9HhhYXrjQwRDtTB72KxtI4KhqMRHo0qAdi0vLBPEqIBrhUEB1sPz3fK6QG0xgZBUqT1kOt54-lLCwCTdqJj~6DjT1z~lB1YAgNW~NO4QOypAVc90IPtyzDJ2ERaNXptoYgPWM11HnwWjSvz1Sz5Bisy~GWoZBMV~ctmDuoyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438676"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438676/Localization_functors_and_cosupport_in_derived_categories_of_commutative_Noetherian_rings"><img alt="Research paper thumbnail of Localization functors and cosupport in derived categories of commutative Noetherian rings" class="work-thumbnail" src="https://attachments.academia-assets.com/119481564/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438676/Localization_functors_and_cosupport_in_derived_categories_of_commutative_Noetherian_rings">Localization functors and cosupport in derived categories of commutative Noetherian rings</a></div><div class="wp-workCard_item"><span>Pacific Journal of Mathematics</span><span>, Jul 16, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let R be a commutative Noetherian ring. We introduce the notion of localization functors λ W with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let R be a commutative Noetherian ring. We introduce the notion of localization functors λ W with cosupports in arbitrary subsets W of Spec R; it is a common generalization of localizations with respect to multiplicatively closed subsets and left derived functors of ideal-adic completion functors. We prove several results about the localization functors λ W , including an explicit way to calculate λ W by the notion of Čech complexes. As an application, we can give a simpler proof of a classical theorem by Gruson and Raynaud, which states that the projective dimension of a flat R-module is at most the Krull dimension of R. As another application, it is possible to give a functorial way to replace complexes of flat R-modules or complexes of finitely generated R-modules by complexes of pure-injective R-modules.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6ef8fef1e1604ead47cc351b0c0ba54c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481564,"asset_id":125438676,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481564/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438676"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438676"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438676; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438676]").text(description); $(".js-view-count[data-work-id=125438676]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438676; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438676']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6ef8fef1e1604ead47cc351b0c0ba54c" } } $('.js-work-strip[data-work-id=125438676]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438676,"title":"Localization functors and cosupport in derived categories of commutative Noetherian rings","internal_url":"https://www.academia.edu/125438676/Localization_functors_and_cosupport_in_derived_categories_of_commutative_Noetherian_rings","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481564,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481564/thumbnails/1.jpg","file_name":"1710.pdf","download_url":"https://www.academia.edu/attachments/119481564/download_file","bulk_download_file_name":"Localization_functors_and_cosupport_in_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481564/1710-libre.pdf?1731530680=\u0026response-content-disposition=attachment%3B+filename%3DLocalization_functors_and_cosupport_in_d.pdf\u0026Expires=1739982851\u0026Signature=Vyw8LkS0nTEmV8icGRS8a6GqJTYS4EmZBXjxhNiAv1McBRwxcGfe4nBuA0ZyfF4zSvVT7E1-KpWhxgVJsVs98oxx8q7bAgfvucReUM2N5f6LMeDs~mr-wMm7Bfh1sW6I08uWZyyXN35VfqLcx8ZnND03jr1ojoLJI7te59jRgsuvdZ6-iIr9ahx3Z5ijzL4IAgkmhUsiKIzyjrfQmxWqqXs0uxhn37m~lC-nzb1XRkK-vwEJwgMRifLE1cgO4fXmvQFq47nza-0sxlJEC9dJaGAHFZA6tl5KRIMmZPIlXl0OHaBFF3vmV-DyvJNmjpLNRFq3M4H2o36DqKry1C12Wg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438675"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438675/On_the_higher_delta_invariants_of_a_Gorenstein_local_ring"><img alt="Research paper thumbnail of On the higher delta invariants of a Gorenstein local ring" class="work-thumbnail" src="https://attachments.academia-assets.com/119481563/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438675/On_the_higher_delta_invariants_of_a_Gorenstein_local_ring">On the higher delta invariants of a Gorenstein local ring</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let (R, m) be a Gorenstein complete local ring. Auslander's higher delta invariants are denoted b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let (R, m) be a Gorenstein complete local ring. Auslander's higher delta invariants are denoted by δ n R (M) for each module M and for each integer n. We propose a conjecture asking if δ n R (R/m) = 0 for any positive integers n and. We prove that this is true provided the associated graded ring of R has depth not less than dim R − 1. Furthermore we show that there are only finitely many possibilities for a pair of positive integers (n,) for which δ n R (R/m) > 0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac9e22824845e894b186e459733081a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481563,"asset_id":125438675,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481563/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438675"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438675"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438675; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438675]").text(description); $(".js-view-count[data-work-id=125438675]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438675; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438675']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac9e22824845e894b186e459733081a2" } } $('.js-work-strip[data-work-id=125438675]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438675,"title":"On the higher delta invariants of a Gorenstein local ring","internal_url":"https://www.academia.edu/125438675/On_the_higher_delta_invariants_of_a_Gorenstein_local_ring","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481563,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481563/thumbnails/1.jpg","file_name":"S0002-9939-96-03376-X.pdf","download_url":"https://www.academia.edu/attachments/119481563/download_file","bulk_download_file_name":"On_the_higher_delta_invariants_of_a_Gore.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481563/S0002-9939-96-03376-X-libre.pdf?1731530664=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_higher_delta_invariants_of_a_Gore.pdf\u0026Expires=1740001389\u0026Signature=J3i5lsT3qQsq21WYCfvhC4DZ4pu35zYtFann1I8vg3dpvtuBZSogeccaFDNkLvAHpaAjKJ1Fg8MvNtO1oz1EEi2qF75fUaIOGCkbalwlhYrTJh5gjuiE9sZ8Ys-jCS3GX1hG-MDnyEA4zG6xPpFAUk9bV8R2GZ8KDcSGlwgNTcn1Uo3X-bHQ0n2ySL~LaAMVvNSFxxm0fWWICiQM5DfHGT~ZI9HO-lEJYwXM~iTQtGplDEf-NDXb6Su8OlV2qCg-Wk4G9b6xcOOcchtRN-hmKJD~W8XskDFvn82TwNprooRX7ypKwSGZWpJUcNDuexo7ISYmMyXWB6k4EGSo786OuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438674"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438674/Universal_lifts_of_chain_complexes_over_non_commutative_parameter_algebras"><img alt="Research paper thumbnail of Universal lifts of chain complexes over non-commutative parameter algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/119481588/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438674/Universal_lifts_of_chain_complexes_over_non_commutative_parameter_algebras">Universal lifts of chain complexes over non-commutative parameter algebras</a></div><div class="wp-workCard_item"><span>Kyoto Journal of Mathematics</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37ac0f0dbd172bcedeec3f75b634c7c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481588,"asset_id":125438674,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481588/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438674"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438674"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438674; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438674]").text(description); $(".js-view-count[data-work-id=125438674]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438674; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438674']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37ac0f0dbd172bcedeec3f75b634c7c8" } } $('.js-work-strip[data-work-id=125438674]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438674,"title":"Universal lifts of chain complexes over non-commutative parameter algebras","internal_url":"https://www.academia.edu/125438674/Universal_lifts_of_chain_complexes_over_non_commutative_parameter_algebras","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481588/thumbnails/1.jpg","file_name":"0712.pdf","download_url":"https://www.academia.edu/attachments/119481588/download_file","bulk_download_file_name":"Universal_lifts_of_chain_complexes_over.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481588/0712-libre.pdf?1731530679=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_lifts_of_chain_complexes_over.pdf\u0026Expires=1739982851\u0026Signature=KmlXbLFtyvbk1QtH6PXeTRz4DW7PC55fEUmlzov3oy0y6mOeGreULc9gOMHfouJg3-Hvw6GOZ1KvVgG1j9fPBatyUvpQae5J2v490TbGWaDFFhbqEIWQiRcQUxopVRy9K4GVWmKNnTWvvj3sf7xwAvZR02wG5xNA~7ahEyyQP9w8gVxMIU2NT-vy8S6lo7ev4TXZHHlmvOzbqQVU~~GtNE~IC2b05iQfFvTKgGdyQRsRh7REWOruOS4lPsTeLTBwMyomYd5BVCYFg~zPnmIFVZu1gwazqsboYGkYa2H3FLjXYA2xatlH8zBDW9YIAbGhKqRhdvpJvpscl7RKfhL-3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438673/Homotopy_categories_of_unbounded_complexes_of_projective_modules"><img alt="Research paper thumbnail of Homotopy categories of unbounded complexes of projective modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481562/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438673/Homotopy_categories_of_unbounded_complexes_of_projective_modules">Homotopy categories of unbounded complexes of projective modules</a></div><div class="wp-workCard_item"><span>Journal of the London Mathematical Society</span><span>, Feb 4, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7331e337512add0760fa6e49b56d728" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481562,"asset_id":125438673,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481562/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438673]").text(description); $(".js-view-count[data-work-id=125438673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7331e337512add0760fa6e49b56d728" } } $('.js-work-strip[data-work-id=125438673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438673,"title":"Homotopy categories of unbounded complexes of projective modules","internal_url":"https://www.academia.edu/125438673/Homotopy_categories_of_unbounded_complexes_of_projective_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481562,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481562/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481562/download_file","bulk_download_file_name":"Homotopy_categories_of_unbounded_complex.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481562/1805-libre.pdf?1731530681=\u0026response-content-disposition=attachment%3B+filename%3DHomotopy_categories_of_unbounded_complex.pdf\u0026Expires=1740001389\u0026Signature=P0XR1r0LMIauUu2ek6oqH2angAyAwnOC41M0g4tsYFMDWBhCT0cLUbJfEMUI~YgKjK9qphN5lZf1F2l0IHjSOsWEzQee-x4Twc-xBnr5JzOEDwJot0hXin8qiUuZ9gMTq3tP62A3XwWh1a0ZcBcxOgBsjBt-YrB2atCYLGDAmK2tVKCk8e62t-1tuzZveyJvxbxKSfC4AihPPlrcdTZJS5DxcjUNUxayv-eVo4kUkOGwFRH0WKiy~De~i4e0YLJjKALtRupqi4CzVcIo0OEDJwB5GiVtArEbmjBXCej-gnI-H1etoMaTMguKfrkVwX5hUjN~62LRiSidjVOPJ2f4Nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481561/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481561/download_file","bulk_download_file_name":"Homotopy_categories_of_unbounded_complex.