CINXE.COM

Search results for: steam generator

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: steam generator</title> <meta name="description" content="Search results for: steam generator"> <meta name="keywords" content="steam generator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="steam generator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="steam generator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 814</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: steam generator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijayakumar%20Kunche">Vijayakumar Kunche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinker%20cooler" title="clinker cooler">clinker cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20rankine%20cycle" title=" organic rankine cycle"> organic rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/86064/thermodynamic-cycle-using-cyclopentane-for-waste-heat-recovery-power-generation-from-clinker-cooler-exhaust-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakui%20Bai">Yakui Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Sun"> Chen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Wang"> Ke Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20behavior" title="failure behavior">failure behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steel" title=" low alloy steel"> low alloy steel</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20generator%20forging" title=" steam generator forging"> steam generator forging</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title=" stress corrosion cracking "> stress corrosion cracking </a> </p> <a href="https://publications.waset.org/abstracts/110031/environmental-effect-on-corrosion-fatigue-behaviors-of-steam-generator-forging-in-simulated-pressurized-water-reactor-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Nadir">Mahmoud Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ghenaiet"> Adel Ghenaiet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20cycle" title="combined cycle">combined cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=HRSG%20thermodynamic%20modeling" title=" HRSG thermodynamic modeling"> HRSG thermodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20cycle%20specific%20work" title=" steam cycle specific work"> steam cycle specific work</a> </p> <a href="https://publications.waset.org/abstracts/38513/thermodynamic-modeling-of-three-pressure-level-reheat-hrsg-parametric-analysis-and-optimization-using-pso" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hafdhi">F. Hafdhi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Khir"> T. Khir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ben%20Yahia"> A. Ben Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ben%20Brahim"> A. Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam%20turbine%20generator" title="steam turbine generator">steam turbine generator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoric%20acid%20plant" title=" phosphoric acid plant"> phosphoric acid plant</a> </p> <a href="https://publications.waset.org/abstracts/39804/exergetic-analysis-of-steam-turbine-power-plant-operated-in-chemical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Experimental Study on a Solar Heat Concentrating Steam Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiangqiang%20Xu">Qiangqiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Ji"> Xu Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingyang%20Han"> Jingyang Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Changchun%20Yang"> Changchun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Li"> Ming Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system&#39;s structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m<sup>2</sup>, the effective heat collecting area is 7.6 m<sup>2</sup> and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m<sup>2</sup>, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20concentrating" title="heat concentrating">heat concentrating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loss" title=" heat loss"> heat loss</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20temperature" title=" medium temperature"> medium temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20steam%20production" title=" solar steam production"> solar steam production</a> </p> <a href="https://publications.waset.org/abstracts/88257/experimental-study-on-a-solar-heat-concentrating-steam-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Kwan%20Choi">Young-Kwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Sang%20Jeong"> Han-Sang Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeon-Ho%20Ok"> Yeon-Ho Ok</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Ho%20Choi"> Jae-Ho Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20analysis" title="electromagnetic analysis">electromagnetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20generator" title=" induction generator"> induction generator</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20hydro%20power%20generator" title=" small hydro power generator"> small hydro power generator</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20francis%20turbine%20generator" title=" small francis turbine generator"> small francis turbine generator</a> </p> <a href="https://publications.waset.org/abstracts/32296/a-study-on-analysis-of-magnetic-field-in-induction-generator-for-small-francis-turbine-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Reinforced Concrete Foundation for Turbine Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhartha%20Bhattacharya">Siddhartha Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam%20turbine%20generator%20foundation" title="steam turbine generator foundation">steam turbine generator foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/56409/reinforced-concrete-foundation-for-turbine-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sui%20Yan%20Wong">Sui Yan Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Keat%20Ping%20Yeoh"> Keat Ping Yeoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Wai%20Hui"> Chi Wai Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy" title="exergy">exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=pinch" title=" pinch"> pinch</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20cycle%20power%20plant" title=" combined cycle power plant"> combined cycle power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20steam" title=" supercritical steam"> supercritical steam</a> </p> <a href="https://publications.waset.org/abstracts/132993/pinch-analysis-of-triple-pressure-reheat-supercritical-combined-cycle-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanpop%20Saion">Kanpop Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakreya%20Chitwong"> Sakreya Chitwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20with%20feed%20forward" title="cascade with feed forward">cascade with feed forward</a>, <a