CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;17 of 17 results for author: <span class="mathjax">Saade, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Saade%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Saade, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Saade%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Saade, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15539">arXiv:2310.15539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15539">pdf</a>, <a href="https://arxiv.org/format/2310.15539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> SteloCoder: a Decoder-Only LLM for Multi-Language to Python Code Translation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pan%2C+J">Jialing Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Sad%C3%A9%2C+A">Adrien Sad茅</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+J">Jin Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Soriano%2C+E">Eric Soriano</a>, <a href="/search/cs?searchtype=author&amp;query=Sole%2C+G">Guillem Sole</a>, <a href="/search/cs?searchtype=author&amp;query=Flamant%2C+S">Sylvain Flamant</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15539v2-abstract-short" style="display: inline;"> With the recent focus on Large Language Models (LLMs), both StarCoder (Li et al., 2023) and Code Llama (Rozi猫re et al., 2023) have demonstrated remarkable performance in code generation. However, there is still a need for improvement in code translation functionality with efficient training techniques. In response to this, we introduce SteloCoder, a decoder-only StarCoder-based LLM designed specif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15539v2-abstract-full').style.display = 'inline'; document.getElementById('2310.15539v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15539v2-abstract-full" style="display: none;"> With the recent focus on Large Language Models (LLMs), both StarCoder (Li et al., 2023) and Code Llama (Rozi猫re et al., 2023) have demonstrated remarkable performance in code generation. However, there is still a need for improvement in code translation functionality with efficient training techniques. In response to this, we introduce SteloCoder, a decoder-only StarCoder-based LLM designed specifically for multi-programming language-to-Python code translation. In particular, SteloCoder achieves C++, C#, JavaScript, Java, or PHP-to-Python code translation without specifying the input programming language. We modified StarCoder model architecture by incorporating a Mixture-of-Experts (MoE) technique featuring five experts and a gating network for multi-task handling. Experts are obtained by StarCoder fine-tuning. Specifically, we use a Low-Rank Adaptive Method (LoRA) technique, limiting each expert size as only 0.06% of number of StarCoder&#39;s parameters. At the same time, to enhance training efficiency in terms of time, we adopt curriculum learning strategy and use self-instruct data for efficient fine-tuning. As a result, each expert takes only 6 hours to train on one single 80Gb A100 HBM. With experiments on XLCoST datasets, SteloCoder achieves an average of 73.76 CodeBLEU score in multi-programming language-to-Python translation, surpassing the top performance from the leaderboard by at least 3.5. This accomplishment is attributed to only 45M extra parameters with StarCoder as the backbone and 32 hours of valid training on one 80GB A100 HBM. The source code is release here: https://github.com/sade-adrien/SteloCoder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15539v2-abstract-full').style.display = 'none'; document.getElementById('2310.15539v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01521">arXiv:2305.01521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.01521">pdf</a>, <a href="https://arxiv.org/format/2305.01521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Unlocking the Power of Representations in Long-term Novelty-based Exploration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Kapturowski%2C+S">Steven Kapturowski</a>, <a href="/search/cs?searchtype=author&amp;query=Calandriello%2C+D">Daniele Calandriello</a>, <a href="/search/cs?searchtype=author&amp;query=Blundell%2C+C">Charles Blundell</a>, <a href="/search/cs?searchtype=author&amp;query=Sprechmann%2C+P">Pablo Sprechmann</a>, <a href="/search/cs?searchtype=author&amp;query=Sarra%2C+L">Leopoldo Sarra</a>, <a href="/search/cs?searchtype=author&amp;query=Groth%2C+O">Oliver Groth</a>, <a href="/search/cs?searchtype=author&amp;query=Valko%2C+M">Michal Valko</a>, <a href="/search/cs?searchtype=author&amp;query=Piot%2C+B">Bilal Piot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01521v1-abstract-short" style="display: inline;"> We introduce Robust Exploration via Clustering-based Online Density Estimation (RECODE), a non-parametric method for novelty-based exploration that estimates visitation counts for clusters of states based on their similarity in a chosen embedding space. By adapting classical clustering to the nonstationary setting of Deep RL, RECODE can efficiently track state visitation counts over thousands of e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01521v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01521v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01521v1-abstract-full" style="display: none;"> We introduce Robust Exploration via Clustering-based Online Density Estimation (RECODE), a non-parametric method for novelty-based exploration that estimates visitation counts for clusters of states based on their similarity in a chosen embedding space. By adapting classical clustering to the nonstationary setting of Deep RL, RECODE can efficiently track state visitation counts over thousands of episodes. We further propose a novel generalization of the inverse dynamics loss, which leverages masked transformer architectures for multi-step prediction; which in conjunction with RECODE achieves a new state-of-the-art in a suite of challenging 3D-exploration tasks in DM-Hard-8. RECODE also sets new state-of-the-art in hard exploration Atari games, and is the first agent to reach the end screen in &#34;Pitfall!