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481561/1805-libre.pdf?1731530686=\u0026response-content-disposition=attachment%3B+filename%3DHomotopy_categories_of_unbounded_complex.pdf\u0026Expires=1740001389\u0026Signature=dmD2GljjsOnf~j3zbAbPw5rFfOHLx4VcT7JlQCPWnP2HLcJAc26PnpuV9KCAq7odzOoi9doeMLi8n5cJdKtNVQibWvvl~8kNcdgSIyzGJ1SXFo8BkYvGqtyRw9lXq-0q1qGgFs0FjmLJfxc9ssBDxDy~g-tW8Q1L9ocsj6bjo9151SUvKH474TSc8HGQN9y-Lx5wGN1wWwRl2S8e1uZbfdPbozkek4nVt6jxqd9qtd1~301Dsu7MRrDZnmR6e2HHgdBh-gHrORqmL04pIZp~HsGdqOUgCBGbvPKPBg4bmY-OE8P2WIdiNI3gFWsSJVJkZwPDit96ikM9R66aTtgwsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438671/The_Fundamental_Module_of_a_Normal_Local_Domain_of_Dimension_2"><img alt="Research paper thumbnail of The Fundamental Module of a Normal Local Domain of Dimension 2" class="work-thumbnail" src="https://attachments.academia-assets.com/119481589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438671/The_Fundamental_Module_of_a_Normal_Local_Domain_of_Dimension_2">The Fundamental Module of a Normal Local Domain of Dimension 2</a></div><div class="wp-workCard_item"><span>Transactions of the American Mathematical Society</span><span>, Sep 1, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fundamental module E of a normal local domain (R,m) of dimension 2 is defined by the nonsplit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fundamental module E of a normal local domain (R,m) of dimension 2 is defined by the nonsplit exact sequence 0-* K -* E -* xa-» 0, where K is the canonical module of R. We prove that, if R is complete with R/m ~ C, then E is decomposable if and only if R is a cyclic quotient singularity. Various other properties of fundamental modules will be discussed. Let (R,m) be a normal local domain of dimension 2 which possesses the canonical module K. Let C(R) denote the category of finitely generated reflexive B-modules. Note that a finitely generated B-module is an object in C(R) if and only if it is a maximal Cohen-Macaulay module over R. By definition, K is a reflexive module of rank 1 and it satisfies Ext^(B/m, K) ~ R/m. (See Herzog and Kunz [8] for the details.) We denote the duality with respect to R (resp. K) by * (resp. '), that is, ( )* = HomR( ,R) and ( )' = HomR( ,K). Remark that a finitely generated B-module M lies in C(B) if and only if M** =• M, or</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3448e0d47d127b1d608a497bfc64d3c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481589,"asset_id":125438671,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481589/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438671]").text(description); $(".js-view-count[data-work-id=125438671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3448e0d47d127b1d608a497bfc64d3c1" } } $('.js-work-strip[data-work-id=125438671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438671,"title":"The Fundamental Module of a Normal Local Domain of Dimension 2","internal_url":"https://www.academia.edu/125438671/The_Fundamental_Module_of_a_Normal_Local_Domain_of_Dimension_2","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481589/thumbnails/1.jpg","file_name":"S0002-9947-1988-0957079-7.pdf","download_url":"https://www.academia.edu/attachments/119481589/download_file","bulk_download_file_name":"The_Fundamental_Module_of_a_Normal_Local.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481589/S0002-9947-1988-0957079-7-libre.pdf?1731530665=\u0026response-content-disposition=attachment%3B+filename%3DThe_Fundamental_Module_of_a_Normal_Local.pdf\u0026Expires=1739982851\u0026Signature=Zn3v3cIglxHvZ0hdI7XsrwNvx-Jy-ZYKeDu6H8vIrLFKF3iR2-n0tqIAFXqhI2wBkop0oQ4R9Zt3kWDYQfZZlJQo7sqMYsoIzWsKrmMI6QCkskDgTR572SZjhq3xTF5q0t4iiV8GtL7V1tTiWC5evSq84w0Rjnrj352bN60LIIqLtiOEFql900mUOsGqvUPfMreF4XbNJmZOF0cQU3uLYJhoeft8X7LVUZd3ceKzCPyIxeetDkiTIX2sFMDEEk6-BjLBovPmGaLshsP09L1T4fV02Ty1D~PXNa7~KpHAnMwIyRhjLnqOtiNj-Ea6yaLZzhaValNrLIfA~XSm4NBycQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438654/Stable_degenerations_of_Cohen_Macaulay_modules"><img alt="Research paper thumbnail of Stable degenerations of Cohen–Macaulay modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481548/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438654/Stable_degenerations_of_Cohen_Macaulay_modules">Stable degenerations of Cohen–Macaulay modules</a></div><div class="wp-workCard_item"><span>Journal of Algebra</span><span>, Apr 1, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">As a stable analogue of degenerations, we introduce the notion of stable degenerations for Cohen-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">As a stable analogue of degenerations, we introduce the notion of stable degenerations for Cohen-Macaulay modules over a Gorenstein local algebra. We shall give several necessary and/or sufficient conditions for the stable degeneration. These conditions will be helpful to see when a Cohen-Macaulay module degenerates to another. R corresponding to an R-module M. Then we say that M degenerates to N if O(N) is 0 2000 Mathematics Subject Classification. Primary 13C14; Secondary 13D10.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="18e7ffb134cba587d3acaaa563811032" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481548,"asset_id":125438654,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481548/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438654]").text(description); $(".js-view-count[data-work-id=125438654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "18e7ffb134cba587d3acaaa563811032" } } $('.js-work-strip[data-work-id=125438654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438654,"title":"Stable degenerations of Cohen–Macaulay modules","internal_url":"https://www.academia.edu/125438654/Stable_degenerations_of_Cohen_Macaulay_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481548,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481548/thumbnails/1.jpg","file_name":"1012.pdf","download_url":"https://www.academia.edu/attachments/119481548/download_file","bulk_download_file_name":"Stable_degenerations_of_Cohen_Macaulay_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481548/1012-libre.pdf?1731530678=\u0026response-content-disposition=attachment%3B+filename%3DStable_degenerations_of_Cohen_Macaulay_m.pdf\u0026Expires=1740001389\u0026Signature=Y3ZU-X9sH27bpcWhpZ7tN0r1OvusIxKXKNId-LbUje01QV6NS6NzdH81QB~dy-aRjDolMjcQkLFYaxuncaGF68SUXvwWF7ALKvp4uXTFkhkFlKe4FXNH4oYT8tSMX1xwzVYUHLmFFfSetcgTkHXZ2-n6y~H0S9JJ4~yxKTMq8N82J-3mv2hO9G72TzAsCBbtkBUPcrKsyIMLKGNq4O5i69vuNIOMaaYGj1V6zyQJbIvXqP8eqB42vrVaXgER09ySVrM1BniRdzrbBwqaIlI2MbsllXnNsTnYu8wN5KCAlOS59dLbRQSrZBVkBX0CyrEIlBCEAh3IIcioPb2NiTlgUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110850003"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110850003/Homological_invariants_associated_to_semi_dualizing_bimodules"><img alt="Research paper thumbnail of Homological invariants associated to semi-dualizing bimodules" class="work-thumbnail" src="https://attachments.academia-assets.com/108540131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110850003/Homological_invariants_associated_to_semi_dualizing_bimodules">Homological invariants associated to semi-dualizing bimodules</a></div><div class="wp-workCard_item"><span>Kyoto Journal of Mathematics</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cohen-Macaulay dimension for modules over a commutative ring has been defined by A. A. Gerko. Tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cohen-Macaulay dimension for modules over a commutative ring has been defined by A. A. Gerko. That is a homological invariant sharing many properties with projective dimension and Gorenstein dimension. The main purpose of this paper is to extend the notion of Cohen-Macaulay dimension for modules over commutative noetherian local rings to that for bounded complexes over non-commutative noetherian rings.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5897361446320d12bcd53fba0e04d2d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108540131,"asset_id":110850003,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108540131/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110850003"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110850003"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110850003; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110850003]").text(description); $(".js-view-count[data-work-id=110850003]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110850003; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110850003']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5897361446320d12bcd53fba0e04d2d5" } } $('.js-work-strip[data-work-id=110850003]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110850003,"title":"Homological invariants associated to semi-dualizing bimodules","internal_url":"https://www.academia.edu/110850003/Homological_invariants_associated_to_semi_dualizing_bimodules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":108540131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540131/thumbnails/1.jpg","file_name":"1250281991.pdf","download_url":"https://www.academia.edu/attachments/108540131/download_file","bulk_download_file_name":"Homological_invariants_associated_to_sem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540131/1250281991-libre.pdf?1702007381=\u0026response-content-disposition=attachment%3B+filename%3DHomological_invariants_associated_to_sem.pdf\u0026Expires=1739982851\u0026Signature=BpjFhaLvAYIu~i~ThxfTq7Cy6nBa-pNc9sHtu~zhSm1wamTV6voREF6xbPzXjqeMAYdDIuM1B2VVfURGP16feqAyDzIq-~0vsDlc0Ian69~fllikeBu2iXlL6L7FcJLy67TVY1o0du-XHledEOpFfSx9PD0~4DeUzmkDAlfJvGcGh9NWGtw1F2fzpfh9vEh~8fwzj7QXL6YcJA8I7~jl0kuBX5XnqV2V5KY-IXY2FK-Yvnh-p4Zib99scx3TsEwUJJEvf0ijDumpiVnlOxrg64CQyc61XM9V62osd7Dpntbl2q48WkxQ16ndmocsDtESlxfWKbhBnlED7Uwvt2rh-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108540132,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540132/thumbnails/1.jpg","file_name":"1250281991.pdf","download_url":"https://www.academia.edu/attachments/108540132/download_file","bulk_download_file_name":"Homological_invariants_associated_to_sem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540132/1250281991-libre.pdf?1702007375=\u0026response-content-disposition=attachment%3B+filename%3DHomological_invariants_associated_to_sem.pdf\u0026Expires=1739982851\u0026Signature=f3xcTw7427zQDeC4YKAyB1QL8IlmbtfMB889l4sjjolBNXlhwToiKXaX4ysUHPZuIYFv~KKPS~Iv6~jxteP9K6wsA-plNMDxZ00j44qld9~qVQojIqp0BsQEWrsF4yr42kvBiJID4ZFaIU0lnOi83e9qt0ZSbfDVZaSE3wraUnRnsx5DpBa5uwoi9OLeFX10NpDMTrIk17s1e2mJGTov06voGbJ8lQt5HocGfzW9Ud9w~MFKsaloUMCzgeIYuZvwc2nDPfq534Bsd4CDnkPpSBay~TT8McC71bUn6DySpui6F-HU~JFZqcpfrhRiPsvinN9pOanacQT8vABudcMXpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110850002"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110850002/Abstract_local_cohomology_functors"><img alt="Research paper thumbnail of Abstract local cohomology functors" class="work-thumbnail" src="https://attachments.academia-assets.com/108540129/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110850002/Abstract_local_cohomology_functors">Abstract local cohomology functors</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jan 6, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose to define the notion of abstract local cohomology functors. The ordinary local cohomol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose to define the notion of abstract local cohomology functors. The ordinary local cohomology functor RΓ I with support in the closed subset defined by an ideal I and the generalized local cohomology functor RΓ I,J defined in [16] are characterized as elements of the set of all the abstract local cohomology functors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55e055f048cfba9e27e165484949058c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108540129,"asset_id":110850002,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108540129/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110850002"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110850002"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110850002; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110850002]").text(description); $(".js-view-count[data-work-id=110850002]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110850002; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110850002']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55e055f048cfba9e27e165484949058c" } } $('.js-work-strip[data-work-id=110850002]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110850002,"title":"Abstract local cohomology functors","internal_url":"https://www.academia.edu/110850002/Abstract_local_cohomology_functors","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":108540129,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540129/thumbnails/1.jpg","file_name":"1001.pdf","download_url":"https://www.academia.edu/attachments/108540129/download_file","bulk_download_file_name":"Abstract_local_cohomology_functors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540129/1001-libre.pdf?1702007377=\u0026response-content-disposition=attachment%3B+filename%3DAbstract_local_cohomology_functors.pdf\u0026Expires=1740001389\u0026Signature=GzI7-56oU8df8WpHmR7nS1fnXjvGn1NruuuuTP6ESSAHhEtW8cSYmlmg0g4xv4xD2HD4tTgtT58vQX7HofU-3p7GPbiRlVsnG3pTek~I9vgoe4Hl79kNYzQwbKIHOZa-jniZcA~gsFWkA7jlO0Hvyh837asTwARrek0cnt1LFC70-I1UDWYJ~eTsWWkJHwjM6HQutZ2SCLs3rYYNlyFWZCxA0nu9mFLpuc3KaAU~F-U3iqaSa-l9Mz9BW6F95fOKj-4sm~QD71pMLpdzEB7KvLPJL7fi2dj341ChSIXayIqcEizXFRiQSxvn98K63SlsyziV~b-6msnEZFldh6m03w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108540130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540130/thumbnails/1.jpg","file_name":"1001.pdf","download_url":"https://www.academia.edu/attachments/108540130/download_file","bulk_download_file_name":"Abstract_local_cohomology_functors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540130/1001-libre.pdf?1702007379=\u0026response-content-disposition=attachment%3B+filename%3DAbstract_local_cohomology_functors.pdf\u0026Expires=1740001389\u0026Signature=AC14hKJEQ4CjSn~3-EHhjsBw3D64byOa1gVYC7zvGQHO8dyeF7H49mupdJiKUwqO2KgjKjNqcdK380~AY6Kp-JIFjEhdNBu6w7ZN3Ygq7ml7abvdLoia6iUrh~ryZOo8wtBKe3m3gyTDuYdAsleiSAUb0vdQDhztqNyMVTMp5krB7~5vjA87rmbF~XjAXDiwME-XZZFGg0IwzAeDoQ1u0qQK3Miza6gzUUedAiFRgNYYu9qzNeR2D3VANbeaWGpIniXxgBuOxftKQrqxkFxj-HxpHzyXMeRFb2E83pqxAx5KfSmBtIVhuYmUIbbaBJN8G4pIaVIoXbO~z~6AoLBj5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110850001"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110850001/Gr%C3%B6bner_Bases_for_the_Polynomial_Ring_with_Infinite_Variables_and_Their_Applications"><img alt="Research paper thumbnail of Gröbner Bases for the Polynomial Ring with Infinite Variables and Their Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/108540125/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110850001/Gr%C3%B6bner_Bases_for_the_Polynomial_Ring_with_Infinite_Variables_and_Their_Applications">Gröbner Bases for the Polynomial Ring with Infinite Variables and Their Applications</a></div><div class="wp-workCard_item"><span>Communications in Algebra</span><span>, Oct 9, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We develop the theory of Gröbner bases for ideals in a polynomial ring with countably infinite va...