CINXE.COM

Search results for: aortic stent

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aortic stent</title> <meta name="description" content="Search results for: aortic stent"> <meta name="keywords" content="aortic stent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aortic stent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aortic stent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 109</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aortic stent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> The Optimization Process of Aortic Heart Valve Stent Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arkadiusz%20Mezyk">Arkadiusz Mezyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Klein"> Wojciech Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Pawlak"> Mariusz Pawlak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Gnilka"> Jacek Gnilka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aortic heart valve stents should fulfill many criterions. These criteria have a strong impact on the geometrical shape of the stent. Usually, the final construction of stent is a result of many year experience and knowledge. Depending on patents claims, different stent shapes are produced by different companies. This causes difficulties for biomechanics engineers narrowing the domain of feasible solutions. The paper present optimization method for stent geometry defining by a specific analytical equation based on various mathematical functions. This formula was implemented as APDL script language in ANSYS finite element environment. For the purpose of simulation tests, a few parameters were separated from developed equation. The application of the genetic algorithms allows finding the best solution due to selected objective function. Obtained solution takes into account parameters such as radial force, compression ratio and coefficient of expansion on the transverse axial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20stent" title="aortic stent">aortic stent</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20process" title=" optimization process"> optimization process</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/47096/the-optimization-process-of-aortic-heart-valve-stent-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Finite Element Analysis and Design Optimization of Stent and Balloon System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Hashim">V. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Dileep"> P. N. Dileep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stent implantation is being seen as the most successful method to treat coronary artery diseases. Different types of stents are available in the market these days and the success of a stent implantation greatly depends on the proper selection of a suitable stent for a patient. Computer numerical simulation is the cost effective way to choose the compatible stent. Studies confirm that the design characteristics of stent do have great importance with regards to the pressure it can sustain, the maximum displacement it can produce, the developed stress concentration and so on. In this paper different designs of stent were analyzed together with balloon to optimize the stent and balloon system. Commercially available stent Palmaz-Schatz has been selected for analysis. Abaqus software is used to simulate the system. This work is the finite element analysis of the artery stent implant to find out the design factors affecting the stress and strain. The work consists of two phases. In the first phase, stress distribution of three models were compared - stent without balloon, stent with balloon of equal length and stent with balloon of extra length than stent. In second phase, three different design models of Palmaz-Schatz stent were compared by keeping the balloon length constant. The results obtained from analysis shows that, the design of the strut have strong effect on the stress distribution. A design with chamfered slots found better results. The length of the balloon also has influence on stress concentration of the stent. Increase in length of the balloon will reduce stress, but will increase dog boning effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronary%20stent" title="coronary stent">coronary stent</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=restenosis" title=" restenosis"> restenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a> </p> <a href="https://publications.waset.org/abstracts/20940/finite-element-analysis-and-design-optimization-of-stent-and-balloon-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scott%20M.%20Black">Scott M. Black</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Maclean"> Craig Maclean</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Hall%20Barrientos"> Pauline Hall Barrientos</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Ritos"> Konstantinos Ritos</a>, <a href="https://publications.waset.org/abstracts/search?q=Asimina%20Kazakidi"> Asimina Kazakidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4D%20flow-MRI" title="4D flow-MRI">4D flow-MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20stent-grafts" title=" vascular stent-grafts"> vascular stent-grafts</a>, <a href="https://publications.waset.org/abstracts/search?q=windkessel" title=" windkessel"> windkessel</a> </p> <a href="https://publications.waset.org/abstracts/144802/optimization-of-perfusion-distribution-in-custom-vascular-stent-grafts-through-patient-specific-cfd-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20M.%20Alzahrani">Abdullah M. Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39). There was no correlation between u-PA and PAI-1 (r = 0.3) but t-PA and PAI-1 were strongly correlated with each other (r = 0.6). Over expression of PAI-1 was proportional to the calcium content of theAS valves. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The over expression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20valve" title="aortic valve">aortic valve</a>, <a href="https://publications.waset.org/abstracts/search?q=PAI-1" title=" PAI-1"> PAI-1</a>, <a href="https://publications.waset.org/abstracts/search?q=tPA%20gene" title=" tPA gene"> tPA gene</a>, <a href="https://publications.waset.org/abstracts/search?q=uPA%20gene" title=" uPA gene"> uPA gene</a> </p> <a href="https://publications.waset.org/abstracts/24878/expression-of-upa-tpa-and-pai-1-in-calcified-aortic-valves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Ureteral Stents with Extraction Strings: Patient-Reported Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rammah%20Abdlbagi">Rammah Abdlbagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Similoluwa%20Biyi"> Similoluwa Biyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Pai"> Aakash Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Short-term ureteric stents are commonly placed after ureteroscopy procedures. The removal usually entails having a flexible cystoscopy, which entails a further invasive