&#34;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01521v1-abstract-full').style.display = 'none'; document.getElementById('2305.01521v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08332">arXiv:2206.08332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.08332">pdf</a>, <a href="https://arxiv.org/format/2206.08332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> BYOL-Explore: Exploration by Bootstrapped Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z+D">Zhaohan Daniel Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Thakoor%2C+S">Shantanu Thakoor</a>, <a href="/search/cs?searchtype=author&amp;query=P%C3%AEslar%2C+M">Miruna P卯slar</a>, <a href="/search/cs?searchtype=author&amp;query=Pires%2C+B+A">Bernardo Avila Pires</a>, <a href="/search/cs?searchtype=author&amp;query=Altch%C3%A9%2C+F">Florent Altch茅</a>, <a href="/search/cs?searchtype=author&amp;query=Tallec%2C+C">Corentin Tallec</a>, <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Calandriello%2C+D">Daniele Calandriello</a>, <a href="/search/cs?searchtype=author&amp;query=Grill%2C+J">Jean-Bastien Grill</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yunhao Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Valko%2C+M">Michal Valko</a>, <a href="/search/cs?searchtype=author&amp;query=Munos%2C+R">R茅mi Munos</a>, <a href="/search/cs?searchtype=author&amp;query=Azar%2C+M+G">Mohammad Gheshlaghi Azar</a>, <a href="/search/cs?searchtype=author&amp;query=Piot%2C+B">Bilal Piot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08332v1-abstract-short" style="display: inline;"> We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually-complex environments. BYOL-Explore learns a world representation, the world dynamics, and an exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challeng&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08332v1-abstract-full').style.display = 'inline'; document.getElementById('2206.08332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08332v1-abstract-full" style="display: none;"> We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually-complex environments. BYOL-Explore learns a world representation, the world dynamics, and an exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challenging partially-observable continuous-action hard-exploration benchmark with visually-rich 3-D environments. On this benchmark, we solve the majority of the tasks purely through augmenting the extrinsic reward with BYOL-Explore s intrinsic reward, whereas prior work could only get off the ground with human demonstrations. As further evidence of the generality of BYOL-Explore, we show that it achieves superhuman performance on the ten hardest exploration games in Atari while having a much simpler design than other competitive agents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08332v1-abstract-full').style.display = 'none'; document.getElementById('2206.08332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.02055">arXiv:2101.02055</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.02055">pdf</a>, <a href="https://arxiv.org/format/2101.02055">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Geometric Entropic Exploration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Z+D">Zhaohan Daniel Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Azar%2C+M+G">Mohammad Gheshlaghi Azar</a>, <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Thakoor%2C+S">Shantanu Thakoor</a>, <a href="/search/cs?searchtype=author&amp;query=Piot%2C+B">Bilal Piot</a>, <a href="/search/cs?searchtype=author&amp;query=Pires%2C+B+A">Bernardo Avila Pires</a>, <a href="/search/cs?searchtype=author&amp;query=Valko%2C+M">Michal Valko</a>, <a href="/search/cs?searchtype=author&amp;query=Mesnard%2C+T">Thomas Mesnard</a>, <a href="/search/cs?searchtype=author&amp;query=Lattimore%2C+T">Tor Lattimore</a>, <a href="/search/cs?searchtype=author&amp;query=Munos%2C+R">R茅mi Munos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.02055v2-abstract-short" style="display: inline;"> Exploration is essential for solving complex Reinforcement Learning (RL) tasks. Maximum State-Visitation Entropy (MSVE) formulates the exploration problem as a well-defined policy optimization problem whose solution aims at visiting all states as uniformly as possible. This is in contrast to standard uncertainty-based approaches where exploration is transient and eventually vanishes. However, exis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02055v2-abstract-full').style.display = 'inline'; document.getElementById('2101.02055v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.02055v2-abstract-full" style="display: none;"> Exploration is essential for solving complex Reinforcement Learning (RL) tasks. Maximum State-Visitation Entropy (MSVE) formulates the exploration problem as a well-defined policy optimization problem whose solution aims at visiting all states as uniformly as possible. This is in contrast to standard uncertainty-based approaches where exploration is transient and eventually vanishes. However, existing