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We develop the theory of Gröbner bases for ideals in a polynomial ring with countably infinite variables over a field. As an application we reconstruct some of the one-one correspondences among various sets of partitions by using division algorithm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f17771c626aaf5bc5d6402c93c6600c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108540125,"asset_id":110850001,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108540125/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110850001"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110850001"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110850001; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110850001]").text(description); $(".js-view-count[data-work-id=110850001]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110850001; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110850001']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f17771c626aaf5bc5d6402c93c6600c" } } $('.js-work-strip[data-work-id=110850001]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110850001,"title":"Gröbner Bases for the Polynomial Ring with Infinite Variables and Their Applications","internal_url":"https://www.academia.edu/110850001/Gr%C3%B6bner_Bases_for_the_Polynomial_Ring_with_Infinite_Variables_and_Their_Applications","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":108540125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540125/thumbnails/1.jpg","file_name":"0806.0479v1.pdf","download_url":"https://www.academia.edu/attachments/108540125/download_file","bulk_download_file_name":"Grobner_Bases_for_the_Polynomial_Ring_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540125/0806.0479v1-libre.pdf?1702007380=\u0026response-content-disposition=attachment%3B+filename%3DGrobner_Bases_for_the_Polynomial_Ring_wi.pdf\u0026Expires=1740001389\u0026Signature=DXVnO~2~EGpdgJD~ZNnxL-nvr5j5tA8yPt9GwfkCvHhRD8Nt4-yGoBdhPgZIh5r370ra9WO499AP2FKzRggPgaDzTbgsIIJZ0twICrIeZ5QY3VNAWlNVqj3Bhi8GnFsm471NE~ic0n-P9pjN8zKnRQmv6tdA~y~qoAV3xeWwF2peQCnMtFmrf5UhBcEMFvrBh5eB4fIxI6V-PC6igEoYrAZXm1H1NHE9fJwNgB4ZLwjf~LLQEtQxikS0eo1-ps2FtNHMjO-v~FeLF--4BQTy7gEi0eCG~UF-QGXSOhjGh0EAX-6dUqAkqeAVTGo7f0tXC8JHELhQdI2yFh4J3hNuMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108540127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540127/thumbnails/1.jpg","file_name":"0806.0479v1.pdf","download_url":"https://www.academia.edu/attachments/108540127/download_file","bulk_download_file_name":"Grobner_Bases_for_the_Polynomial_Ring_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540127/0806.0479v1-libre.pdf?1702007373=\u0026response-content-disposition=attachment%3B+filename%3DGrobner_Bases_for_the_Polynomial_Ring_wi.pdf\u0026Expires=1740001390\u0026Signature=AV7EOAFvSCnD~tPeiE2lKIepUW8y8z~-0vci~sNuQZ3L1g9qAbT7qvzoK9nrYSABeCHWjdqn1SY8AVjERcKXdtYfly9c6eaOpS0CuA1y87cPC2q0ZHDV48XZW~VhZBwXI-V8w9bNKfgMcrOJe3kTiD2HKMGjJLAOnJBuldXJF9vyziuBt2GdNTX0MDU-HMy5u8f9fZ2ZtNRIIYkjJksaDMLWqJc8OLg8FuK5QEbOQ54WRCttoSXZQtMJwD50j4EVVjo~ukzzy3sNQnNFL6HBAzbJQfRZzaM~~tiJi5Ip7M~lVoEN0gM51nEWuJZmbSgXWyEv0HcTZaRfJJ~Ch9dqzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5198261" id="papers"><div class="js-work-strip profile--work_container" data-work-id="125438687"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438687/Primary_decompositions_in_abelian_R_categories"><img alt="Research paper thumbnail of Primary decompositions in abelian R-categories" class="work-thumbnail" src="https://attachments.academia-assets.com/119481578/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438687/Primary_decompositions_in_abelian_R_categories">Primary decompositions in abelian R-categories</a></div><div class="wp-workCard_item"><span>Mathematical journal of Okayama University</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We shall generalize the theory of primary decomposition and associated prime ideals of finitely g...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We shall generalize the theory of primary decomposition and associated prime ideals of finitely generated modules over a noetherian ring to general objects in an abelian R-category where R is a noetherian commutative ring. See, for example, [3], or as general references of this section. Let C be a category, where we denote by Ob(C) the object class and by C(X, Y ) the set of morphisms for objects X, Y ∈ Ob(C). By definition, the composition of morphisms in C satisfies the associative law; (f g)h = f (gh), and there is the identity morphism 1 X for any X ∈ Ob(C). Recall that C is called a preadditive category provided C(X, Y ) is an abelian group for X, Y ∈ Ob(C) and the composition of morphisms is bilinear, i.e. f (g + h) = f g + f h, (g + h)f ′ = gf ′ + hf ′ and moreover there exists the null object 0 in C. An additive category is, by definition, a preadditive category with finite coproducts. An additive category C is called an abelian category if the kernel and the cokernel exist for any morphism f and moreover the equality Cok(ker(f )) = Ker(cok(f )) holds. We recall how to construct an ideal quotient of a category. 2.1. Localization. ([4, 7.1],[8, 2.1],[3, chapter 1.3]) Let C be an additive category and let S be a collection of morphisms in C. We say that S is a</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba9e249267ff4419c10833f474b2b2c2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481578,"asset_id":125438687,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481578/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438687"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438687"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438687; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438687]").text(description); $(".js-view-count[data-work-id=125438687]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438687; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438687']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba9e249267ff4419c10833f474b2b2c2" } } $('.js-work-strip[data-work-id=125438687]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438687,"title":"Primary decompositions in abelian R-categories","internal_url":"https://www.academia.edu/125438687/Primary_decompositions_in_abelian_R_categories","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481578,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481578/thumbnails/1.jpg","file_name":"mjou_060_091_108.pdf","download_url":"https://www.academia.edu/attachments/119481578/download_file","bulk_download_file_name":"Primary_decompositions_in_abelian_R_cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481578/mjou_060_091_108-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DPrimary_decompositions_in_abelian_R_cate.pdf\u0026Expires=1739982850\u0026Signature=eUhy8Z322aSlGv18r5~UxF~MrJ5cB2MI2AdOnSXhqs-HLMxPIn-ZizIeUBxytd~Ocrtoo8KKbHrJ7TA8XDm0KoaZIrAii9XlxNQxxu231Zg2O9qb6NdVy4wocFkJHw0LKuYyNInkeMfOn1GhPOls2BW9J6t888X42VTxblucFOvG6~HSxv86eMReyc3Q0WIuw1HqKlX1YWtoRmrrGyajckgKYM5zHb9rG-Ekiw3BtfYFphpI4GY4T1w9CkQxDjrub192YZEJXaXHrCUHJtXpvUTZDGQ46ojp4A3eCWEnq1CvuZcBI2hGhtor-~we5UCEXJ0cnrHKxxnO~M7enPydXQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481579,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481579/thumbnails/1.jpg","file_name":"mjou_060_091_108.pdf","download_url":"https://www.academia.edu/attachments/119481579/download_file","bulk_download_file_name":"Primary_decompositions_in_abelian_R_cate.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481579/mjou_060_091_108-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DPrimary_decompositions_in_abelian_R_cate.pdf\u0026Expires=1739982850\u0026Signature=gn31ok9wiMe1PnNPpMb0ESW1erQUzT~j1VxJ4pf38OCy4gygD3bHpEvv8rHSgXbXJbRakOEfhxWd3CNqz-~XjubWA6LnMEn0-Uv1NMoGPykDDl78NHbWH1~Jsdalol5KwE-5M7TpXQ1GZQmWY9AG-3ZCF~VxQWCffPl~d0NWHF97ViWI8bhskwUZ0gKXRrnjbZ-OqlkcO4HeKf0DuAfNi2qM2ZAvDDuthSWk02zfGN-HFPazRDOn8m0Xnbie~X2ZQEJnLBcc4cpaoNJeTvMRKo7pRATw2CdtYNIz8hAn0nxlvHhpxmqBOVEKf4oeQTlhkMTtChAs9Pw4mXgy90DL6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438686"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438686/Examples_of_degenerations_of_Cohen_Macaulay_modules"><img alt="Research paper thumbnail of Examples of degenerations of Cohen-Macaulay modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481572/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438686/Examples_of_degenerations_of_Cohen_Macaulay_modules">Examples of degenerations of Cohen-Macaulay modules</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Dec 24, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We study the degeneration problem for maximal Cohen-Macaulay modules and give several examples of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We study the degeneration problem for maximal Cohen-Macaulay modules and give several examples of such degenerations. It is proved that such degenerations over an even-dimensional simple hypersurface singularity of type (An) are given by extensions. We also prove that all extended degenerations of maximal Cohen-Macaulay modules over a Cohen-Macaulay complete local algebra of finite representation type are obtained by iteration of extended degenerations of Auslander-Reiten sequences.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="94dae55af5486d2dc103a4469d7657b1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481572,"asset_id":125438686,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481572/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438686"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438686"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438686; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438686]").text(description); $(".js-view-count[data-work-id=125438686]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438686; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438686']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "94dae55af5486d2dc103a4469d7657b1" } } $('.js-work-strip[data-work-id=125438686]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438686,"title":"Examples of degenerations of Cohen-Macaulay modules","internal_url":"https://www.academia.edu/125438686/Examples_of_degenerations_of_Cohen_Macaulay_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481572,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481572/thumbnails/1.jpg","file_name":"1012.pdf","download_url":"https://www.academia.edu/attachments/119481572/download_file","bulk_download_file_name":"Examples_of_degenerations_of_Cohen_Macau.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481572/1012-libre.pdf?1731530670=\u0026response-content-disposition=attachment%3B+filename%3DExamples_of_degenerations_of_Cohen_Macau.pdf\u0026Expires=1740001389\u0026Signature=bOx4syLoR2k4zrkSn~NpjRMadLCITU35GK2iYtums4sa6B0jSM53J7N~gmRJMceiZTPiSCjWYt0bs7uuW29Iarmzh~KI~INXkb9Dp-byRuY6VDCUfZ4LIra9vUJsLJNl1ioRHfnxvUqzIg2AWpXAmdNd6CuDlUa3yaR-kQ1TC1fke9hHEFOZdqxvxwZQPHzzEO0ipiiwsjymwZj3UPLNArBEm9ZjvF~TH1cTl25vgHnIt6s8Wtwtlu~n-UgRbOUVqIruJh2s2fdk3zvkiEcDGsw3DO06EC9NvOBmJpEIOAHAWBdxBY0vADcRts~z8YZwigiYu486e4T3ps0KYYA4QA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481574,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481574/thumbnails/1.jpg","file_name":"1012.pdf","download_url":"https://www.academia.edu/attachments/119481574/download_file","bulk_download_file_name":"Examples_of_degenerations_of_Cohen_Macau.