procedure. There are often delays in removing the stent as departments have limited cystoscopy availability. However, if stents with extraction strings are used, the patient or a clinician can remove them. The aim of the study is to assess the safety and effectiveness of the use of a stent with a string. Method: A retrospective, single-institution study was conducted over a three-month period. Twenty consecutive patients had ureteric stents with string insertion. Ten of the patients had a stent removal procedure previously with flexible cystoscopy. A validated questionnaire was used to assess outcomes. Primary outcomes included: dysuria, hematuria, urinary frequency, and disturbance of the patient’s daily activities. Secondary outcomes included pain experience during the stent removal. Result: Fifteen patients (75%) experienced hematuria and frequency. Two patients experienced pain and discomfort during the stent removal (10%). Two patients had experienced a disturbance in their daily activity (10%). All patients who had stent removal before using flexible cystoscopy preferred the removal of the stent using a string. None of the patients had stent displacement. The median stent dwell time was five days. Conclusion: Patient reported outcomes measures for the indwelling period of a stent with extraction string are equivalent to the published data on stents. Extraction strings mean that the stent dwell time can be reduced. The removal of the stent on extraction strings is more tolerable than the conventional stent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ureteric%20stent" title="ureteric stent">ureteric stent</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20flexible%20cystoscopy" title=" string flexible cystoscopy"> string flexible cystoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=stent%20symptoms" title=" stent symptoms"> stent symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=validated%20questionnaire" title=" validated questionnaire"> validated questionnaire</a> </p> <a href="https://publications.waset.org/abstracts/157309/ureteral-stents-with-extraction-strings-patient-reported-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Endovascular Aneurysm Repair (Evar) with Endoanchors: For Tandem Aortic Abdominal Aneurysm (Aaa) with Hostile Neck &amp; Proximal Penetrating Atherosclerotic Ulcer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Von%20Jerick%20Tenorio">Von Jerick Tenorio</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonald%20Lucero"> Jonald Lucero</a>, <a href="https://publications.waset.org/abstracts/search?q=Marivic%20Vestal"> Marivic Vestal</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Tiempo"> Edwin Tiempo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In patients with hostile aortic neck anatomy, the risks of proximal seal complications and stent migration remain with EVAR despite improved endograft technology. This case report discusses how the technical challenges of the hostile neck anatomy, proximal penetrating atherosclerotic ulcer (PAU) and tortuous femoral access were addressed. The CT aortogram of a 63-year-old hypertensive and diabetic man with recurring abdominal discomfort revealed a fusiform infra-renal aneurysm measuring 8.8 cm in length and 5.7 cm in diameter. The proximal landing zone only has a 3 mm healthy neck with a conicity of > 10% and a thrombus of 4 mm thick. Proximal to the aneurysm is a PAU with a circumferential mural thrombus. The right femoral artery is tortuous with > 90o angulation. A 20% oversized Endurant II endograft and Aptus Heli-FX EndoAnchors were deployed as prophylaxis for type I endoleaks and endograft migration consequent to the conical neck and proximal aneurysm extension consequent to the PAU. A stiff Backup Meier guide wire facilitated the deployment of the endograft. Coil embolization of the right internal iliac artery was performed as prophylaxis for type II endoleaks. EndoAnchors can be used as an adjunct to EVAR as prophylaxis for proximal seal complications and stent migration in patients with hostile aortic aneurysm neck anatomy and concomitant proximal PAU. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endoAnchors" title="endoAnchors">endoAnchors</a>, <a href="https://publications.waset.org/abstracts/search?q=endoleaks" title=" endoleaks"> endoleaks</a>, <a href="https://publications.waset.org/abstracts/search?q=EVAR" title=" EVAR"> EVAR</a>, <a href="https://publications.waset.org/abstracts/search?q=hostile%20neck" title=" hostile neck"> hostile neck</a> </p> <a href="https://publications.waset.org/abstracts/138396/endovascular-aneurysm-repair-evar-with-endoanchors-for-tandem-aortic-abdominal-aneurysm-aaa-with-hostile-neck-proximal-penetrating-atherosclerotic-ulcer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonathon%20Bailey">Jonathon Bailey</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Bressloff"> Neil Bressloff</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Curzen"> Nick Curzen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tavi" title="tavi">tavi</a>, <a href="https://publications.waset.org/abstracts/search?q=tavr" title=" tavr"> tavr</a>, <a href="https://publications.waset.org/abstracts/search?q=fea" title=" fea"> fea</a>, <a href="https://publications.waset.org/abstracts/search?q=par" title=" par"> par</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a> </p> <a href="https://publications.waset.org/abstracts/30631/computational-simulations-and-assessment-of-the-application-of-non-circular-tavi-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Efficacy and Safety of Uventa Metallic Stent for Malignant and Benign Ureteral Obstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deok%20Hyun%20Han">Deok Hyun Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To explore outcomes of UventaTM metallic ureteral stent between malignant and benign ureteral obstruction. Methods: We reviewed the medical records of 90 consecutive patients who underwent Uventa stent placement for benign or malignant ureteral obstruction from December 2009 to June 2013. We evaluated the clinical outcomes, complications, and reasons and results for unexpected stent removals. Results: The median follow-up was 10.7 (0.9 – 41) months. From a total of 125 ureter units, there were 24 units with benign obstructions and 101 units with malignant obstructions. Initial technical successes were achieved in all patients. The overall success rate was 70.8% with benign obstructions and 84.2% with malignant obstructions. The major reasons for treatment failure were stent migration (12.5%) in benign and tumor progression (11.9%) in malignant obstructions. The overall complication rate was similar between benign and malignant obstructions (58.3% and 42.6%), but severe complications, which are Clavien grade 3 or more, occurred in 41.7% of benign and 6.9% of malignant obstructions. The most common complications were stent migration (25.0%) in benign obstructions and persistent pain (14.9%) in malignant