approaches to MSVE are theoretically justified only for discrete state-spaces as they are oblivious to the geometry of continuous domains. We address this challenge by introducing Geometric Entropy Maximisation (GEM), a new algorithm that maximises the geometry-aware Shannon entropy of state-visits in both discrete and continuous domains. Our key theoretical contribution is casting geometry-aware MSVE exploration as a tractable problem of optimising a simple and novel noise-contrastive objective function. In our experiments, we show the efficiency of GEM in solving several RL problems with sparse rewards, compared against other deep RL exploration approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02055v2-abstract-full').style.display = 'none'; document.getElementById('2101.02055v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09464">arXiv:2011.09464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.09464">pdf</a>, <a href="https://arxiv.org/format/2011.09464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Counterfactual Credit Assignment in Model-Free Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mesnard%2C+T">Thomas Mesnard</a>, <a href="/search/cs?searchtype=author&amp;query=Weber%2C+T">Th茅ophane Weber</a>, <a href="/search/cs?searchtype=author&amp;query=Viola%2C+F">Fabio Viola</a>, <a href="/search/cs?searchtype=author&amp;query=Thakoor%2C+S">Shantanu Thakoor</a>, <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Harutyunyan%2C+A">Anna Harutyunyan</a>, <a href="/search/cs?searchtype=author&amp;query=Dabney%2C+W">Will Dabney</a>, <a href="/search/cs?searchtype=author&amp;query=Stepleton%2C+T">Tom Stepleton</a>, <a href="/search/cs?searchtype=author&amp;query=Heess%2C+N">Nicolas Heess</a>, <a href="/search/cs?searchtype=author&amp;query=Guez%2C+A">Arthur Guez</a>, <a href="/search/cs?searchtype=author&amp;query=Moulines%2C+%C3%89">脡ric Moulines</a>, <a href="/search/cs?searchtype=author&amp;query=Hutter%2C+M">Marcus Hutter</a>, <a href="/search/cs?searchtype=author&amp;query=Buesing%2C+L">Lars Buesing</a>, <a href="/search/cs?searchtype=author&amp;query=Munos%2C+R">R茅mi Munos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09464v2-abstract-short" style="display: inline;"> Credit assignment in reinforcement learning is the problem of measuring an action&#39;s influence on future rewards. In particular, this requires separating skill from luck, i.e. disentangling the effect of an action on rewards from that of external factors and subsequent actions. To achieve this, we adapt the notion of counterfactuals from causality theory to a model-free RL setup. The key idea is to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09464v2-abstract-full').style.display = 'inline'; document.getElementById('2011.09464v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09464v2-abstract-full" style="display: none;"> Credit assignment in reinforcement learning is the problem of measuring an action&#39;s influence on future rewards. In particular, this requires separating skill from luck, i.e. disentangling the effect of an action on rewards from that of external factors and subsequent actions. To achieve this, we adapt the notion of counterfactuals from causality theory to a model-free RL setup. The key idea is to condition value functions on future events, by learning to extract relevant information from a trajectory. We formulate a family of policy gradient algorithms that use these future-conditional value functions as baselines or critics, and show that they are provably low variance. To avoid the potential bias from conditioning on future information, we constrain the hindsight information to not contain information about the agent&#39;s actions. We demonstrate the efficacy and validity of our algorithm on a number of illustrative and challenging problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09464v2-abstract-full').style.display = 'none'; document.getElementById('2011.09464v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12735">arXiv:1810.12735</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12735">pdf</a>, <a href="https://arxiv.org/ps/1810.12735">ps</a>, <a href="https://arxiv.org/format/1810.12735">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Spoken Language Understanding on the Edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Coucke%2C+A">Alice Coucke</a>, <a href="/search/cs?searchtype=author&amp;query=Caulier%2C+A">Alexandre Caulier</a>, <a href="/search/cs?searchtype=author&amp;query=Dureau%2C+J">Joseph Dureau</a>, <a href="/search/cs?searchtype=author&amp;query=Ball%2C+A">Adrien Ball</a>, <a href="/search/cs?searchtype=author&amp;query=Bluche%2C+T">Th茅odore Bluche</a>, <a href="/search/cs?searchtype=author&amp;query=Leroy%2C+D">David Leroy</a>, <a href="/search/cs?searchtype=author&amp;query=Doumouro%2C+C">Cl茅ment Doumouro</a>, <a href="/search/cs?searchtype=author&amp;query=Gisselbrecht%2C+T">Thibault Gisselbrecht</a>, <a href="/search/cs?searchtype=author&amp;query=Caltagirone%2C+F">Francesco Caltagirone</a>, <a href="/search/cs?searchtype=author&amp;query=Lavril%2C+T">Thibaut Lavril</a>, <a href="/search/cs?searchtype=author&amp;query=Primet%2C+M">Ma毛l Primet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12735v2-abstract-short" style="display: inline;"> We consider the problem of performing Spoken Language Understanding (SLU) on small devices typical of IoT applications. Our contributions are twofold. First, we outline the design of an embedded, private-by-design SLU system and show that it has performance on par with cloud-based commercial