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481574/1012-libre.pdf?1731530667=\u0026response-content-disposition=attachment%3B+filename%3DExamples_of_degenerations_of_Cohen_Macau.pdf\u0026Expires=1740001389\u0026Signature=Pg1h7yr9d1H3Ys4QP4vknCC8W9gC1z6H2~DjLz~WH63W~4AWmFf1OLJGFYBgS4pEi8rizNcYJ0fMrNxiiFHvBtwSQC0~jzKGTdqKSf6Q2ePIGbqOJx~f4WHuAjkvFfQvvHrmqtMmalmQOWo4GGL9FYf~7XinZJS1BQo5dQkIy~ox1p3MApKQWDomJbnlXHW2tak0~Za-~N-gbfXJsdpwZKXDnvr-MRVmPGCEYSH7wiYyP4vnuwQKFjs5Bs5tfIG-ous6V0wK0DEZ8TTYyRIs1Yr16XYFGIm2kWyT~o9DsN2F1h15b2~ofe0fR~1WO2ABRVSbvLjUV4rVUzIRci9mEw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438685"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438685/Na%C3%AFve_liftings_of_DG_modules"><img alt="Research paper thumbnail of Naïve liftings of DG modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481577/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438685/Na%C3%AFve_liftings_of_DG_modules">Naïve liftings of DG modules</a></div><div class="wp-workCard_item"><span>Mathematische Zeitschrift</span><span>, Jan 13, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let n be a positive integer, and let A be a strongly commutative differential graded (DG) algebra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let n be a positive integer, and let A be a strongly commutative differential graded (DG) algebra over a commutative ring R. Assume that (a) B = A[X 1 , . . . , Xn] is a polynomial extension of A, where X 1 , . . . , Xn are variables of positive degrees; or (b) A is a divided power DG R-algebra and B = A X 1 , . . . , Xn is a free extension of A obtained by adjunction of variables X 1 , . . . , Xn of positive degrees. In this paper, we study naïve liftability of DG modules along the natural injection A → B using the notions of diagonal ideals and homotopy limits. We prove that if N is a bounded below semifree DG B-module such that Ext i B (N, N ) = 0 for all i 1, then N is naïvely liftable to A. This implies that N is a direct summand of a DG B-module that is liftable to A. Also, the relation between naïve liftability of DG modules and the Auslander-Reiten Conjecture has been described.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="36b99b9df6fb33ef65acba99aa077f45" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481577,"asset_id":125438685,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481577/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438685"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438685"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438685; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438685]").text(description); $(".js-view-count[data-work-id=125438685]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438685; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438685']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "36b99b9df6fb33ef65acba99aa077f45" } } $('.js-work-strip[data-work-id=125438685]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438685,"title":"Naïve liftings of DG modules","internal_url":"https://www.academia.edu/125438685/Na%C3%AFve_liftings_of_DG_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481577,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481577/thumbnails/1.jpg","file_name":"2102.pdf","download_url":"https://www.academia.edu/attachments/119481577/download_file","bulk_download_file_name":"Naive_liftings_of_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481577/2102-libre.pdf?1731530676=\u0026response-content-disposition=attachment%3B+filename%3DNaive_liftings_of_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=UojORpAYHrEcllieRB9l0~qvb4uGzycsovdDSZrILoasN3gFJnPYR07SEMgEf1f-L2FIQtAhUUEn7Q7J4-jXIYF7F3poCPgdvfMI27oZjycvskjv3eL1eU4jo3TUEsrJ8zuP6dIKVUGP-sM3RsFyTsa90~z5eJ7vU03OYAnlxxwUYPDAy~81JJWwGJKYT1D-RgdN0ZcIQ-S9FACb53tKwSAV09e5x-NGiJ3VqhBaTfpDoi5neJ2UHESJLGUHvJonWK9x0oBG8qpTY6P6MyUGv7M3GnuZuk3Ek7uGiCZ5fttB60awbpzD6zyDfJHWqpxu8eqZsc7iHyTnWIL8qolt7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481573,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481573/thumbnails/1.jpg","file_name":"2102.pdf","download_url":"https://www.academia.edu/attachments/119481573/download_file","bulk_download_file_name":"Naive_liftings_of_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481573/2102-libre.pdf?1731530676=\u0026response-content-disposition=attachment%3B+filename%3DNaive_liftings_of_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=TpqfxtcmnE04UZ~U9IKTWxDEKW~FYAjqDShpdw66hs-pkD8Q3-uPGYQhvcls-Ac7rFsMqJdedqOOxI64MpJ23YQm1VFec6Mzua4vDn7aFnd6k-gGPLi5bW7G3qqqqY09cCFMBDv42mzuzMQiOYV6d9NvWyJ9vJAgUVsNJ9b9uGOPoLUSpHT9Jlx7PzbhbVVnvD3ym3Uxd6sUM5TvQy1f0T1KVM~~WKSROW9MqdJNeg-sGjKDZWPPj29rQXJ~3ZCh4y~rVb6ksKpo3Hn~J5chiw6kafCFCdHxkNnmEB9rb~I4pSEHSANSDWmwDtP6Nvao3iB97IVbk8wzpBRIgZVtkA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438684"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438684/A_local_duality_principle_in_derived_categories_of_commutative_Noetherian_rings"><img alt="Research paper thumbnail of A local duality principle in derived categories of commutative Noetherian rings" class="work-thumbnail" src="https://attachments.academia-assets.com/119481575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438684/A_local_duality_principle_in_derived_categories_of_commutative_Noetherian_rings">A local duality principle in derived categories of commutative Noetherian rings</a></div><div class="wp-workCard_item"><span>Journal of Pure and Applied Algebra</span><span>, Sep 1, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let R be a commutative Noetherian ring. We introduce the notion of colocalization functors γ W wi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let R be a commutative Noetherian ring. We introduce the notion of colocalization functors γ W with supports in arbitrary subsets W of Spec R. If W is a specialization-closed subset, then γ W coincides with the right derived functor RΓ W of the section functor Γ W with support in W . We prove that the local duality theorem and the vanishing theorem of Grothendieck type hold for γ W with W being an arbitrary subset.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8ff479195d0d3b274295797a3fd81719" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481575,"asset_id":125438684,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481575/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438684"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438684"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438684; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438684]").text(description); $(".js-view-count[data-work-id=125438684]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438684; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438684']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8ff479195d0d3b274295797a3fd81719" } } $('.js-work-strip[data-work-id=125438684]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438684,"title":"A local duality principle in derived categories of commutative Noetherian rings","internal_url":"https://www.academia.edu/125438684/A_local_duality_principle_in_derived_categories_of_commutative_Noetherian_rings","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481575/thumbnails/1.jpg","file_name":"1610.pdf","download_url":"https://www.academia.edu/attachments/119481575/download_file","bulk_download_file_name":"A_local_duality_principle_in_derived_cat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481575/1610-libre.pdf?1731530666=\u0026response-content-disposition=attachment%3B+filename%3DA_local_duality_principle_in_derived_cat.pdf\u0026Expires=1739982850\u0026Signature=WZruqtn6jD1-oTt0oH1GW7VduwDywiz2GJG02tNrggQBnNO4bSvQ1Ck6KbrjpVSdyaBzJxRlDkWykZFoG-hbHuHCS94eQySRH7WgoSWw~zRTnYNgTxdw6pTFIVHkINyYmsDdH~cS4jPuExNoaboSxf5y2S9GrcBDIaviNDH4QP~1O-pzmfP6PGwt7kECLWR0ZyTzNtYFjiqOAgxs5pCXPpJEVQMLZJQwMdDtCwt0BsXgQAQosBnRqTgoP-b6Z8W6ITCidHKpAdKJo~faDPwWIUbxYvPlxXlC3t1tetCDdoYfgzrrM~~AkPBwLoLmIbadOYbRO7pXN4RtW9qP1fKRzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438683"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438683/Tensor_products_of_matrix_factorizations"><img alt="Research paper thumbnail of Tensor products of matrix factorizations" class="work-thumbnail" src="https://attachments.academia-assets.com/119481576/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438683/Tensor_products_of_matrix_factorizations">Tensor products of matrix factorizations</a></div><div class="wp-workCard_item"><span>Nagoya Mathematical Journal</span><span>, Dec 1, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let K be a field and let / 6 K[[xι,x 2 , . ,x r ]] and g 6 #[[2/1,2/2, , y s ]] be non-zero and n...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let K be a field and let / 6 K[[xι,x 2 , . ,x r ]] and g 6 #[[2/1,2/2, , y s ]] be non-zero and non-invertible elements. If X (resp. Y) is a matrix factorization of / (resp. g), then we can construct the matrix factorization X §> Y of /-+• g over K [[xiyX2, -> ,x r ,yi,y2, -,ys]]i which we call the tensor product of X and y. After showing several general properties of tensor products, we will prove theorems which give bounds for the number of indecomposable components in the direct decomposition of X < §> Y.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f761e24e012ec7f38d95a7913882b49a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481576,"asset_id":125438683,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481576/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438683"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438683"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438683; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438683]").text(description); $(".js-view-count[data-work-id=125438683]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438683; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438683']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f761e24e012ec7f38d95a7913882b49a" } } $('.js-work-strip[data-work-id=125438683]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438683,"title":"Tensor products of matrix factorizations","internal_url":"https://www.academia.edu/125438683/Tensor_products_of_matrix_factorizations","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481576,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481576/thumbnails/1.jpg","file_name":"div-class-title-tensor-products-of-matrix-factorizations-div.pdf","download_url":"https://www.academia.edu/attachments/119481576/download_file","bulk_download_file_name":"Tensor_products_of_matrix_factorizations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481576/div-class-title-tensor-products-of-matrix-factorizations-div-libre.pdf?1731530678=\u0026response-content-disposition=attachment%3B+filename%3DTensor_products_of_matrix_factorizations.pdf\u0026Expires=1739982850\u0026Signature=Q6xt~dwncAnE5TyNEoZ-EELwwdB4YhTR1USFqxDDBxI1jWyBs~MYlAGgkk~YQ3ZlB1ZwgU6TslJv7-nycVgHqBH8ELYpT6wLLvXsq~ro8SCZKN7sTIAxnNjgWBnw6yyu7GOyVZ7U-ZLnP0ZL7NTqhzZMv8QZmt-z3wJCVoAYqorb7whi3sDFX2z0Mk4JO9tEiLBW~q0aoDrKiV33MLiJsrq~6k7A3IyXlAI3Kim-9yXpJBP4LfkanyLQjZPbktIT2UKZ2JmrLK~1kfhmWW3kiB9m2t~3eUMQJjWMZ9o34X~DCimISw9uki0phuec7nFncwgTzK5iXUCFNyDAZBzfJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481580,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481580/thumbnails/1.jpg","file_name":"div-class-title-tensor-products-of-matrix-factorizations-div.pdf","download_url":"https://www.academia.edu/attachments/119481580/download_file","bulk_download_file_name":"Tensor_products_of_matrix_factorizations.