obstructions. The stent removal was done in 16 units; nine units that were removed by endoscopy and seven units were by open surgery. Conclusions: In malignant ureteral obstructions, the Uventa stent showed favorable outcomes with high success rate and acceptable complication rate. However, in benign ureteral obstructions, overall success rate and complication rate were less favorable. Malignant ureteral obstruction seems to be appropriate indication of Uventa stent placement. However, in chronic diffuse benign ureteral obstructions the decision of placement of Uventa stent has to be careful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cause" title="cause">cause</a>, <a href="https://publications.waset.org/abstracts/search?q=complication" title=" complication"> complication</a>, <a href="https://publications.waset.org/abstracts/search?q=ureteral%20obstruction" title=" ureteral obstruction"> ureteral obstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20stent" title=" metal stent"> metal stent</a> </p> <a href="https://publications.waset.org/abstracts/83821/efficacy-and-safety-of-uventa-metallic-stent-for-malignant-and-benign-ureteral-obstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Evaluation of Mirabegron, Tolterodine, and Fesoterodine for Double-J Stent-Related Symptoms: A Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janet%20Joy">Janet Joy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shri%20Shailesh%20Amarkhed"> Shri Shailesh Amarkhed</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20M.%20Kulkarni"> Pradeep M. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ureteral stent-related symptoms significantly impact patients' quality of life. This study compared the efficacy of Mirabegron, Tolterodine, and Fesoterodine in managing these symptoms. Methodology: In this prospective, randomized, placebo-controlled trial, two hundred patients undergoing ureteral stenting were randomly assigned to receive Mirabegron, Tolterodine, Fesoterodine, or placebo for two weeks. Symptoms were assessed using the Ureteral Stent Symptom Questionnaire (USSQ) at stent removal. Results: 200 patients completed the study. Mirabegron demonstrated the lowest mean USSQ score (31.6 ± 6.4), followed by Fesoterodine (34.0 ± 6.9) and Tolterodine (35.0 ± 7.2), all significantly lower than placebo (48.6 ± 8.7, p<0.001). Mirabegron showed superior efficacy in reducing urinary symptoms (score: 16.5 ± 3.9) compared to Fesoterodine (17.8 ± 4.1) and Tolterodine (18.2 ± 4.3). Side effects, such as parched mouth, were less frequent with Mirabegron (6%) than with Tolterodine (28%) and Fesoterodine (24%). Conclusion: All three medications significantly improved stent-related symptoms compared to placebo. Mirabegron demonstrated a trend toward superior efficacy and fewer side effects, suggesting its potential as a first-line treatment for stent-related discomfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ureteral%20stent" title="ureteral stent">ureteral stent</a>, <a href="https://publications.waset.org/abstracts/search?q=mirabegron" title=" mirabegron"> mirabegron</a>, <a href="https://publications.waset.org/abstracts/search?q=tolterodine" title=" tolterodine"> tolterodine</a>, <a href="https://publications.waset.org/abstracts/search?q=fesoterodine" title=" fesoterodine"> fesoterodine</a>, <a href="https://publications.waset.org/abstracts/search?q=USSQ" title=" USSQ"> USSQ</a>, <a href="https://publications.waset.org/abstracts/search?q=stent-related%20symptoms" title=" stent-related symptoms"> stent-related symptoms</a> </p> <a href="https://publications.waset.org/abstracts/192339/evaluation-of-mirabegron-tolterodine-and-fesoterodine-for-double-j-stent-related-symptoms-a-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Traumatic Brachiocephalic Artery Pseudoaneurysm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sally%20Shepherd">Sally Shepherd</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Wong"> Jessica Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Read"> David Read</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traumatic brachiocephalic artery aneurysm is a rare injury that typically occurs as a result of a blunt chest injury. A 19-year-old female sustained a head-on, high speed motor vehicle crash into a tree. Upon release after 45 minutes of entrapment, she was tachycardic but normotensive, with a significant seatbelt sign across her chest and open deformed right thigh with weak pulses in bilateral lower limbs. A chest XR showed mild upper mediastinal widening. A CT trauma series plus gated CT chest revealed a grade 3a aortic arch transection with brachiocephalic pseudoaneurysm. Endovascular repair of the brachiocephalic artery was attempted post-presentation but was unsuccessful as the first stent migrated to the infrarenal abdominal aorta and the second stent across the brachiocephalic artery origin had a persistent leak at the base. She was transferred to Intensive Care for strict blood pressure control. She returned to theatre 5 hours later for a median sternotomy, aortic arch repair with an 8mm graft extraction, and excision of the innominate artery pseudoaneurysm. She had an uncomplicated post-operative recovery. This case highlights that brachiocephalic artery injury is a rare but potentially lethal injury as a result of blunt chest trauma. Safe management requires a combined Vascular and Cardiothoracic team approach, as stenting alone may be insufficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blunt%20chest%20injury" title="blunt chest injury">blunt chest injury</a>, <a href="https://publications.waset.org/abstracts/search?q=Brachiocephalic%20aneurysm" title=" Brachiocephalic aneurysm"> Brachiocephalic aneurysm</a>, <a href="https://publications.waset.org/abstracts/search?q=innominate%20artery" title=" innominate artery"> innominate artery</a>, <a href="https://publications.waset.org/abstracts/search?q=trauma" title=" trauma"> trauma</a> </p> <a href="https://publications.waset.org/abstracts/132011/traumatic-brachiocephalic-artery-pseudoaneurysm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Effectiveness of Balloon Angioplasty and Stent Angioplasty: Wound Healing in Critically Limb Ischemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wisnu%20Pamungkas">M. Wisnu Pamungkas</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrianef%20Darwis"> Patrianef Darwis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Critical limb ischemia (CLI) is a vascular disease that has a significant amputation and mortality risk with diabetes mellitus, the most significant risk factor in CLI, is very common among Indonesian. Endovascular intervention (EVI) is preferred in treating CLI because it is noninvasive and effective. Balloon angioplasty and stent angioplasty are the most common method of EVI in Indonesia. This study aims to compare the effectiveness of balloon angioplasty and stent angioplasty on wound healing in CLI. Method: A cross-sectional study enrolled 90 