solutions. Second, we release the datasets used in our experiments in the interest of reproducibility and i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12735v2-abstract-full').style.display = 'inline'; document.getElementById('1810.12735v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12735v2-abstract-full" style="display: none;"> We consider the problem of performing Spoken Language Understanding (SLU) on small devices typical of IoT applications. Our contributions are twofold. First, we outline the design of an embedded, private-by-design SLU system and show that it has performance on par with cloud-based commercial solutions. Second, we release the datasets used in our experiments in the interest of reproducibility and in the hope that they can prove useful to the SLU community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12735v2-abstract-full').style.display = 'none'; document.getElementById('1810.12735v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1805.10190</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.10190">arXiv:1805.10190</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.10190">pdf</a>, <a href="https://arxiv.org/format/1805.10190">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Coucke%2C+A">Alice Coucke</a>, <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Ball%2C+A">Adrien Ball</a>, <a href="/search/cs?searchtype=author&amp;query=Bluche%2C+T">Th茅odore Bluche</a>, <a href="/search/cs?searchtype=author&amp;query=Caulier%2C+A">Alexandre Caulier</a>, <a href="/search/cs?searchtype=author&amp;query=Leroy%2C+D">David Leroy</a>, <a href="/search/cs?searchtype=author&amp;query=Doumouro%2C+C">Cl茅ment Doumouro</a>, <a href="/search/cs?searchtype=author&amp;query=Gisselbrecht%2C+T">Thibault Gisselbrecht</a>, <a href="/search/cs?searchtype=author&amp;query=Caltagirone%2C+F">Francesco Caltagirone</a>, <a href="/search/cs?searchtype=author&amp;query=Lavril%2C+T">Thibaut Lavril</a>, <a href="/search/cs?searchtype=author&amp;query=Primet%2C+M">Ma毛l Primet</a>, <a href="/search/cs?searchtype=author&amp;query=Dureau%2C+J">Joseph Dureau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.10190v3-abstract-short" style="display: inline;"> This paper presents the machine learning architecture of the Snips Voice Platform, a software solution to perform Spoken Language Understanding on microprocessors typical of IoT devices. The embedded inference is fast and accurate while enforcing privacy by design, as no personal user data is ever collected. Focusing on Automatic Speech Recognition and Natural Language Understanding, we detail our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10190v3-abstract-full').style.display = 'inline'; document.getElementById('1805.10190v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.10190v3-abstract-full" style="display: none;"> This paper presents the machine learning architecture of the Snips Voice Platform, a software solution to perform Spoken Language Understanding on microprocessors typical of IoT devices. The embedded inference is fast and accurate while enforcing privacy by design, as no personal user data is ever collected. Focusing on Automatic Speech Recognition and Natural Language Understanding, we detail our approach to training high-performance Machine Learning models that are small enough to run in real-time on small devices. Additionally, we describe a data generation procedure that provides sufficient, high-quality training data without compromising user privacy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.10190v3-abstract-full').style.display = 'none'; document.getElementById('1805.10190v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 9 figures, 17 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.09533">arXiv:1803.09533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.09533">pdf</a>, <a href="https://arxiv.org/format/1803.09533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Deep Representation for Patient Visits from Electronic Health Records </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Escudi%C3%A9%2C+J">Jean-Baptiste Escudi茅</a>, <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Coucke%2C+A">Alice Coucke</a>, <a href="/search/cs?searchtype=author&amp;query=Lelarge%2C+M">Marc Lelarge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.09533v1-abstract-short" style="display: inline;"> We show how to learn low-dimensional representations (embeddings) of patient visits from the corresponding electronic health record (EHR) where International Classification of Diseases (ICD) diagnosis codes are removed. We expect that these embeddings will be useful for the construction of predictive statistical models anticipated to drive personalized medicine and improve healthcare quality. Thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.09533v1-abstract-full').style.display = 'inline'; document.getElementById('1803.09533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.09533v1-abstract-full" style="display: none;"> We show how to learn low-dimensional representations (embeddings) of patient visits from the corresponding electronic health record (EHR) where International Classification of Diseases (ICD) diagnosis codes are removed. We expect that these embeddings will be useful for the construction of predictive statistical models anticipated to drive personalized medicine and improve healthcare quality. These embeddings are learned using a deep neural network trained to predict ICD diagnosis categories. We show that our embeddings capture relevant clinical informations and can be used directly