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481580/div-class-title-tensor-products-of-matrix-factorizations-div-libre.pdf?1731530679=\u0026response-content-disposition=attachment%3B+filename%3DTensor_products_of_matrix_factorizations.pdf\u0026Expires=1739982850\u0026Signature=CEwtnY39QimkPrP03BZV~p608qEyEj9FKu8AtNw2nbrY2yBT752E3G-q3y4DDplQtZrFa4ubJe6YCZq6u4GEwFW3bo4g5MwG7121hLBzi9tMscFcw45ID9TRLtJu6v-3yXbZ8mzsBEGqBJS7iT7sUSi~sXvHH~RmI2gZ~jx8lmNAPFTL7b036gsItm-X9-zSWY3tyNYYNnLlA6npINaQpA7VT~~Qrbg~y7Vx1dSUKkrqLg2ncz7kDKseJ-RfbW6rcc~Gv3MAcMwDVqfoqWYXYkIHwO3lp09WC0fpknFecWug1IhhuO9UiAe2J538wkrKOWnppQbhDEQgH-1MBLqV0w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438682"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438682/Obstruction_to_naive_liftability_of_DG_modules"><img alt="Research paper thumbnail of Obstruction to naive liftability of DG modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481569/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438682/Obstruction_to_naive_liftability_of_DG_modules">Obstruction to naive liftability of DG modules</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Sep 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of naïve liftability of DG modules is introduced in [10] and . The main purpose of thi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of naïve liftability of DG modules is introduced in [10] and . The main purpose of this paper is to explicitly describe the obstruction to naïve liftability along extensions A → B of DG algebras, where B is projective as an underlying graded A-module. In particular, we give an explicit description of a DG B-module homomorphism which defines the obstruction to naïve liftability of a semifree DG B-module N as a certain cohomology class in Ext 1 B (N, N ⊗ B J), where J is the diagonal ideal. Our results on the obstruction class enable us to give concrete examples of DG modules that do and do not satisfy the naïve lifting property.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7abd2c4f58fdd3d7a1dff11491cc1d01" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481569,"asset_id":125438682,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481569/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438682"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438682"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438682; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438682]").text(description); $(".js-view-count[data-work-id=125438682]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438682; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438682']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7abd2c4f58fdd3d7a1dff11491cc1d01" } } $('.js-work-strip[data-work-id=125438682]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438682,"title":"Obstruction to naive liftability of DG modules","internal_url":"https://www.academia.edu/125438682/Obstruction_to_naive_liftability_of_DG_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481569,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481569/thumbnails/1.jpg","file_name":"2109.pdf","download_url":"https://www.academia.edu/attachments/119481569/download_file","bulk_download_file_name":"Obstruction_to_naive_liftability_of_DG_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481569/2109-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DObstruction_to_naive_liftability_of_DG_m.pdf\u0026Expires=1739982850\u0026Signature=CZnBJGt4u14QT1vjtkXvrJK6u6uvROKqGRlllIA7Frtnn1i-Vl8E2iccsiswPvYC7mH3vaPBIex503q4O6o1MAWegSXoVoccZpSJ-YKFqZmpqaVvsM2ZVD0S2UcmpiPAitPnOcE0T8jDfYEOYk8-WiWr9DrIJC6A1bvWvqpnY3ivnyKU3n~JrxGAF~wzrMsxKcMEiuCJzytXI3F5CusWUGnDykxagAw2JhYbJPcH~SgGw0mocugEojWcW~-DxIJ3MSvW6BCY5S~8OlBYO9MwKFyaAZHcfMul4ECcapYW804RB9ZIBojDHaEQahsv~pKKV-zd6R4vdlWAHtsw8hS3UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481571,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481571/thumbnails/1.jpg","file_name":"2109.pdf","download_url":"https://www.academia.edu/attachments/119481571/download_file","bulk_download_file_name":"Obstruction_to_naive_liftability_of_DG_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481571/2109-libre.pdf?1731530666=\u0026response-content-disposition=attachment%3B+filename%3DObstruction_to_naive_liftability_of_DG_m.pdf\u0026Expires=1739982850\u0026Signature=b0gy4KVlYg2WpUGZ~G6BER9HePmnlrTJMVEuCOHLnArF6S0MNz16ekHuuyIjym465y7s13Hr2-XVDXcHDcVd8qSwofKvvHZGjTCpVGngsXj8zFBXUudVtHjNSZRDPpa771vCXC9hW9rpoKVRX0ot6~Gvy6Y-qBqo3XgI2hxwHUtLFVFavkxkErtOSiMxtRwM3CBcXUguee5e9LXdAx6wEno2yC~GEPdXbes6puuvNNrotcDZSwnuwguuNBa5Rx0RCyq3s2P5ZGrlXsHBCdhOVwu3FvnAHmKkA9-g8JaX1D18KbzEEGQOq7IfOuKfqMKaymtQ7RMWmwCulPsW8hzpLQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438681"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438681/An_Auslander_Reiten_principle_in_derived_categories"><img alt="Research paper thumbnail of An Auslander–Reiten principle in derived categories" class="work-thumbnail" src="https://attachments.academia-assets.com/119481570/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438681/An_Auslander_Reiten_principle_in_derived_categories">An Auslander–Reiten principle in derived categories</a></div><div class="wp-workCard_item"><span>Journal of Pure and Applied Algebra</span><span>, Jun 1, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="868d6bf5f61a28fac22e3f17754c8296" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481570,"asset_id":125438681,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481570/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438681"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438681"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438681; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438681]").text(description); $(".js-view-count[data-work-id=125438681]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438681; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438681']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "868d6bf5f61a28fac22e3f17754c8296" } } $('.js-work-strip[data-work-id=125438681]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438681,"title":"An Auslander–Reiten principle in derived categories","internal_url":"https://www.academia.edu/125438681/An_Auslander_Reiten_principle_in_derived_categories","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481570,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481570/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481570/download_file","bulk_download_file_name":"An_Auslander_Reiten_principle_in_derived.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481570/1805-libre.pdf?1731530668=\u0026response-content-disposition=attachment%3B+filename%3DAn_Auslander_Reiten_principle_in_derived.pdf\u0026Expires=1739982850\u0026Signature=GbmDN50bbxXPBbQuJQzm5LK0V7X0x7LEhiFo9sSPTv~EaMcLqRD~43g9-~dSDr9K4cCO2UyYPXh-IkjDlfK-tb4JC~8OBpGW0EN8VRIV1gyqwtP2NOIbvWe0vQ3mc~Lx~ycsZuHsWpqV1Fs-HBS4gcKLHGTCMlL3aTa68oJkDxKrR2Fk2QXTgMFPKeCW4PyJJHQD68lofKAA39uxgeZHHcYpCPY2Zal2yDrQBGCiyZaQbX2z-2XOSdGkJ7q4ckungMLO2EoxR-iF6NrUL8r0P4c0eHh-lgDdhwQg70LNoHg3ipl~fe5t7g8A0cgrKH-5KMUeCEGKtqjLxV6GvxdlxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481568,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481568/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481568/download_file","bulk_download_file_name":"An_Auslander_Reiten_principle_in_derived.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481568/1805-libre.pdf?1731530670=\u0026response-content-disposition=attachment%3B+filename%3DAn_Auslander_Reiten_principle_in_derived.pdf\u0026Expires=1739982850\u0026Signature=TgvrgyVuFzZdveFt1dDc0~dhXkIDl-DxrAZO2rMWPbKO8RnY5ZxPRhHMuzdeljO0601adr86dsYKT-kn~ZzD1bW4V99w1P2s6ugTCrvvF5vGCoOIw2YRhPbZWTv-69ELlokbxNbK3nOWMvcvlNJ3KMayPiHUMglaOktZWizqjUqXRT9inliIpeiXV54T1kzb5cZDcF5qaUbwGm07XxA0uIK~Ua2G83Pk-TMEJyW2FCycVeZZkVgpX1th32iABG6sS-QwCCXIVDw~LyW1tiLeh5f7Qm2o2lb-xe566qmCc8WOU19Qzi9LPhdDaHD8egkusQRAgYIlcQm9UQhFHw63jw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438680"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438680/On_degenerations_of_modules"><img alt="Research paper thumbnail of On degenerations of modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481591/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438680/On_degenerations_of_modules">On degenerations of modules</a></div><div class="wp-workCard_item"><span>Journal of Algebra</span><span>, Aug 1, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We generalize a result of Zwara concerning the degeneration of modules over Artinian algebras to ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We generalize a result of Zwara concerning the degeneration of modules over Artinian algebras to that over general algebras. In fact, let R be any algebra over a field and let M and N be finitely generated left R-modules. Then, we show that M degenerates to N if and only if there is a short exact sequence of finitely generated left R-modules 0 → Z ( φ ψ ) --→ M ⊕ Z → N → 0 such that the endomorphism ψ on Z is nilpotent. We give several applications of this theorem to commutative ring theory.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1bd55cd61657719d7c21d336ecc3b77c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481591,"asset_id":125438680,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481591/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438680"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438680"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438680; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438680]").text(description); $(".js-view-count[data-work-id=125438680]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438680; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438680']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1bd55cd61657719d7c21d336ecc3b77c" } } $('.js-work-strip[data-work-id=125438680]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438680,"title":"On degenerations of modules","internal_url":"https://www.academia.edu/125438680/On_degenerations_of_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481591,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481591/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMTg2OTMwMzAwNzU0Mw__.pdf","download_url":"https://www.academia.edu/attachments/119481591/download_file","bulk_download_file_name":"On_degenerations_of_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481591/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMTg2OTMwMzAwNzU0Mw__-libre.pdf?1731530660=\u0026response-content-disposition=attachment%3B+filename%3DOn_degenerations_of_modules.pdf\u0026Expires=1740001389\u0026Signature=dkO3WNTIRAuOditPFde0QftWtZIt2GNClWSVzyRU8nFHaxMV2kYpZIv9zdIXGiL5nj~MSgcQF8Rs1dojdZawGqPsITwXfLl6wGOvv-21B-bAHYogJqsffDWO--iuljIWUgsKr68pla~6DsR9V2uYsQEdlGtU4P3ycytr17VxsIfYFF4KR1Kx-UjdgC8ZZdeJDkpOoHsgs57ywCDWkgVloaDrtNXKKMtfHWh1v4Htli1uLjEDEQbI2YHgdeIr2jAB4ur9f70f2QNSkxGfC0YkCjnCtnrPyAJUZKsg~PbubrX5nQqlDpDWKFEBRhgzXIDzdKO~IDwlq~NRA7vm1cvhZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438679"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438679/A_functorial_approach_to_modules_of_G_dimension_zero"><img alt="Research paper thumbnail of A functorial approach to modules of G-dimension zero" class="work-thumbnail" src="https://attachments.academia-assets.com/119481590/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438679/A_functorial_approach_to_modules_of_G_dimension_zero">A functorial approach to modules of G-dimension zero</a></div><div class="wp-workCard_item"><span>Illinois Journal of Mathematics</span><span>, Apr 1, 2005</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e2f80113566b94d81da5ec49a5151757" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481590,"asset_id":125438679,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481590/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438679"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438679"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438679; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438679]").text(description); $(".js-view-count[data-work-id=125438679]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438679; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438679']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e2f80113566b94d81da5ec49a5151757" } } $('.js-work-strip[data-work-id=125438679]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438679,"title":"A functorial approach to modules of G-dimension zero","internal_url":"https://www.academia.edu/125438679/A_functorial_approach_to_modules_of_G_dimension_zero","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481590,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481590/thumbnails/1.jpg","file_name":"0408162.pdf","download_url":"https://www.academia.edu/attachments/119481590/download_file","bulk_download_file_name":"A_functorial_approach_to_modules_of_G_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481590/0408162-libre.pdf?1731530676=\u0026response-content-disposition=attachment%3B+filename%3DA_functorial_approach_to_modules_of_G_di.pdf\u0026Expires=1739982850\u0026Signature=Q6vseRqmosTNPLBXj9868e7U6uWEGUorgAJ48mnC4CHuU~A-2noSimUdTYyeO5M6A2MqkPMwF4bUW~u3bJRby6PnpRNmzFGhfNLic6zG0oWXvvQIt9zesO0-RhRFF96AnmX1csSej4uq0D2SOBi9WwmfBVLvKQoqxRfwSIjMmnU7~gtNHp7d62~hfK736qNSrLyhzAsFUcFjrAmoLmb2W0qU8OV3H15CyYtjOzkiUvMPnG8h4A199Uce7ItVY40fuwn7lLCWYWVzwppP09be-85i-N-SMgdg1gknNUXUQFVnkPSc~qrXmAye4KL1baLwP3Bju6iJFM4e0eIDzoLaAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438678"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438678/A_lifting_problem_for_DG_modules"><img alt="Research paper thumbnail of A lifting problem for DG modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481567/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438678/A_lifting_problem_for_DG_modules">A lifting problem for DG modules</a></div><div class="wp-workCard_item"><span>Journal of Algebra</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let B = A X|dX = t be an extended DG algebra by the adjunction of variable of positive even degre...