subjects of CLI who underwent endovascular intervention using balloon angioplasty and stent angioplasty from January 2013 to July 2017 in dr. Cipto Mangunkusumo General Hospital, Jakarta. The wound healing period between balloon angioplasty dan stent angioplasty was analyzed using unpaired T-test with p<0,05 considered as statistically significant. Data of intervention method wound healing period, and subjects characteristic data (age, amputation, BMI, smoking habit, DM, occlusion site, and blood profile) were obtained. Result: The wound healing period in balloon angioplasty and stent angioplasty distributed normally. Mean value of wound healing period in balloon angioplasty and stent angioplasty are 84,8+/-2,423 and 59,93 +/- 2,423 days with a mean difference of 25 days. The difference in wound healing period in both groups is statically significant (p<0,05). The amputation event in balloon angioplasty and stent angioplasty is 22 and 16 event with no difference statistically. Conclusion: Stent angioplasty is a better method than balloon angioplasty for wound healing in patients with CLI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20limb%20ischemia" title="critical limb ischemia">critical limb ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=endovascular%20intervention" title=" endovascular intervention"> endovascular intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing" title=" wound healing"> wound healing</a>, <a href="https://publications.waset.org/abstracts/search?q=angioplasty" title=" angioplasty"> angioplasty</a> </p> <a href="https://publications.waset.org/abstracts/110908/effectiveness-of-balloon-angioplasty-and-stent-angioplasty-wound-healing-in-critically-limb-ischemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Design and Development of Motorized Placer for Balloon Uterine Stents in Gynecology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Metehan%20Mutlu">Metehan Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Elitas"> Meltem Elitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to provide an automated method for placing the balloon uterine stents after hysteroscopy adhesiolysis. Currently, there are no automatized tools to place the balloon uterine stent; therefore, surgeons into the endometrial cavity manually fit it. However, it is very hard to pass the balloon stent through the cervical canal, which is roughly 10mm after the surgery. Our method aims to provide an effective and practical way of placing the stent, by automating the procedure through our designed device. Furthermore, our device does the required tasks fast compared to traditional methods, reduces the narcosis time, and decreases the bacterial contamination risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balloon%20uterine%20stent" title="balloon uterine stent">balloon uterine stent</a>, <a href="https://publications.waset.org/abstracts/search?q=endometrial%20cavity" title=" endometrial cavity"> endometrial cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteroscopy" title=" hysteroscopy"> hysteroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=motorized-tool" title=" motorized-tool"> motorized-tool</a> </p> <a href="https://publications.waset.org/abstracts/60371/design-and-development-of-motorized-placer-for-balloon-uterine-stents-in-gynecology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amatulraheem%20Al-Abassi">Amatulraheem Al-Abassi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khanafer"> K. Khanafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Deiab"> Ibrahim Deiab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title="shape memory alloy">shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=stent" title=" stent"> stent</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery" title=" coronary artery"> coronary artery</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/53927/finite-element-analysis-of-shape-memory-alloy-stents-in-coronary-arteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Khanafer">K. Khanafer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin&rsquo;s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20dissection" title="aortic dissection">aortic dissection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20model" title=" in vitro model"> in vitro model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a> </p> <a href="https://publications.waset.org/abstracts/74636/validation-of-a-fluid-structure-interaction-model-of-an-aortic-dissection-versus-a-bench-top-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aihong%20%20Zhao">Aihong Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Sastry"> Priya Sastry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20L%20Field"> Mark L Field</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Bashir"> Mohamad Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Singh"> Arvind Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Richens"> David Richens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intramural%20haematoma" title="intramural haematoma">intramural haematoma</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20aortic%20syndrome" title=" acute aortic syndrome"> acute aortic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/27846/finite-element-modeling-of-aortic-intramural-haematoma-shows-size-matters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Temporary Ureteric Catheterization after Ureteropyeloscopy: Experience from Regional Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jake%20Tempo">Jake Tempo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Crozier"> Jack Crozier</a>, <a href="https://publications.waset.org/abstracts/search?q=Huay%20Ann%20Chia"> Huay Ann Chia</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Tan"> Philip Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: A prospective study was performed to determine whether temporary ureteric catheterization should be eliminated as a prophylactic method for preventing ureteric obstruction after uncomplicated ureteropyeloscopic lithotripsy. Material and Methods: From 2010 to 2014, 227 patients underwent uncomplicated ureteroscopic and/or pyeloscopic lithotripsy. Three patient-groups based on postoperative drainage method were analysed: temporary uretericcatheter (TUC), -ureteric JJ stent, and no-stent groups. Exclusion criteria included urosepsis, ureteric injury, and non-surgical complications delaying hospital-discharge. Outcome measures included parenteral analgesic requirements, prolonged hospitalization ≥2 days due to postoperative-pain, and readmissions rate. Results: Delayed discharge was reported in 14.5%(9 of 62) patients in the TUC group compared to 3.4%(4 of 119) in theureteric JJ stent group and 8.7%(4 of 46) in the no-drainage-group (p=0.02). Odds ratio for delayed-discharge between catheter- versus-ureteric JJ stent is 4.9 (95% CI = 1.6-15.0; p < 0.01). Parenteral analgesic requirements in the TUC group (12.9%) was also significantly higher than theureteric JJ stent