as input to standard machine learning algorithms like multi-output classifiers for ICD code prediction. We also show that important medical informations correspond to particular directions in our embedding space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.09533v1-abstract-full').style.display = 'none'; document.getElementById('1803.09533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04337">arXiv:1610.04337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04337">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Spectral Inference Methods on Sparse Graphs: Theory and Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04337v1-abstract-short" style="display: inline;"> In an era of unprecedented deluge of (mostly unstructured) data, graphs are proving more and more useful, across the sciences, as a flexible abstraction to capture complex relationships between complex objects. One of the main challenges arising in the study of such networks is the inference of macroscopic, large-scale properties affecting a large number of objects, based solely on the microscopic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04337v1-abstract-full').style.display = 'inline'; document.getElementById('1610.04337v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04337v1-abstract-full" style="display: none;"> In an era of unprecedented deluge of (mostly unstructured) data, graphs are proving more and more useful, across the sciences, as a flexible abstraction to capture complex relationships between complex objects. One of the main challenges arising in the study of such networks is the inference of macroscopic, large-scale properties affecting a large number of objects, based solely on the microscopic interactions between their elementary constituents. Statistical physics, precisely created to recover the macroscopic laws of thermodynamics from an idealized model of interacting particles, provides significant insight to tackle such complex networks. In this dissertation, we use methods derived from the statistical physics of disordered systems to design and study new algorithms for inference on graphs. Our focus is on spectral methods, based on certain eigenvectors of carefully chosen matrices, and sparse graphs, containing only a small amount of information. We develop an original theory of spectral inference based on a relaxation of various mean-field free energy optimizations. Our approach is therefore fully probabilistic, and contrasts with more traditional motivations based on the optimization of a cost function. We illustrate the efficiency of our approach on various problems, including community detection, randomized similarity-based clustering, and matrix completion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04337v1-abstract-full').style.display = 'none'; document.getElementById('1610.04337v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PhD dissertation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.06422">arXiv:1605.06422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.06422">pdf</a>, <a href="https://arxiv.org/format/1605.06422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/1036/1/012015">10.1088/1742-6596/1036/1/012015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast Randomized Semi-Supervised Clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Krzakala%2C+F">Florent Krzakala</a>, <a href="/search/cs?searchtype=author&amp;query=Lelarge%2C+M">Marc Lelarge</a>, <a href="/search/cs?searchtype=author&amp;query=Zdeborov%C3%A1%2C+L">Lenka Zdeborov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.06422v3-abstract-short" style="display: inline;"> We consider the problem of clustering partially labeled data from a minimal number of randomly chosen pairwise comparisons between the items. We introduce an efficient local algorithm based on a power iteration of the non-backtracking operator and study its performance on a simple model. For the case of two clusters, we give bounds on the classification error and show that a small error can be ach&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06422v3-abstract-full').style.display = 'inline'; document.getElementById('1605.06422v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.06422v3-abstract-full" style="display: none;"> We consider the problem of clustering partially labeled data from a minimal number of randomly chosen pairwise comparisons between the items. We introduce an efficient local algorithm based on a power iteration of the non-backtracking operator and study its performance on a simple model. For the case of two clusters, we give bounds on the classification error and show that a small error can be achieved from $O(n)$ randomly chosen measurements, where $n$ is the number of items in the dataset. Our algorithm is therefore efficient both in terms of time and space complexities. We also investigate numerically the performance of the algorithm on synthetic and real world data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.06422v3-abstract-full').style.display = 'none'; document.getElementById('1605.06422v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics: Conf. Series 1036 (2018) 012015 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.06683">arXiv:1601.06683</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.06683">pdf</a>, <a href="https://arxiv.org/format/1601.06683">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ISIT.2016.7541405">10.1109/ISIT.2016.7541405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clustering from Sparse Pairwise Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Lelarge%2C+M">Marc