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let B = A X|dX = t be an extended DG algebra by the adjunction of variable of positive even degree n, and let N be a semi-free DG B-module that is assumed to be bounded below as a graded module. We prove in this paper that N is liftable to A if Ext n+1 B (N, N ) = 0. Furthermore such a lifting is unique up to DG isomorphisms if Ext n B (N, N ) = 0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="198628a43c92eb4b6a1f4f14c128c75b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481567,"asset_id":125438678,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481567/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438678"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438678"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438678; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438678]").text(description); $(".js-view-count[data-work-id=125438678]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438678; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438678']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "198628a43c92eb4b6a1f4f14c128c75b" } } $('.js-work-strip[data-work-id=125438678]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438678,"title":"A lifting problem for DG modules","internal_url":"https://www.academia.edu/125438678/A_lifting_problem_for_DG_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481567,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481567/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481567/download_file","bulk_download_file_name":"A_lifting_problem_for_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481567/1805-libre.pdf?1731530671=\u0026response-content-disposition=attachment%3B+filename%3DA_lifting_problem_for_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=MbUf7Q9SONHQPM3RVSVB5Na6EoXfZ~OD5SQrjlxQAs2hu1pLojvhNiQSNoOEyAuZUJkMNGp3tmtXsWb9LnlwnOnBRZP1Y6Uh1BF7jXRsHOHxdQMhpmHtWObCouoWS8XpG0Od1tCQab7CFBkTm9ZLI72IyySdVjT-83apQKjtlF-pZbQ4Ddj4E75kD02IAQM-AUBPR7aE5ovVTNgmCnqY9cfAFR7P6yNx6HfsVydaZSiwwHRI9yqqDE3ZsavyXM9XvpgE-PqChjPUNfN-YJATRvMz5zL~Sbny-DvfRIRsjTZ~UOiSPNEv-v1s3KdTc3v9Ake8kCcuISZnbaTHaqSf~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481566,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481566/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481566/download_file","bulk_download_file_name":"A_lifting_problem_for_DG_modules.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481566/1805-libre.pdf?1731530677=\u0026response-content-disposition=attachment%3B+filename%3DA_lifting_problem_for_DG_modules.pdf\u0026Expires=1740001389\u0026Signature=HbbCotDZU8n3rWcIofkgTtCsomfyQvu9md2PtldA7fydXagUuSEZjRG2Ht-RwpQ3qF6rXQPEWVJJ4P7MEqCMRhV1TMrQjIGSC-gjW0O3T6D4KChQs9Q1nT19pMWW9unSegE6Y82k56AlXO-cwJxFxiKKsZFnIMiwfGtuwYpxnjaf~wbHtt4ZK4and~ndeXTAEzAZcO4~sX-RuZh0cwqSZFHpNSHuEXAwrPQ0~b4BSREb85hUfgthJEMftRwkEByJ4-oLZfA5OlTVg2w-2gCK3IpNqVUAXvyFei6pCKfjy6aXmeKw-Yjcmx0lcv1do6JvF344n8faQw39gBzZHmclwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438677"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438677/On_the_existence_of_embeddings_into_modules_of_finite_homological_dimensions"><img alt="Research paper thumbnail of On the existence of embeddings into modules of finite homological dimensions" class="work-thumbnail" src="https://attachments.academia-assets.com/119481565/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438677/On_the_existence_of_embeddings_into_modules_of_finite_homological_dimensions">On the existence of embeddings into modules of finite homological dimensions</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, Feb 23, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="498374fab4b4f6393e2a50bf863672c4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481565,"asset_id":125438677,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481565/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438677"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438677"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438677; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438677]").text(description); $(".js-view-count[data-work-id=125438677]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438677; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438677']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "498374fab4b4f6393e2a50bf863672c4" } } $('.js-work-strip[data-work-id=125438677]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438677,"title":"On the existence of embeddings into modules of finite homological dimensions","internal_url":"https://www.academia.edu/125438677/On_the_existence_of_embeddings_into_modules_of_finite_homological_dimensions","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481565,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481565/thumbnails/1.jpg","file_name":"S0002-9939-10-10323-2.pdf","download_url":"https://www.academia.edu/attachments/119481565/download_file","bulk_download_file_name":"On_the_existence_of_embeddings_into_modu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481565/S0002-9939-10-10323-2-libre.pdf?1731530664=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_existence_of_embeddings_into_modu.pdf\u0026Expires=1739982851\u0026Signature=RYC69lR19UJ~uy1mdHPGwNJHqIB5f7iYu-65JpZx4qO6oqjZ87IOfvvwAwPlyWTdK4pWzmDYgJ2Jg8eXmITl2nDsrugk3b4BmLd~mfs-h~7TnrsqkdH~N5dBWrNWEtV-9yzwWMW4hgx~F71gLcL8kVGQ2bQ1RlwS9l1c9O1WCmURxl9HhhYXrjQwRDtTB72KxtI4KhqMRHo0qAdi0vLBPEqIBrhUEB1sPz3fK6QG0xgZBUqT1kOt54-lLCwCTdqJj~6DjT1z~lB1YAgNW~NO4QOypAVc90IPtyzDJ2ERaNXptoYgPWM11HnwWjSvz1Sz5Bisy~GWoZBMV~ctmDuoyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438676"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438676/Localization_functors_and_cosupport_in_derived_categories_of_commutative_Noetherian_rings"><img alt="Research paper thumbnail of Localization functors and cosupport in derived categories of commutative Noetherian rings" class="work-thumbnail" src="https://attachments.academia-assets.com/119481564/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438676/Localization_functors_and_cosupport_in_derived_categories_of_commutative_Noetherian_rings">Localization functors and cosupport in derived categories of commutative Noetherian rings</a></div><div class="wp-workCard_item"><span>Pacific Journal of Mathematics</span><span>, Jul 16, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let R be a commutative Noetherian ring. We introduce the notion of localization functors λ W with...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let R be a commutative Noetherian ring. We introduce the notion of localization functors λ W with cosupports in arbitrary subsets W of Spec R; it is a common generalization of localizations with respect to multiplicatively closed subsets and left derived functors of ideal-adic completion functors. We prove several results about the localization functors λ W , including an explicit way to calculate λ W by the notion of Čech complexes. As an application, we can give a simpler proof of a classical theorem by Gruson and Raynaud, which states that the projective dimension of a flat R-module is at most the Krull dimension of R. As another application, it is possible to give a functorial way to replace complexes of flat R-modules or complexes of finitely generated R-modules by complexes of pure-injective R-modules.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6ef8fef1e1604ead47cc351b0c0ba54c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481564,"asset_id":125438676,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481564/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438676"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438676"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438676; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438676]").text(description); $(".js-view-count[data-work-id=125438676]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438676; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438676']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6ef8fef1e1604ead47cc351b0c0ba54c" } } $('.js-work-strip[data-work-id=125438676]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438676,"title":"Localization functors and cosupport in derived categories of commutative Noetherian rings","internal_url":"https://www.academia.edu/125438676/Localization_functors_and_cosupport_in_derived_categories_of_commutative_Noetherian_rings","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481564,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481564/thumbnails/1.jpg","file_name":"1710.pdf","download_url":"https://www.academia.edu/attachments/119481564/download_file","bulk_download_file_name":"Localization_functors_and_cosupport_in_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481564/1710-libre.pdf?1731530680=\u0026response-content-disposition=attachment%3B+filename%3DLocalization_functors_and_cosupport_in_d.pdf\u0026Expires=1739982851\u0026Signature=Vyw8LkS0nTEmV8icGRS8a6GqJTYS4EmZBXjxhNiAv1McBRwxcGfe4nBuA0ZyfF4zSvVT7E1-KpWhxgVJsVs98oxx8q7bAgfvucReUM2N5f6LMeDs~mr-wMm7Bfh1sW6I08uWZyyXN35VfqLcx8ZnND03jr1ojoLJI7te59jRgsuvdZ6-iIr9ahx3Z5ijzL4IAgkmhUsiKIzyjrfQmxWqqXs0uxhn37m~lC-nzb1XRkK-vwEJwgMRifLE1cgO4fXmvQFq47nza-0sxlJEC9dJaGAHFZA6tl5KRIMmZPIlXl0OHaBFF3vmV-DyvJNmjpLNRFq3M4H2o36DqKry1C12Wg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438675"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438675/On_the_higher_delta_invariants_of_a_Gorenstein_local_ring"><img alt="Research paper thumbnail of On the higher delta invariants of a Gorenstein local ring" class="work-thumbnail" src="https://attachments.academia-assets.com/119481563/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438675/On_the_higher_delta_invariants_of_a_Gorenstein_local_ring">On the higher delta invariants of a Gorenstein local ring</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1996</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Let (R, m) be a Gorenstein complete local ring. Auslander's higher delta invariants are denoted b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Let (R, m) be a Gorenstein complete local ring. Auslander's higher delta invariants are denoted by δ n R (M) for each module M and for each integer n. We propose a conjecture asking if δ n R (R/m) = 0 for any positive integers n and. We prove that this is true provided the associated graded ring of R has depth not less than dim R − 1. Furthermore we show that there are only finitely many possibilities for a pair of positive integers (n,) for which δ n R (R/m) > 0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ac9e22824845e894b186e459733081a2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481563,"asset_id":125438675,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481563/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438675"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438675"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438675; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438675]").text(description); $(".js-view-count[data-work-id=125438675]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438675; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438675']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ac9e22824845e894b186e459733081a2" } } $('.js-work-strip[data-work-id=125438675]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438675,"title":"On the higher delta invariants of a Gorenstein local ring","internal_url":"https://www.academia.edu/125438675/On_the_higher_delta_invariants_of_a_Gorenstein_local_ring","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481563,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481563/thumbnails/1.jpg","file_name":"S0002-9939-96-03376-X.pdf","download_url":"https://www.academia.edu/attachments/119481563/download_file","bulk_download_file_name":"On_the_higher_delta_invariants_of_a_Gore.