group (1.7%; p=0.003). Readmissions were negligible between groups. Conclusions: Patients with ureteric catheters after uncomplicated ureteroscopy have a prolonged hospital stay with increased pain and parenteral analgesic requirements. There is a 7.6-fold increased requirement for parenteral analgesia and a 4.2-fold increased risk of delayed-discharge compared to a patient with a ureteric JJ stent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ureteric%20catheter" title="ureteric catheter">ureteric catheter</a>, <a href="https://publications.waset.org/abstracts/search?q=ureteric%20stent" title=" ureteric stent"> ureteric stent</a>, <a href="https://publications.waset.org/abstracts/search?q=ureteroscopy" title=" ureteroscopy"> ureteroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=pyeloscopy" title=" pyeloscopy"> pyeloscopy</a> </p> <a href="https://publications.waset.org/abstracts/145169/temporary-ureteric-catheterization-after-ureteropyeloscopy-experience-from-regional-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faidon%20Kyriakou">Faidon Kyriakou</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Dempster"> William Dempster</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Nash"> David Nash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AAA" title="AAA">AAA</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stent%20deployment" title=" stent deployment"> stent deployment</a> </p> <a href="https://publications.waset.org/abstracts/87234/finite-element-analysis-of-the-anaconda-device-efficiently-predicting-the-location-and-shape-of-a-deployed-stent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Type A Quadricuspid Aortic Valve; Rarer than a Four-Leaf Clover, an Example of Availability Heuristic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frazer%20Kirk">Frazer Kirk</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohen%20Skiba"> Rohen Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Saxena"> Pankaj Saxena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural history of the QAV is poorly understood due to the exceeding rarity of the condition. Incidence rates vary between 0.00028-1%. Classically patients present with Aortic Regurgitation (AR) between 40-60 years of age experiencing palpitations, chest pain, or heart failure. (1, 2) Echocardiography is the mainstay of diagnosis for this condition; however, given the rarity of this condition, it can easily be overlooked, as demonstrated here. The case report that follows serves as a reminder of the condition to reduce the innate cognitive bias to overlook the diagnosis due to the availability heuristic. Intraoperative photography, echocardiographic and magnetic resonance imaging from this case for reference to demonstrate that while the diagnosis of Aortic regurgitation was recognized early, the valve morphology was underappreciated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quadricuspid%20aortic%20valve" title="quadricuspid aortic valve">quadricuspid aortic valve</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20surgery" title=" cardiac surgery"> cardiac surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=echocardiography" title=" echocardiography"> echocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=congenital" title=" congenital"> congenital</a> </p> <a href="https://publications.waset.org/abstracts/142246/type-a-quadricuspid-aortic-valve-rarer-than-a-four-leaf-clover-an-example-of-availability-heuristic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Bazarganigilani">Mahdi Bazarganigilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20diagnosis%20systems" title="computer-aided diagnosis systems">computer-aided diagnosis systems</a>, <a href="https://publications.waset.org/abstracts/search?q=aortic%20enlargement" title=" aortic enlargement"> aortic enlargement</a>, <a href="https://publications.waset.org/abstracts/search?q=chest%20X-ray" title=" chest X-ray"> chest X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/145129/an-accurate-computer-aided-diagnosis-cad-system-for-diagnosis-of-aortic-enlargement-by-using-convolutional-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hamada%20Abdelkader%20Fayed">Mohamed Hamada Abdelkader Fayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20dissection%20detection%20risk%20score" title="aortic dissection detection risk score">aortic dissection detection risk score</a>, <a href="https://publications.waset.org/abstracts/search?q=D-dimer" title=" D-dimer"> D-dimer</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20aortic%20syndrome" title=" acute aortic syndrome"> acute aortic syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20accuracy" title=" diagnostic accuracy"> diagnostic accuracy</a> </p> <a href="https://publications.waset.org/abstracts/142780/the-combination-of-aortic-dissection-detection-risk-score-add-rs-with-d-dimer-as-a-diagnostic-tool-to-exclude-the-diagnosis-of-acute-aortic-syndrome-aas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20Sz%C3%A9kely"> Gábor Székely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets&rsquo; movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemodynamics" title="hemodynamics">hemodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation" title=" stagnation"> stagnation</a>, <a href="https://publications.waset.org/abstracts/search?q=valve" title=" valve"> valve</a> </p> <a href="https://publications.waset.org/abstracts/63534/warning-about-the-risk-of-blood-flow-stagnation-after-transcatheter-aortic-valve-implantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Cost Effectiveness of Transcatheter Aortic Valve Replacement vs Surgical Aortic Valve Replacement in a Low-Middle Income Country</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasuki%20Rayapati">Vasuki Rayapati</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Duggal"> Bhanu Duggal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trans catheter aortic valve replacement (TAVR) is the recommended treatment over surgical aortic valve replacement (SAVR) for high-risk groups, patients >75 years of age with severe symptomatic Aortic stenosis (AS). In high income countries TAVR is more cost effective because of – i) Reduction in total length of stay including less number of days in ICU ii) Non-procedural costs like cost of general anaesthesia are higher for SAVR. In India, there are two kinds of hospitals – Public and Private. Most patients visit public sector hospitals than private sector hospitals. In a LMIC like India, especially in the Public health sector cost of TAVR is prohibitive. In a small study from three (public) hospitals in India, it was envisaged that cost of TAVR should decrease at least by 2/3 to be a cost effective option in Public health sector for severe AS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20effectiveness" title="cost effectiveness">cost effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=TAVR%20vs%20SAVR" title=" TAVR vs SAVR"> TAVR vs SAVR</a>, <a