href="https://publications.waset.org/abstracts/search?q=boiler" title=" boiler"> boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=superheated%20steam%20temperature%20control" title=" superheated steam temperature control"> superheated steam temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20balance" title=" enthalpy balance"> enthalpy balance</a> </p> <a href="https://publications.waset.org/abstracts/55760/implemented-cascade-with-feed-forward-by-enthalpy-balance-superheated-steam-temperature-control-for-a-boiler-with-distributed-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> Design of 100 kW Induction Generator for Wind Power Plant at Tamanjaya Village-Sukabumi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andri%20Setiyoso">Andri Setiyoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Purwadi"> Agus Purwadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanda%20Avianto%20Wicaksono"> Nanda Avianto Wicaksono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper present about induction generator design for 100kW power output capacity. Induction machine had been chosen because of the capability for energy conversion from electric energy to mechanical energy and vise-versa with operation on variable speed condition. Stator Controlled Induction Generator (SCIG) was applied as wind power plant in Desa Taman Jaya, Sukabumi, Indonesia. Generator was designed to generate power 100 kW with wind speed at 12 m/s and survival condition at speed 21 m/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20generator" title=" induction generator"> induction generator</a>, <a href="https://publications.waset.org/abstracts/search?q=Stator%20Controlled%20Induction%20Generator%20%28SCIG%29" title=" Stator Controlled Induction Generator (SCIG)"> Stator Controlled Induction Generator (SCIG)</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20speed%20generator" title=" variable speed generator"> variable speed generator</a> </p> <a href="https://publications.waset.org/abstracts/21929/design-of-100-kw-induction-generator-for-wind-power-plant-at-tamanjaya-village-sukabumi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">804</span> Effect of Naphtha on the Composition of a Heavy Crude, in Addition to a Cycle Steam Stimulation Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guerrero">A. Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Leon"> A. Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Munoz"> S. Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sandoval"> M. Sandoval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of solvent to cyclic steam stimulation is done in order to reduce the solvent-vapor ratio at late stages of the process, the moment in which this relationship increases significantly. The study of the use of naphtha in addition to the cyclic steam stimulation has been mainly oriented to the effect it achieves on the incremental recovery compared to the application of steam only. However, the effect of naphtha on the reactivity of crude oil components under conditions of cyclic steam stimulation or if its effect is the only dilution has not yet been considered, to author’s best knowledge. The present study aims to evaluate and understand the effect of naphtha and the conditions of cyclic steam stimulation, on the remaining composition of the improved oil, as well as the main mechanisms present in the heavy crude - naphtha interaction. Tests were carried out with the system solvent (naphtha)-oil (12.5° API, 4216 cP @ 40° C)- steam, in a batch micro-reactor, under conditions of cyclic steam stimulation (250-300 °C, 400 psi). The characterization of the samples obtained was carried out by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and NMR (Nuclear Magnetic Resonance) techniques. The results indicate that there is a rearrangement of the microstructure of asphaltenes, resulting in a decrease in these and an increase in lighter components such as resins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition%20change" title="composition change">composition change</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20steam%20stimulation" title=" cyclic steam stimulation"> cyclic steam stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20mechanism" title=" interaction mechanism"> interaction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=naphtha" title=" naphtha"> naphtha</a> </p> <a href="https://publications.waset.org/abstracts/111468/effect-of-naphtha-on-the-composition-of-a-heavy-crude-in-addition-to-a-cycle-steam-stimulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">803</span> Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Uk%20Ryu">Sung Uk Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Gook%20Jeon"> Byoung Gook Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Jae%20Yi"> Sung-Jae Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Euh"> Dong-Jin Euh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20safety%20injection%20systems" title="passive safety injection systems">passive safety injection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20penetration" title=" steam penetration"> steam penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20contact%20condensation" title=" direct contact condensation"> direct contact condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a> </p> <a href="https://publications.waset.org/abstracts/62498/study-on-the-thermal-mixing-of-steam-and-coolant-in-the-hybrid-safety-injection-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">802</span> Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wu">Xin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongfeng%20Zhao"> Yongfeng Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingxiang%20Meng"> Qingxiang Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20compositions" title="chemical compositions">chemical compositions</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20residues" title=" crop residues"> crop residues</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20energy%20values" title=" efficient energy values"> efficient energy values</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20explosion" title=" steam explosion"> steam explosion</a> </p> <a href="https://publications.waset.org/abstracts/72506/effect-of-steam-explosion-of-crop-residues-on-chemical-compositions-and-efficient-energy-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">801</span> Steady State Modeling and Simulation of an Industrial Steam Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Lyria%20Deghal%20Cheridi">Amina Lyria Deghal Cheridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abla%20Chaker"> Abla Chaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahcene%20Loubar"> Ahcene Loubar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relap5 system code is one among powerful tools, which is used in the area of design and safety evaluation. This work aims to simulate the behavior of a radiant steam