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481563/S0002-9939-96-03376-X-libre.pdf?1731530664=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_higher_delta_invariants_of_a_Gore.pdf\u0026Expires=1740001389\u0026Signature=J3i5lsT3qQsq21WYCfvhC4DZ4pu35zYtFann1I8vg3dpvtuBZSogeccaFDNkLvAHpaAjKJ1Fg8MvNtO1oz1EEi2qF75fUaIOGCkbalwlhYrTJh5gjuiE9sZ8Ys-jCS3GX1hG-MDnyEA4zG6xPpFAUk9bV8R2GZ8KDcSGlwgNTcn1Uo3X-bHQ0n2ySL~LaAMVvNSFxxm0fWWICiQM5DfHGT~ZI9HO-lEJYwXM~iTQtGplDEf-NDXb6Su8OlV2qCg-Wk4G9b6xcOOcchtRN-hmKJD~W8XskDFvn82TwNprooRX7ypKwSGZWpJUcNDuexo7ISYmMyXWB6k4EGSo786OuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438674"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438674/Universal_lifts_of_chain_complexes_over_non_commutative_parameter_algebras"><img alt="Research paper thumbnail of Universal lifts of chain complexes over non-commutative parameter algebras" class="work-thumbnail" src="https://attachments.academia-assets.com/119481588/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438674/Universal_lifts_of_chain_complexes_over_non_commutative_parameter_algebras">Universal lifts of chain complexes over non-commutative parameter algebras</a></div><div class="wp-workCard_item"><span>Kyoto Journal of Mathematics</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="37ac0f0dbd172bcedeec3f75b634c7c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481588,"asset_id":125438674,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481588/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438674"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438674"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438674; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438674]").text(description); $(".js-view-count[data-work-id=125438674]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438674; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438674']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "37ac0f0dbd172bcedeec3f75b634c7c8" } } $('.js-work-strip[data-work-id=125438674]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438674,"title":"Universal lifts of chain complexes over non-commutative parameter algebras","internal_url":"https://www.academia.edu/125438674/Universal_lifts_of_chain_complexes_over_non_commutative_parameter_algebras","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481588/thumbnails/1.jpg","file_name":"0712.pdf","download_url":"https://www.academia.edu/attachments/119481588/download_file","bulk_download_file_name":"Universal_lifts_of_chain_complexes_over.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481588/0712-libre.pdf?1731530679=\u0026response-content-disposition=attachment%3B+filename%3DUniversal_lifts_of_chain_complexes_over.pdf\u0026Expires=1739982851\u0026Signature=KmlXbLFtyvbk1QtH6PXeTRz4DW7PC55fEUmlzov3oy0y6mOeGreULc9gOMHfouJg3-Hvw6GOZ1KvVgG1j9fPBatyUvpQae5J2v490TbGWaDFFhbqEIWQiRcQUxopVRy9K4GVWmKNnTWvvj3sf7xwAvZR02wG5xNA~7ahEyyQP9w8gVxMIU2NT-vy8S6lo7ev4TXZHHlmvOzbqQVU~~GtNE~IC2b05iQfFvTKgGdyQRsRh7REWOruOS4lPsTeLTBwMyomYd5BVCYFg~zPnmIFVZu1gwazqsboYGkYa2H3FLjXYA2xatlH8zBDW9YIAbGhKqRhdvpJvpscl7RKfhL-3g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438673"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438673/Homotopy_categories_of_unbounded_complexes_of_projective_modules"><img alt="Research paper thumbnail of Homotopy categories of unbounded complexes of projective modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481562/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438673/Homotopy_categories_of_unbounded_complexes_of_projective_modules">Homotopy categories of unbounded complexes of projective modules</a></div><div class="wp-workCard_item"><span>Journal of the London Mathematical Society</span><span>, Feb 4, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c7331e337512add0760fa6e49b56d728" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481562,"asset_id":125438673,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481562/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438673"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438673"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438673; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438673]").text(description); $(".js-view-count[data-work-id=125438673]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438673; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438673']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c7331e337512add0760fa6e49b56d728" } } $('.js-work-strip[data-work-id=125438673]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438673,"title":"Homotopy categories of unbounded complexes of projective modules","internal_url":"https://www.academia.edu/125438673/Homotopy_categories_of_unbounded_complexes_of_projective_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481562,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481562/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481562/download_file","bulk_download_file_name":"Homotopy_categories_of_unbounded_complex.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481562/1805-libre.pdf?1731530681=\u0026response-content-disposition=attachment%3B+filename%3DHomotopy_categories_of_unbounded_complex.pdf\u0026Expires=1740001389\u0026Signature=P0XR1r0LMIauUu2ek6oqH2angAyAwnOC41M0g4tsYFMDWBhCT0cLUbJfEMUI~YgKjK9qphN5lZf1F2l0IHjSOsWEzQee-x4Twc-xBnr5JzOEDwJot0hXin8qiUuZ9gMTq3tP62A3XwWh1a0ZcBcxOgBsjBt-YrB2atCYLGDAmK2tVKCk8e62t-1tuzZveyJvxbxKSfC4AihPPlrcdTZJS5DxcjUNUxayv-eVo4kUkOGwFRH0WKiy~De~i4e0YLJjKALtRupqi4CzVcIo0OEDJwB5GiVtArEbmjBXCej-gnI-H1etoMaTMguKfrkVwX5hUjN~62LRiSidjVOPJ2f4Nw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119481561,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481561/thumbnails/1.jpg","file_name":"1805.pdf","download_url":"https://www.academia.edu/attachments/119481561/download_file","bulk_download_file_name":"Homotopy_categories_of_unbounded_complex.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481561/1805-libre.pdf?1731530686=\u0026response-content-disposition=attachment%3B+filename%3DHomotopy_categories_of_unbounded_complex.pdf\u0026Expires=1740001389\u0026Signature=dmD2GljjsOnf~j3zbAbPw5rFfOHLx4VcT7JlQCPWnP2HLcJAc26PnpuV9KCAq7odzOoi9doeMLi8n5cJdKtNVQibWvvl~8kNcdgSIyzGJ1SXFo8BkYvGqtyRw9lXq-0q1qGgFs0FjmLJfxc9ssBDxDy~g-tW8Q1L9ocsj6bjo9151SUvKH474TSc8HGQN9y-Lx5wGN1wWwRl2S8e1uZbfdPbozkek4nVt6jxqd9qtd1~301Dsu7MRrDZnmR6e2HHgdBh-gHrORqmL04pIZp~HsGdqOUgCBGbvPKPBg4bmY-OE8P2WIdiNI3gFWsSJVJkZwPDit96ikM9R66aTtgwsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438671"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438671/The_Fundamental_Module_of_a_Normal_Local_Domain_of_Dimension_2"><img alt="Research paper thumbnail of The Fundamental Module of a Normal Local Domain of Dimension 2" class="work-thumbnail" src="https://attachments.academia-assets.com/119481589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438671/The_Fundamental_Module_of_a_Normal_Local_Domain_of_Dimension_2">The Fundamental Module of a Normal Local Domain of Dimension 2</a></div><div class="wp-workCard_item"><span>Transactions of the American Mathematical Society</span><span>, Sep 1, 1988</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fundamental module E of a normal local domain (R,m) of dimension 2 is defined by the nonsplit...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fundamental module E of a normal local domain (R,m) of dimension 2 is defined by the nonsplit exact sequence 0-* K -* E -* xa-» 0, where K is the canonical module of R. We prove that, if R is complete with R/m ~ C, then E is decomposable if and only if R is a cyclic quotient singularity. Various other properties of fundamental modules will be discussed. Let (R,m) be a normal local domain of dimension 2 which possesses the canonical module K. Let C(R) denote the category of finitely generated reflexive B-modules. Note that a finitely generated B-module is an object in C(R) if and only if it is a maximal Cohen-Macaulay module over R. By definition, K is a reflexive module of rank 1 and it satisfies Ext^(B/m, K) ~ R/m. (See Herzog and Kunz [8] for the details.) We denote the duality with respect to R (resp. K) by * (resp. '), that is, ( )* = HomR( ,R) and ( )' = HomR( ,K). Remark that a finitely generated B-module M lies in C(B) if and only if M** =• M, or</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3448e0d47d127b1d608a497bfc64d3c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481589,"asset_id":125438671,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481589/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438671"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438671"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438671; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438671]").text(description); $(".js-view-count[data-work-id=125438671]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438671; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438671']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3448e0d47d127b1d608a497bfc64d3c1" } } $('.js-work-strip[data-work-id=125438671]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438671,"title":"The Fundamental Module of a Normal Local Domain of Dimension 2","internal_url":"https://www.academia.edu/125438671/The_Fundamental_Module_of_a_Normal_Local_Domain_of_Dimension_2","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481589/thumbnails/1.jpg","file_name":"S0002-9947-1988-0957079-7.pdf","download_url":"https://www.academia.edu/attachments/119481589/download_file","bulk_download_file_name":"The_Fundamental_Module_of_a_Normal_Local.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481589/S0002-9947-1988-0957079-7-libre.pdf?1731530665=\u0026response-content-disposition=attachment%3B+filename%3DThe_Fundamental_Module_of_a_Normal_Local.pdf\u0026Expires=1739982851\u0026Signature=Zn3v3cIglxHvZ0hdI7XsrwNvx-Jy-ZYKeDu6H8vIrLFKF3iR2-n0tqIAFXqhI2wBkop0oQ4R9Zt3kWDYQfZZlJQo7sqMYsoIzWsKrmMI6QCkskDgTR572SZjhq3xTF5q0t4iiV8GtL7V1tTiWC5evSq84w0Rjnrj352bN60LIIqLtiOEFql900mUOsGqvUPfMreF4XbNJmZOF0cQU3uLYJhoeft8X7LVUZd3ceKzCPyIxeetDkiTIX2sFMDEEk6-BjLBovPmGaLshsP09L1T4fV02Ty1D~PXNa7~KpHAnMwIyRhjLnqOtiNj-Ea6yaLZzhaValNrLIfA~XSm4NBycQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125438654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125438654/Stable_degenerations_of_Cohen_Macaulay_modules"><img alt="Research paper thumbnail of Stable degenerations of Cohen–Macaulay modules" class="work-thumbnail" src="https://attachments.academia-assets.com/119481548/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125438654/Stable_degenerations_of_Cohen_Macaulay_modules">Stable degenerations of Cohen–Macaulay modules</a></div><div class="wp-workCard_item"><span>Journal of Algebra</span><span>, Apr 1, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">As a stable analogue of degenerations, we introduce the notion of stable degenerations for Cohen-...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">As a stable analogue of degenerations, we introduce the notion of stable degenerations for Cohen-Macaulay modules over a Gorenstein local algebra. We shall give several necessary and/or sufficient conditions for the stable degeneration. These conditions will be helpful to see when a Cohen-Macaulay module degenerates to another. R corresponding to an R-module M. Then we say that M degenerates to N if O(N) is 0 2000 Mathematics Subject Classification. Primary 13C14; Secondary 13D10.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="18e7ffb134cba587d3acaaa563811032" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":119481548,"asset_id":125438654,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/119481548/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125438654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125438654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125438654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125438654]").text(description); $(".js-view-count[data-work-id=125438654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125438654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125438654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "18e7ffb134cba587d3acaaa563811032" } } $('.js-work-strip[data-work-id=125438654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125438654,"title":"Stable degenerations of Cohen–Macaulay modules","internal_url":"https://www.academia.edu/125438654/Stable_degenerations_of_Cohen_Macaulay_modules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":119481548,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119481548/thumbnails/1.jpg","file_name":"1012.pdf","download_url":"https://www.academia.edu/attachments/119481548/download_file","bulk_download_file_name":"Stable_degenerations_of_Cohen_Macaulay_m.