href="https://publications.waset.org/abstracts/search?q=LMIC" title=" LMIC"> LMIC</a>, <a href="https://publications.waset.org/abstracts/search?q=HTA" title=" HTA"> HTA</a> </p> <a href="https://publications.waset.org/abstracts/162487/cost-effectiveness-of-transcatheter-aortic-valve-replacement-vs-surgical-aortic-valve-replacement-in-a-low-middle-income-country" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> The Effect of Stent Coating on the Stent Flexibility: Comparison of Covered Stent and Bare Metal Stent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keping%20Zuo">Keping Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Foad%20Kabinejadian"> Foad Kabinejadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Gideon%20Praveen%20Kumar%20Vijayakumar"> Gideon Praveen Kumar Vijayakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fangsen%20Cui"> Fangsen Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei%20Ho"> Pei Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwa%20Liang%20Leo"> Hwa Liang Leo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carotid artery stenting (CAS) is the standard procedure for patients with severe carotid stenosis at high risk for carotid endarterectomy (CAE). A major drawback of CAS is the higher incidence of procedure-related stroke compared with traditional open surgical treatment for carotid stenosis - CEA, even with the use of the embolic protection devices (EPD). As the currently available bare metal stents cannot address this problem, our research group developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet maintaining the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. The purpose of this study is to evaluate the effect of membrane coating on the stent flexibility in order to improve the clinical performance of our novel covered stents. A total of 21 stents were evaluated in this study: 15 self expanding bare nitinol stents and 6 PTFE-covered stents. 10 of the bare stents were coated with 11%, 16% and 22% Polyurethane(PU), 4%, 6.25% and 11% EE, as well as 22% PU plus 5 μm Parylene. Different laser cutting designs were performed on 4 of the PTFE covert stents. All the stents, with or without the covered membrane, were subjected to a three-point flexural test. The stents were placed on two supports that are 30 mm apart, and the actuator is applying a force in the exact middle of the two supports with a loading pin with radius 2.5 mm. The loading pin displacement change, the force and the variation in stent shape were recorded for analysis. The flexibility of the stents was evaluated by the lumen area preservation at three displacement bending levels: 5mm, 7mm, and 10mm. All the lumen areas in all stents decreased with the increase of the displacement from 0 to 10 mm. The bare stents were able to maintain 0.864 ± 0.015, 0.740 ± 0.025 and 0.597 ± 0.031of original lumen area at 5 mm, 7 mm and 10mm displacement respectively. For covered stents, the stents with EE coating membrane showed the best lumen area preservation (0.839 ± 0.005, 0.7334 ± 0.043 and 0.559 ± 0.014), whereas, the stents with PU and Parylene coating were only 0.662, 0.439 and 0.305. Bending stiffness was also calculated and compared. These results provided optimal material information and it was crucial for enhancing clinical performance of our novel covered stents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotid%20artery" title="carotid artery">carotid artery</a>, <a href="https://publications.waset.org/abstracts/search?q=covered%20stent" title=" covered stent"> covered stent</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/41357/the-effect-of-stent-coating-on-the-stent-flexibility-comparison-of-covered-stent-and-bare-metal-stent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Khanafer">Khalil Khanafer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title="elastic modulus">elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=MMPs%2FTIMPs%20levels" title=" MMPs/TIMPs levels"> MMPs/TIMPs levels</a>, <a href="https://publications.waset.org/abstracts/search?q=Ascending%20Thoracic%20Aortic%20Aneurysm" title=" Ascending Thoracic Aortic Aneurysm"> Ascending Thoracic Aortic Aneurysm</a> </p> <a href="https://publications.waset.org/abstracts/91310/relationship-between-matrix-metalloproteases-and-tissue-inhibitor-of-matrix-metalloproteinase-levels-and-elastic-moduli-of-ascending-aneurysms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Determining the Threshold for Protective Effects of Aerobic Exercise on Aortic Structure in a Mouse Model of Marfan Syndrome Associated Aortic Aneurysm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christine%20P.%20Gibson">Christine P. Gibson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramona%20Alex"> Ramona Alex</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Farney"> Michael Farney</a>, <a href="https://publications.waset.org/abstracts/search?q=Johana%20Vallejo-Elias"> Johana Vallejo-Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitra%20Esfandiarei"> Mitra Esfandiarei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aortic aneurysm is the leading cause of death in Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1 gene (FBN1). MFS aneurysm is characterized by weakening of the aortic wall due to elastin fibers fragmentation and disorganization. The above-average height and distinct physical features make young adults with MFS desirable candidates for competitive sports; but little is known about the exercise limit at which they will be at risk for aortic rupture. On the other hand, aerobic cardiovascular exercise has been shown to have protective effects on the heart and aorta. We have previously reported that mild aerobic exercise can delay the formation of aortic aneurysm in a mouse model of MFS. In this study, we aimed to investigate the effects of various levels of exercise intensity on the progression of aortic aneurysm in the mouse model. Starting at 4 weeks of age, we subjected control and MFS mice to different levels of exercise intensity (8m/min, 10m/min, 15m/min, and 20m/min, corresponding to 55%, 65%, 75%, and 85% of VO2 max, respectively) on a treadmill for 30 minutes per day, five days a week for the duration of the study. At 24 weeks of age, aortic tissue were isolated and subjected to structural and functional studies using histology and wire myography in order to evaluate the effects of different exercise routines on elastin fragmentation and organization and aortic wall elasticity/stiffness. Our data shows that exercise training at the intensity levels between 55%-75% significantly reduces elastin fragmentation and disorganization, with less recovery observed in 85% MFS group. The reversibility of elasticity was also significantly restored in MFS mice subjected to 55%-75% intensity; however, the recovery was less pronounced in MFS mice subjected to 85% intensity. Furthermore, our data shows that smooth muscle cells (SMCs) contractilion in response to vasoconstrictor agent phenylephrine (100nM) is significantly reduced in MFS aorta (54.84 ± 1.63 mN/mm2) as compared to control (95.85 ± 3.04 mN/mm2). At 55% of intensity, exercise did not rescue SMCs contraction (63.45 ± 1.70 mN/mm2), while at higher intensity levels, SMCs contraction in response to phenylephrine was restored to levels similar to control aorta [65% (81.88 ± 4.57 mN/mm2), 75% (86.22 ± 3.84 mN/mm2), and 85% (83.91 ± 5.42 mN/mm2)]. This study provides the first time evidence that high intensity exercise (e.g. 85%) may not provide the most beneficial effects on aortic function (vasoconstriction) and structure (elastin fragmentation, aortic wall elasticity) during the progression of aortic aneurysm in MFS mice. On the other hand, based on our observations, medium intensity exercise (e.g. 65%) seems to provide the utmost protective effects on aortic structure and function in MFS mice. These findings provide new insights into the potential capacity, in which MFS patients could participate in various aerobic exercise routines, especially in young adults affected by cardiovascular complications particularly aortic aneurysm. This work was funded by Midwestern University Research Fund. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20exercise" title="aerobic exercise">aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=aortic%20aneurysm" title=" aortic aneurysm"> aortic aneurysm</a>, <a href="https://publications.waset.org/abstracts/search?q=aortic%20wall%20elasticity" title=" aortic wall elasticity"> aortic wall elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=elastin%20fragmentation" title=" elastin fragmentation"> elastin fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Marfan%20syndrome" title=" Marfan syndrome"> Marfan syndrome</a> </p> <a href="https://publications.waset.org/abstracts/47433/determining-the-threshold-for-protective-effects-of-aerobic-exercise-on-aortic-structure-in-a-mouse-model-of-marfan-syndrome-associated-aortic-aneurysm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Clinical Features of Acute Aortic Dissection Patients Initially Diagnosed with ST-Segment Elevation Myocardial Infarction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Jee%20Lee">Min Jee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Sun%20Park"> Young Sun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%20Ahn"> Shin Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hwan%20Sohn"> Chang Hwan Sohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Woo%20Seo"> Dong Woo Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Ho%20Lee"> Jae Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Seon%20Lee"> Yoon Seon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Soo%20Lim"> Kyung Soo Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Won%20Young%20Kim"> Won Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Acute myocardial infarction (AMI) concomitant with acute aortic syndrome (AAS) is rare but prompt recognition of concomitant AAS is crucial, especially in patients with ST-segment elevation myocardial infarction (STEMI) because misdiagnosis with early thrombolytic or anticoagulant treatment may result in catastrophic consequences. Objectives: This study investigated the clinical features of patients of STEMI concomitant with AAS that may lead to the diagnostic clue. Method: Between 1 January 2010 and 31 December 2014, 22 patients who were the initial diagnosis of acute coronary syndrome (AMI and unstable angina) and AAS (aortic dissection, intramural hematoma and ruptured thoracic aneurysm) in our emergency department were reviewed. Among these, we excluded 10 patients who were transferred from other hospital and 4 patients with non-STEMI, leaving a total of 8 patients of STEMI concomitant with AAS for analysis. Result: The mean age of study patients was 57.5±16.31 years and five patients were Standford type A and three patients were type B aortic dissection. Six patients had ST-segment elevation in anterior leads and two patients had in inferior leads. Most of the patients had acute onset, severe chest pain but no patients had dissecting nature chest pain. Serum troponin I was elevated in three patients but all patients had D-dimer elevation. Aortic regurgitation or regional wall motion abnormality was founded in four patients. However, widened mediastinum was seen in all study patients. Conclusion: When patients with STEMI have elevated D-dimer and widened mediastinum, concomitant AAS may have to be suspected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20dissection" title="aortic dissection">aortic dissection</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardial%20infarction" title=" myocardial infarction"> myocardial infarction</a>, <a href="https://publications.waset.org/abstracts/search?q=ST-segment" title=" ST-segment"> ST-segment</a>, <a href="https://publications.waset.org/abstracts/search?q=d-dimer" title=" d-dimer"> d-dimer</a> </p> <a href="https://publications.waset.org/abstracts/37573/clinical-features-of-acute-aortic-dissection-patients-initially-diagnosed-with-st-segment-elevation-myocardial-infarction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> M-Number of Aortic Cannulas Applied During Hypothermic Cardiopulmonary Bypass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won-Gon%20Kim">Won-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A standardized system to describe the pressure-flow characteristics of a given cannula has recently been proposed and has been termed ‘the M-number’. Using three different sizes of aortic cannulas in 50 pediatric cardiac patients on hypothermic cardiopulmonary bypass, we analyzed the correlation between experimentally and clinically derived M-numbers, and found this was positive. Clinical M-numbers were typically 0.35 to 0.55 greater than experimental M-numbers, and correlated inversely with a patient's temperature change; this was most probably due to increased blood viscosity, arising from hypothermia. This inverse relationship was more marked in higher M-number cannulas. The clinical data obtained in this study suggest that experimentally derived M-numbers correlate strongly with clinical performance of the cannula, and that the influence of temperature is significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiopulmonary%20bypass" title="cardiopulmonary bypass">cardiopulmonary bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=M-number" title=" M-number"> M-number</a>, <a href="https://publications.waset.org/abstracts/search?q=aortic%20cannula" title=" aortic cannula"> aortic cannula</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure-flow%20characteristics" title=" pressure-flow characteristics"> pressure-flow characteristics</a> </p> <a href="https://publications.waset.org/abstracts/35501/m-number-of-aortic-cannulas-applied-during-hypothermic-cardiopulmonary-bypass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joy%20Cao">Joy Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Zhou"> Min Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=type-a%20aortic%20dissection" title="type-a aortic dissection">type-a aortic dissection</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20residual%20networks" title=" deep residual networks"> deep residual networks</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20flow%20modeling" title=" blood flow modeling"> blood flow modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=data-driven%20modeling" title=" data-driven modeling"> data-driven modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20diagnostics" title=" non-invasive diagnostics"> non-invasive diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence." title=" artificial intelligence."