boiler at the steady-state conditions using Relap5 code system. To perform this study, a detailed Relap5 model is built including all the parts of the steam boiler. The control and regulation systems are also considered. To reproduce the most important parameters and phenomena with an acceptable accuracy and fidelity, a strong qualification work is undertaken concerning the facility nodalization. It consists of making a comparison between the code results and the plant available data in steady-state operation mode. Therefore, the model qualification results at the steady-state are in good agreement with the steam boiler experimental data. The steam boiler Relap5 model has proved satisfactory; and the model was capable of predicting the main thermal-hydraulic steady-state conditions of the steam boiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20steam%20boiler" title="industrial steam boiler">industrial steam boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20qualification" title=" model qualification"> model qualification</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20circulation" title=" natural circulation"> natural circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=relap5%2Fmod3.2" title=" relap5/mod3.2"> relap5/mod3.2</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20simulation" title=" steady state simulation"> steady state simulation</a> </p> <a href="https://publications.waset.org/abstracts/51311/steady-state-modeling-and-simulation-of-an-industrial-steam-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">800</span> Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarakorn%20Sukaviriya">Sarakorn Sukaviriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam-pipe%20leakage" title="steam-pipe leakage">steam-pipe leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20leakage" title=" steam leakage"> steam leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20crack%20analysis" title=" weld crack analysis"> weld crack analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20defect" title=" weld defect"> weld defect</a> </p> <a href="https://publications.waset.org/abstracts/116436/analysis-of-weld-crack-of-main-steam-governing-valve-steam-turbine-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">799</span> Permanent Magnet Generator – One Phase Regime Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Pistelok">Pawel Pistelok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the concept of an electromagnetic circuit of a 3-phase surface-mounted permanent magnet generator designed for a single phase operation. A cross section of electromagnetic circuit and a field-circuit model of generator used for computations are shown. The paper presents comparative analysis of simulation results obtained for two different versions of generator regarding construction of armature winding. In the first version of generator the voltages generated in each of three winding phases have different rms values (different number of turns in each of phases), three winding phases are connected in series and one phase load is connected to the two output terminals of generator. The second version of generator is very similar, i.e. three winding phases are connected in series and one phase load is powered by generator, but in this version the voltages generated in each of winding phases have exactly the same rms values (the same number of turns in each of phases). The time waveforms of voltages, currents and electromagnetic torques in the airgaps of two machine versions for rated power are shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generator" title="permanent magnet generator">permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20of%20torque" title=" course of torque"> course of torque</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20phase%20work" title=" single phase work"> single phase work</a>, <a href="https://publications.waset.org/abstracts/search?q=unsymmetrical%20operation%20point" title=" unsymmetrical operation point"> unsymmetrical operation point</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20connection%20of%20winding%20phase" title=" serial connection of winding phase"> serial connection of winding phase</a> </p> <a href="https://publications.waset.org/abstracts/29809/permanent-magnet-generator-one-phase-regime-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">695</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">798</span> Analyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elsebaay">Ahmed Elsebaay</a>, <a href="https://publications.waset.org/abstracts/search?q=Maged%20A.%20Abu%20Adma"> Maged A. Abu Adma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Ramadan"> Mahmoud Ramadan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a technique clarifying the effect of ambient air temperature and loads power factor changing from standard values on electric generator power rating. The study introduces an optimized technique for selecting the correct electric generator power rating for certain application and operating site ambient temperature. The de-rating factors due to the previous effects will be calculated to be applied on a generator to select its power rating accurately to avoid unsafe operation and save its lifetime. The information in this paper provides a simple, accurate, and general method for synchronous generator selection and eliminates common errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title="ambient temperature">ambient temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=de-rating%20factor" title=" de-rating factor"> de-rating factor</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20generator" title=" electric generator"> electric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor" title=" power factor"> power factor</a> </p> <a href="https://publications.waset.org/abstracts/65186/analyzing-the-effect-of-ambient-temperature-and-loads-power-factor-on-electric-generator-power-rating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">797</span> A Study of The STEAM Toy Pedagogy Plan Evaluation for Elementary School</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Te%20Chang">Wen-Te Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Hsin%20Pai"> Yun-Hsin Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Based on the interdisciplinary of lower grade Elementary School with the integration of STEAM concept, related wooden toy and pedagogy plans were developed and evaluated. The research goal was to benefit elementary school education. Design/methodology/approach: The subjects were teachers from two primary school teachers and students from the department of design of universities in Taipei. Amount of 103participants (Male: 34, Female: 69) were invited to participate in the research. The research tools are “STEAM toy design” and “questionnaire of STEAM toy Pedagogy plan.” The STEAM toy pedagogy plans were evaluated after the activity of “The