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119481548/1012-libre.pdf?1731530678=\u0026response-content-disposition=attachment%3B+filename%3DStable_degenerations_of_Cohen_Macaulay_m.pdf\u0026Expires=1740001389\u0026Signature=Y3ZU-X9sH27bpcWhpZ7tN0r1OvusIxKXKNId-LbUje01QV6NS6NzdH81QB~dy-aRjDolMjcQkLFYaxuncaGF68SUXvwWF7ALKvp4uXTFkhkFlKe4FXNH4oYT8tSMX1xwzVYUHLmFFfSetcgTkHXZ2-n6y~H0S9JJ4~yxKTMq8N82J-3mv2hO9G72TzAsCBbtkBUPcrKsyIMLKGNq4O5i69vuNIOMaaYGj1V6zyQJbIvXqP8eqB42vrVaXgER09ySVrM1BniRdzrbBwqaIlI2MbsllXnNsTnYu8wN5KCAlOS59dLbRQSrZBVkBX0CyrEIlBCEAh3IIcioPb2NiTlgUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110850003"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110850003/Homological_invariants_associated_to_semi_dualizing_bimodules"><img alt="Research paper thumbnail of Homological invariants associated to semi-dualizing bimodules" class="work-thumbnail" src="https://attachments.academia-assets.com/108540131/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110850003/Homological_invariants_associated_to_semi_dualizing_bimodules">Homological invariants associated to semi-dualizing bimodules</a></div><div class="wp-workCard_item"><span>Kyoto Journal of Mathematics</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cohen-Macaulay dimension for modules over a commutative ring has been defined by A. A. Gerko. Tha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cohen-Macaulay dimension for modules over a commutative ring has been defined by A. A. Gerko. That is a homological invariant sharing many properties with projective dimension and Gorenstein dimension. The main purpose of this paper is to extend the notion of Cohen-Macaulay dimension for modules over commutative noetherian local rings to that for bounded complexes over non-commutative noetherian rings.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5897361446320d12bcd53fba0e04d2d5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108540131,"asset_id":110850003,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108540131/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110850003"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110850003"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110850003; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110850003]").text(description); $(".js-view-count[data-work-id=110850003]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110850003; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110850003']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5897361446320d12bcd53fba0e04d2d5" } } $('.js-work-strip[data-work-id=110850003]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110850003,"title":"Homological invariants associated to semi-dualizing bimodules","internal_url":"https://www.academia.edu/110850003/Homological_invariants_associated_to_semi_dualizing_bimodules","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":108540131,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540131/thumbnails/1.jpg","file_name":"1250281991.pdf","download_url":"https://www.academia.edu/attachments/108540131/download_file","bulk_download_file_name":"Homological_invariants_associated_to_sem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540131/1250281991-libre.pdf?1702007381=\u0026response-content-disposition=attachment%3B+filename%3DHomological_invariants_associated_to_sem.pdf\u0026Expires=1739982851\u0026Signature=BpjFhaLvAYIu~i~ThxfTq7Cy6nBa-pNc9sHtu~zhSm1wamTV6voREF6xbPzXjqeMAYdDIuM1B2VVfURGP16feqAyDzIq-~0vsDlc0Ian69~fllikeBu2iXlL6L7FcJLy67TVY1o0du-XHledEOpFfSx9PD0~4DeUzmkDAlfJvGcGh9NWGtw1F2fzpfh9vEh~8fwzj7QXL6YcJA8I7~jl0kuBX5XnqV2V5KY-IXY2FK-Yvnh-p4Zib99scx3TsEwUJJEvf0ijDumpiVnlOxrg64CQyc61XM9V62osd7Dpntbl2q48WkxQ16ndmocsDtESlxfWKbhBnlED7Uwvt2rh-w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108540132,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540132/thumbnails/1.jpg","file_name":"1250281991.pdf","download_url":"https://www.academia.edu/attachments/108540132/download_file","bulk_download_file_name":"Homological_invariants_associated_to_sem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540132/1250281991-libre.pdf?1702007375=\u0026response-content-disposition=attachment%3B+filename%3DHomological_invariants_associated_to_sem.pdf\u0026Expires=1739982851\u0026Signature=f3xcTw7427zQDeC4YKAyB1QL8IlmbtfMB889l4sjjolBNXlhwToiKXaX4ysUHPZuIYFv~KKPS~Iv6~jxteP9K6wsA-plNMDxZ00j44qld9~qVQojIqp0BsQEWrsF4yr42kvBiJID4ZFaIU0lnOi83e9qt0ZSbfDVZaSE3wraUnRnsx5DpBa5uwoi9OLeFX10NpDMTrIk17s1e2mJGTov06voGbJ8lQt5HocGfzW9Ud9w~MFKsaloUMCzgeIYuZvwc2nDPfq534Bsd4CDnkPpSBay~TT8McC71bUn6DySpui6F-HU~JFZqcpfrhRiPsvinN9pOanacQT8vABudcMXpA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110850002"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110850002/Abstract_local_cohomology_functors"><img alt="Research paper thumbnail of Abstract local cohomology functors" class="work-thumbnail" src="https://attachments.academia-assets.com/108540129/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110850002/Abstract_local_cohomology_functors">Abstract local cohomology functors</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Jan 6, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We propose to define the notion of abstract local cohomology functors. The ordinary local cohomol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We propose to define the notion of abstract local cohomology functors. The ordinary local cohomology functor RΓ I with support in the closed subset defined by an ideal I and the generalized local cohomology functor RΓ I,J defined in [16] are characterized as elements of the set of all the abstract local cohomology functors.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="55e055f048cfba9e27e165484949058c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108540129,"asset_id":110850002,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108540129/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110850002"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110850002"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110850002; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110850002]").text(description); $(".js-view-count[data-work-id=110850002]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110850002; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110850002']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "55e055f048cfba9e27e165484949058c" } } $('.js-work-strip[data-work-id=110850002]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110850002,"title":"Abstract local cohomology functors","internal_url":"https://www.academia.edu/110850002/Abstract_local_cohomology_functors","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":108540129,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540129/thumbnails/1.jpg","file_name":"1001.pdf","download_url":"https://www.academia.edu/attachments/108540129/download_file","bulk_download_file_name":"Abstract_local_cohomology_functors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540129/1001-libre.pdf?1702007377=\u0026response-content-disposition=attachment%3B+filename%3DAbstract_local_cohomology_functors.pdf\u0026Expires=1740001389\u0026Signature=GzI7-56oU8df8WpHmR7nS1fnXjvGn1NruuuuTP6ESSAHhEtW8cSYmlmg0g4xv4xD2HD4tTgtT58vQX7HofU-3p7GPbiRlVsnG3pTek~I9vgoe4Hl79kNYzQwbKIHOZa-jniZcA~gsFWkA7jlO0Hvyh837asTwARrek0cnt1LFC70-I1UDWYJ~eTsWWkJHwjM6HQutZ2SCLs3rYYNlyFWZCxA0nu9mFLpuc3KaAU~F-U3iqaSa-l9Mz9BW6F95fOKj-4sm~QD71pMLpdzEB7KvLPJL7fi2dj341ChSIXayIqcEizXFRiQSxvn98K63SlsyziV~b-6msnEZFldh6m03w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108540130,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540130/thumbnails/1.jpg","file_name":"1001.pdf","download_url":"https://www.academia.edu/attachments/108540130/download_file","bulk_download_file_name":"Abstract_local_cohomology_functors.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540130/1001-libre.pdf?1702007379=\u0026response-content-disposition=attachment%3B+filename%3DAbstract_local_cohomology_functors.pdf\u0026Expires=1740001389\u0026Signature=AC14hKJEQ4CjSn~3-EHhjsBw3D64byOa1gVYC7zvGQHO8dyeF7H49mupdJiKUwqO2KgjKjNqcdK380~AY6Kp-JIFjEhdNBu6w7ZN3Ygq7ml7abvdLoia6iUrh~ryZOo8wtBKe3m3gyTDuYdAsleiSAUb0vdQDhztqNyMVTMp5krB7~5vjA87rmbF~XjAXDiwME-XZZFGg0IwzAeDoQ1u0qQK3Miza6gzUUedAiFRgNYYu9qzNeR2D3VANbeaWGpIniXxgBuOxftKQrqxkFxj-HxpHzyXMeRFb2E83pqxAx5KfSmBtIVhuYmUIbbaBJN8G4pIaVIoXbO~z~6AoLBj5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="110850001"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/110850001/Gr%C3%B6bner_Bases_for_the_Polynomial_Ring_with_Infinite_Variables_and_Their_Applications"><img alt="Research paper thumbnail of Gröbner Bases for the Polynomial Ring with Infinite Variables and Their Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/108540125/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/110850001/Gr%C3%B6bner_Bases_for_the_Polynomial_Ring_with_Infinite_Variables_and_Their_Applications">Gröbner Bases for the Polynomial Ring with Infinite Variables and Their Applications</a></div><div class="wp-workCard_item"><span>Communications in Algebra</span><span>, Oct 9, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We develop the theory of Gröbner bases for ideals in a polynomial ring with countably infinite va...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We develop the theory of Gröbner bases for ideals in a polynomial ring with countably infinite variables over a field. As an application we reconstruct some of the one-one correspondences among various sets of partitions by using division algorithm.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6f17771c626aaf5bc5d6402c93c6600c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108540125,"asset_id":110850001,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108540125/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110850001"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110850001"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110850001; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110850001]").text(description); $(".js-view-count[data-work-id=110850001]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110850001; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110850001']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6f17771c626aaf5bc5d6402c93c6600c" } } $('.js-work-strip[data-work-id=110850001]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110850001,"title":"Gröbner Bases for the Polynomial Ring with Infinite Variables and Their Applications","internal_url":"https://www.academia.edu/110850001/Gr%C3%B6bner_Bases_for_the_Polynomial_Ring_with_Infinite_Variables_and_Their_Applications","owner_id":48555361,"coauthors_can_edit":true,"owner":{"id":48555361,"first_name":"Yuji","middle_initials":null,"last_name":"Yoshino","page_name":"YujiYoshino","domain_name":"independent","created_at":"2016-05-11T01:10:54.813-07:00","display_name":"Yuji Yoshino","url":"https://independent.academia.edu/YujiYoshino"},"attachments":[{"id":108540125,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540125/thumbnails/1.jpg","file_name":"0806.0479v1.pdf","download_url":"https://www.academia.edu/attachments/108540125/download_file","bulk_download_file_name":"Grobner_Bases_for_the_Polynomial_Ring_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540125/0806.0479v1-libre.pdf?1702007380=\u0026response-content-disposition=attachment%3B+filename%3DGrobner_Bases_for_the_Polynomial_Ring_wi.pdf\u0026Expires=1740001389\u0026Signature=DXVnO~2~EGpdgJD~ZNnxL-nvr5j5tA8yPt9GwfkCvHhRD8Nt4-yGoBdhPgZIh5r370ra9WO499AP2FKzRggPgaDzTbgsIIJZ0twICrIeZ5QY3VNAWlNVqj3Bhi8GnFsm471NE~ic0n-P9pjN8zKnRQmv6tdA~y~qoAV3xeWwF2peQCnMtFmrf5UhBcEMFvrBh5eB4fIxI6V-PC6igEoYrAZXm1H1NHE9fJwNgB4ZLwjf~LLQEtQxikS0eo1-ps2FtNHMjO-v~FeLF--4BQTy7gEi0eCG~UF-QGXSOhjGh0EAX-6dUqAkqeAVTGo7f0tXC8JHELhQdI2yFh4J3hNuMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108540127,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108540127/thumbnails/1.jpg","file_name":"0806.0479v1.pdf","download_url":"https://www.academia.edu/attachments/108540127/download_file","bulk_download_file_name":"Grobner_Bases_for_the_Polynomial_Ring_wi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108540127/0806.0479v1-libre.pdf?1702007373=\u0026response-content-disposition=attachment%3B+filename%3DGrobner_Bases_for_the_Polynomial_Ring_wi.pdf\u0026Expires=1740001390\u0026Signature=AV7EOAFvSCnD~tPeiE2lKIepUW8y8z~-0vci~sNuQZ3L1g9qAbT7qvzoK9nrYSABeCHWjdqn1SY8AVjERcKXdtYfly9c6eaOpS0CuA1y87cPC2q0ZHDV48XZW~VhZBwXI-V8w9bNKfgMcrOJe3kTiD2HKMGjJLAOnJBuldXJF9vyziuBt2GdNTX0MDU-HMy5u8f9fZ2ZtNRIIYkjJksaDMLWqJc8OLg8FuK5QEbOQ54WRCttoSXZQtMJwD50j4EVVjo~ukzzy3sNQnNFL6HBAzbJQfRZzaM~~tiJi5Ip7M~lVoEN0gM51nEWuJZmbSgXWyEv0HcTZaRfJJ~Ch9dqzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "912d321c767148dd5b9bd42402ee593a32bccd3dbf88ca610e43f7fa67684624", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="whk1z0Wz9G3fLloGx4XIWiksNcrAJdUr0wW7GQTh3OV92PKcmrTHlJwey_g0xDofXKIEIibwvZV1EpIwiboWEA" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/YujiYoshino" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="PQUBQ4CINWiSZ4Kl-8cglsWAluzUxVgOyKcD0cjq0eqCxMYQX48GkdFXE1sIhtLTsA6nBDIQMLBusCr4RbEbHw" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>