Lelarge</a>, <a href="/search/cs?searchtype=author&amp;query=Krzakala%2C+F">Florent Krzakala</a>, <a href="/search/cs?searchtype=author&amp;query=Zdeborov%C3%A1%2C+L">Lenka Zdeborov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.06683v2-abstract-short" style="display: inline;"> We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backtracking and Bethe Hessian operators. For the case of two symmetric clusters, we conjecture that thes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06683v2-abstract-full').style.display = 'inline'; document.getElementById('1601.06683v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.06683v2-abstract-full" style="display: none;"> We consider the problem of grouping items into clusters based on few random pairwise comparisons between the items. We introduce three closely related algorithms for this task: a belief propagation algorithm approximating the Bayes optimal solution, and two spectral algorithms based on the non-backtracking and Bethe Hessian operators. For the case of two symmetric clusters, we conjecture that these algorithms are asymptotically optimal in that they detect the clusters as soon as it is information theoretically possible to do so. We substantiate this claim for one of the spectral approaches we introduce. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.06683v2-abstract-full').style.display = 'none'; document.getElementById('1601.06683v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT) Pages: 780 - 784 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.06664">arXiv:1510.06664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.06664">pdf</a>, <a href="https://arxiv.org/format/1510.06664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ICASSP.2016.7472872">10.1109/ICASSP.2016.7472872 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Random Projections through multiple optical scattering: Approximating kernels at the speed of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Caltagirone%2C+F">Francesco Caltagirone</a>, <a href="/search/cs?searchtype=author&amp;query=Carron%2C+I">Igor Carron</a>, <a href="/search/cs?searchtype=author&amp;query=Daudet%2C+L">Laurent Daudet</a>, <a href="/search/cs?searchtype=author&amp;query=Dr%C3%A9meau%2C+A">Ang茅lique Dr茅meau</a>, <a href="/search/cs?searchtype=author&amp;query=Gigan%2C+S">Sylvain Gigan</a>, <a href="/search/cs?searchtype=author&amp;query=Krzakala%2C+F">Florent Krzakala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.06664v2-abstract-short" style="display: inline;"> Random projections have proven extremely useful in many signal processing and machine learning applications. However, they often require either to store a very large random matrix, or to use a different, structured matrix to reduce the computational and memory costs. Here, we overcome this difficulty by proposing an analog, optical device, that performs the random projections literally at the spee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06664v2-abstract-full').style.display = 'inline'; document.getElementById('1510.06664v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.06664v2-abstract-full" style="display: none;"> Random projections have proven extremely useful in many signal processing and machine learning applications. However, they often require either to store a very large random matrix, or to use a different, structured matrix to reduce the computational and memory costs. Here, we overcome this difficulty by proposing an analog, optical device, that performs the random projections literally at the speed of light without having to store any matrix in memory. This is achieved using the physical properties of multiple coherent scattering of coherent light in random media. We use this device on a simple task of classification with a kernel machine, and we show that, on the MNIST database, the experimental results closely match the theoretical performance of the corresponding kernel. This framework can help make kernel methods practical for applications that have large training sets and/or require real-time prediction. We discuss possible extensions of the method in terms of a class of kernels, speed, memory consumption and different problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.06664v2-abstract-full').style.display = 'none'; document.getElementById('1510.06664v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pages: 6215 - 6219 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.03498">arXiv:1506.03498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.03498">pdf</a>, <a href="https://arxiv.org/format/1506.03498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Matrix Completion from Fewer Entries: Spectral Detectability and Rank Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Krzakala%2C+F">Florent Krzakala</a>, <a href="/search/cs?searchtype=author&amp;query=Zdeborov%C3%A1%2C+L">Lenka Zdeborov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.03498v3-abstract-short" style="display: inline;"> The completion of low rank matrices from few entries is a task with many practical applications. We consider here two aspects of this problem: detectability, i.e. the ability to estimate the rank $r$ reliably from the fewest possible random entries, and performance in achieving small reconstruction error. We propose a spectral algorithm for these two tasks called MaCBetH (for Matrix Completion wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03498v3-abstract-full').style.display = 'inline'; document.getElementById('1506.03498v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.03498v3-abstract-full" style="display: none;"> The completion of low rank matrices from few entries is a task with many practical applications. We consider here two aspects of this problem: detectability, i.e. the ability to estimate the rank $r$ reliably from the fewest possible random entries, and performance in achieving small reconstruction error. We propose a spectral algorithm for these two tasks called MaCBetH (for Matrix Completion with the Bethe Hessian). The rank is estimated as the number of negative eigenvalues of the Bethe Hessian matrix, and the corresponding eigenvectors are used as initial condition for the minimization of the discrepancy between the estimated matrix and the revealed entries. We analyze the performance in a random matrix setting using results from the statistical mechanics of the Hopfield neural network, and show in particular that MaCBetH efficiently detects the rank $r$ of a large $n\times m$ matrix from $C(r)r\sqrt{nm}$ entries, where $C(r)$ is a constant close to $1$. We also evaluate the corresponding root-mean-square error empirically and show that MaCBetH compares favorably to other existing approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03498v3-abstract-full').style.display = 'none'; document.getElementById('1506.03498v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NIPS Conference 2015</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances in Neural Information Processing Systems (NIPS 2015) 28, pages 1261--1269 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00163">arXiv:1502.00163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.00163">pdf</a>, <a href="https://arxiv.org/format/1502.00163">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ISIT.2015.7282642">10.1109/ISIT.2015.7282642 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral Detection in the Censored Block Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Krzakala%2C+F">Florent Krzakala</a>, <a href="/search/cs?searchtype=author&amp;query=Lelarge%2C+M">Marc Lelarge</a>, <a href="/search/cs?searchtype=author&amp;query=Zdeborov%C3%A1%2C+L">Lenka Zdeborov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00163v2-abstract-short" style="display: inline;"> We consider the problem of partially recovering hidden binary variables from the observation of (few) censored edge weights, a problem with applications in community detection, correlation clustering and synchronization. We describe two spectral algorithms for this task based on the non-backtracking and the Bethe Hessian operators. These algorithms are shown to be asymptotically optimal for the pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00163v2-abstract-full').style.display = 'inline'; document.getElementById('1502.00163v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00163v2-abstract-full" style="display: none;"> We consider the problem of partially recovering hidden binary variables from the observation of (few) censored edge weights, a problem with applications in community detection, correlation clustering and synchronization. We describe two spectral algorithms for this task based on the non-backtracking and the Bethe Hessian operators. These algorithms are shown to be asymptotically optimal for the partial recovery problem, in that they detect the hidden assignment as soon as it is information theoretically possible to do so. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00163v2-abstract-full').style.display = 'none'; document.getElementById('1502.00163v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ISIT 2015</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE International Symposium on Information Theory (ISIT), pp.1184-1188 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.2290">arXiv:1409.2290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.2290">pdf</a>, <a href="https://arxiv.org/format/1409.2290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Complexity">cs.CC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Computational Complexity, Phase Transitions, and Message-Passing for Community Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Decelle%2C+A">Aur茅lien Decelle</a>, <a href="/search/cs?searchtype=author&amp;query=H%C3%BCttel%2C+J">Janina H眉ttel</a>, <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Moore%2C+C">Cristopher Moore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.2290v1-abstract-short" style="display: inline;"> We take a whirlwind tour of problems and techniques at the boundary of computer science and statistical physics. We start with a brief description of P, NP, and NP-completeness. We then discuss random graphs, including the emergence of the giant component and the k-core, using techniques from branching processes and differential equations. Using these tools as well as the second moment method, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2290v1-abstract-full').style.display = 'inline'; document.getElementById('1409.2290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.2290v1-abstract-full" style="display: none;"> We take a whirlwind tour of problems and techniques at the boundary of computer science and statistical physics. We start with a brief description of P, NP, and NP-completeness. We then discuss random graphs, including the emergence of the giant component and the k-core, using techniques from branching processes and differential equations. Using these tools as well as the second moment method, we give upper and lower bounds on the critical clause density for random k-SAT. We end with community detection in networks, variational methods, the Bethe free energy, belief propagation, the detectability transition, and the non-backtracking matrix. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.2290v1-abstract-full').style.display = 'none'; document.getElementById('1409.2290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Chapter of &#34;Statistical Physics, Optimization, Inference, and Message-Passing Algorithms&#34;, Eds.: F. Krzakala, F. Ricci-Tersenghi, L. Zdeborova, R. Zecchina, E. W. Tramel, L. F. Cugliandolo (Oxford University Press, to appear)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1406.1880">arXiv:1406.1880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1406.1880">pdf</a>, <a href="https://arxiv.org/format/1406.1880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Spectral Clustering of Graphs with the Bethe Hessian </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Krzakala%2C+F">Florent Krzakala</a>, <a href="/search/cs?searchtype=author&amp;query=Zdeborov%C3%A1%2C+L">Lenka Zdeborov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1406.1880v2-abstract-short" style="display: inline;"> Spectral clustering is a standard approach to label nodes on a graph by studying the (largest or lowest) eigenvalues of a symmetric real matrix such as e.g. the adjacency or the Laplacian. Recently, it has been argued that using instead a more complicated, non-symmetric and higher dimensional operator, related to the non-backtracking walk on the graph, leads to improved performance in detecting cl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.1880v2-abstract-full').style.display = 'inline'; document.getElementById('1406.1880v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1406.1880v2-abstract-full" style="display: none;"> Spectral clustering is a standard approach to label nodes on a graph by studying the (largest or lowest) eigenvalues of a symmetric real matrix such as e.g. the adjacency or the Laplacian. Recently, it has been argued that using instead a more complicated, non-symmetric and higher dimensional operator, related to the non-backtracking walk on the graph, leads to improved performance in detecting clusters, and even to optimal performance for the stochastic block model. Here, we propose to use instead a simpler object, a symmetric real matrix known as the Bethe Hessian operator, or deformed Laplacian. We show that this approach combines the performances of the non-backtracking operator, thus detecting clusters all the way down to the theoretical limit in the stochastic block model, with the computational, theoretical and memory advantages of real symmetric matrices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1406.1880v2-abstract-full').style.display = 'none'; document.getElementById('1406.1880v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances in Neural Information Processing Systems 27 (NIPS 2014) pp 406-414 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.7787">arXiv:1404.7787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.7787">pdf</a>, <a href="https://arxiv.org/format/1404.7787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/107/50005">10.1209/0295-5075/107/50005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral density of the non-backtracking operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saade%2C+A">Alaa Saade</a>, <a href="/search/cs?searchtype=author&amp;query=Krzakala%2C+F">Florent Krzakala</a>, <a href="/search/cs?searchtype=author&amp;query=Zdeborov%C3%A1%2C+L">Lenka Zdeborov谩</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.7787v1-abstract-short" style="display: inline;"> The non-backtracking operator was recently shown to provide a significant improvement when used for spectral clustering of sparse networks. In this paper we analyze its spectral density on large random sparse graphs using a mapping to the correlation functions of a certain interacting quantum disordered system on the graph. On sparse, tree-like graphs, this can be solved efficiently by the cavity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.7787v1-abstract-full').style.display = 'inline'; document.getElementById('1404.7787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.7787v1-abstract-full" style="display: none;"> The non-backtracking operator was recently shown to provide a significant improvement when used for spectral clustering of sparse networks. In this paper we analyze its spectral density on large random sparse graphs using a mapping to the correlation functions of a certain interacting quantum disordered system on the graph. On sparse, tree-like graphs, this can be solved efficiently by the cavity method and a belief propagation algorithm. We show that there exists a paramagnetic phase, leading to zero spectral density, that is stable outside a circle of radius $\sqrt蟻$, where $蟻$ is the leading eigenvalue of the non-backtracking operator. We observe a second-order phase transition at the edge of this circle, between a zero and a non-zero spectral density. That fact that this phase transition is absent in the spectral density of other matrices commonly used for spectral clustering provides a physical justification of the performances of the non-backtracking operator in spectral clustering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.7787v1-abstract-full').style.display = 'none'; document.getElementById('1404.7787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, submitted to EPL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2014 EPL 107 50005 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10