> artificial intelligence.</a> </p> <a href="https://publications.waset.org/abstracts/164209/physics-informed-deep-residual-networks-based-type-a-aortic-dissection-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Tracheal Stenting to Relieve Respiratory Distress in Patient with Advanced Esophageal Malignancy and Its Anaesthetic Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Agarwal">Aarti Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajmal%20Khan"> Ajmal Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective: Breathing difficulty is most distressing symptom for the patient and their caregivers providing palliative care to individuals with advanced malignancy. It needs to be tackled effectively and sometimes preemptively to provide relief from respiratory obstruction. Interventional procedures like tracheal stenting are becoming increasingly popular as a part of palliation for respiratory symptoms. We present a case of esophageal tumor earlier stented by Gastroenterologist to maintain esophageal patency, but the tumor outgrew to produce tracheal infiltration and thereby causing airway obstruction. Method and Result: 62-year-old man presented with unresectable Carcinoma oesophagus with inability to swallow. A metallic stent was placed by the gastroenterologist, to maintain esophageal patency and enable patient to swallow. Two months later, the patient returned to hospital in emergency with respiratory distress. CT neck and thorax revealed tumor infiltration through posterior tracheal wall. Lower extent of the tumor was till 1 cm above the carina. Airway stenting with Tracheo bronchial stent with Y configuration was planned under general anaesthesia with airway blocks. Superior Laryngeal Nerve Block, Glossopharyngeal block and Trans tracheal infiltration of local anaesthetics were performed. The patient was sedated with Fentanyl, Midazolam and propofol infusion but was breathing spontaneously. Once the rigid bronchoscope was placed inside trachea, breathing was supported with oxygen and sevoflurane. Initially, the trachea was cleared of tumor by coring. After creating space, tracheal stent was positioned and deployed. After stent placement patient was awakened, suctioned and nebulized. His respiratory stridor relieved instantaneously and was shifted to recovery. Conclusion: Airway blocks help in decreasing the incidence and severity of coughing during airway instrumentation thereby help in proper stent placement. They also reduce the requirement of general anaesthetics and hasten the post stenting recovery. Airway stent provided immediate relief to patient from symptoms of respiratory difficulty. Decision for early tracheal stenting may be taken for a select group of patients with high propensity for local spread, thereby avoiding respiratory complications and providing better quality of life in patients with inoperable malignancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tracheal%20stent" title="tracheal stent">tracheal stent</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20difficulty" title=" respiratory difficulty"> respiratory difficulty</a>, <a href="https://publications.waset.org/abstracts/search?q=esophageal%20tumor" title=" esophageal tumor"> esophageal tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=anaesthetic%20management" title=" anaesthetic management"> anaesthetic management</a> </p> <a href="https://publications.waset.org/abstracts/79121/tracheal-stenting-to-relieve-respiratory-distress-in-patient-with-advanced-esophageal-malignancy-and-its-anaesthetic-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> COVID-19: The Cause or the Confounder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveenkumar%20Natarajan">Praveenkumar Natarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 59-year-old male with no known co-morbidities was admitted to a private hospital for complaints of fever and cough and was diagnosed to haveCOVID-19. CT of the thorax revealed the involvement of 50% of the lungs. Screening ECG and ECHO were normal. The patient was treated with oxygen therapy and drugs and was discharged after 12 days of admission. Post-discharge, the patient remained symptom-free and continued his work. After one month, the patient developed a fever for three days, for which he took antipyretics. Subsequently, the patient developed sudden onset breathlessness, which rapidly progressed to grade 4 NYHA, and developed a cough as well. Suspecting COVID-19 reinfection, the patient visited a nearby hospital, where COVID–19 rt-PCR swabs turned out to be positive, and was referred to our hospital. On receiving, the patient had diffuse lung crepitations and a diastolic murmur in the neo-aortic area. CT thorax revealed pulmonary edema with areas of consolidation. ECHO revealed vegetation on the aortic valve with severe aortic regurgitation. Blood cultures were taken, which revealed the growth of Enterococcus faecalis. The diagnosis of infective endocarditis was made, and the patient was started on appropriate treatment. COVID–19 has effects on various systems, including the cardiovascular system. Even though infective endocarditis is common in the elderly with valvular heart disease, this patient had developed infective endocarditis in an apparently normal aortic valve. Infective endocarditis and COVID–19 can have similar presentations leading to diagnostic difficulties. COVID–19, affecting the heart valves causing valvulitis and predisposing them to the development of infective endocarditis, is also an area to be explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20regurgitation" title="aortic regurgitation">aortic regurgitation</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=infective%20endocarditis" title=" infective endocarditis"> infective endocarditis</a>, <a href="https://publications.waset.org/abstracts/search?q=valvulitis" title=" valvulitis"> valvulitis</a> </p> <a href="https://publications.waset.org/abstracts/136281/covid-19-the-cause-or-the-confounder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aortic%20stent&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aortic%20stent&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aortic%20stent&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aortic%20stent&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10