interdisciplinary literacy discipline guiding study program--STEAM wooden workshop,” Finding/results: The study results: (1) As factors analyzing of the questionnaire indicated the percentage on the major factors were cognition teaching 68.61%, affection 80.18% and technique 80.14%, with α=.936 of validity. The assessment tools were proved to be valid for STEAM pedagogy plan evaluation; (2) The analysis of the questionnaires investigation confirmed that the main effect of the teaching factors was not significant (affection = technique = cognition); however, the interaction between STEAM factors revealed to be significant (F (8, 1164) =5.51, p < .01); (3) The main effect of the six pedagogy plans was significant (climbing toy > bird toy = gondola toy > frog castanets > train toy > balancing toy), and an interactive effect between STEAM factors also reached a significant level, (F (8, 1164) =5.51, p < .01), especially on the artistic (A/ Art) aspect. Originality/value: The main achievement of research: (1) A pedagogy plan evaluation was successfully developed. (2) The interactive effect between the STEAM and the teaching factors reached a significant level. (3) An interactive effect between the STEAM factors and the pedagogy plans reached a significant level too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=STEAM" title="STEAM">STEAM</a>, <a href="https://publications.waset.org/abstracts/search?q=toy%20design" title=" toy design"> toy design</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy%20plans" title=" pedagogy plans"> pedagogy plans</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/141355/a-study-of-the-steam-toy-pedagogy-plan-evaluation-for-elementary-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">796</span> Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaing%20Yadana%20Swe">Khaing Yadana Swe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the cascade PID control is widely used to control the super-heating temperature (main steam temperature). As the main steam temperature has the characteristics of large inertia, large time-delay, and time varying, etc., conventional PID control strategy can not achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model-free%20adaptive%20control" title="model-free adaptive control">model-free adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title=" cascade control"> cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/19926/application-of-model-free-adaptive-control-in-main-steam-temperature-system-of-thermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">795</span> Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20R.%20Mali">Chaitanya R. Mali</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vinod"> V. Vinod</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20W.%20Patwardhan"> Ashwin W. Patwardhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20hydraulics" title="thermal hydraulics">thermal hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20fraction" title=" vapor fraction"> vapor fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/106204/modeling-of-full-range-flow-boiling-phenomenon-in-23m-long-vertical-steam-generator-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">794</span> Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20Pratama%20Herman">Angga Pratama Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Yusup"> Suzana Yusup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20steam%20gasification" title=" biomass steam gasification"> biomass steam gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20scale" title=" lab scale"> lab scale</a> </p> <a href="https://publications.waset.org/abstracts/43272/utilization-of-bottom-ash-as-catalyst-in-biomass-steam-gasification-for-hydrogen-and-syngas-production-lab-scale-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">793</span> Direct Drive Double Fed Wind Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vlado%20Ostovic">Vlado Ostovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electric machine topology characterized by single tooth winding in both stator and rotor is presented. The proposed machine is capable of operating as a direct drive double fed wind generator (DDDF, D3F) because it requires no gearbox and only a reduced-size converter. A wind turbine drive built around a D3F generator is cheaper to manufacture, requires less maintenance, and has a higher energy yield than its conventional counterparts. The single tooth wound generator of a D3F turbine has superb volume utilization and lower stator I2R losses due to its extremely short-end windings. Both stator and rotor of a D3F generator can be manufactured in segments, which simplifies its assembly and transportation to the site, and makes production cheaper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20drive" title="direct drive">direct drive</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20fed%20generator" title=" double fed generator"> double fed generator</a>, <a href="https://publications.waset.org/abstracts/search?q=gearbox" title=" gearbox"> gearbox</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generators" title=" permanent magnet generators"> permanent magnet generators</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20tooth%20winding" title=" single tooth winding"> single tooth winding</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title=" wind power"> wind power</a> </p> <a href="https://publications.waset.org/abstracts/152197/direct-drive-double-fed-wind-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">792</span> Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krittiya%20Pornmai">Krittiya Pornmai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=reforming%20process" title=" reforming process"> reforming process</a>, <a href="https://publications.waset.org/abstracts/search?q=gliding%20arc%20discharge" title=" gliding arc discharge"> gliding arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20technology" title=" plasma technology"> plasma technology</a> </p> <a href="https://publications.waset.org/abstracts/98440/reforming-of-co2-containing-natural-gas-by-using-an-ac-gliding-arc-discharge-plasma-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">791</span> An Experimental Study on Evacuated Tube Solar Collector for Steam Generation in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avadhesh%20Yadav">Avadhesh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Anunaya%20Saraswat"> Anunaya Saraswat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An evacuated tube solar collector is experimentally studied for steam generation. When the solar radiation falls on evacuated tubes, this energy is absorbed by the tubes and transferred to water with natural conduction and convection. A natural circulation of water occurs due to the inclination in tubes and header. In this experimental study, the efficiency of collector has been calculated. The result shows that the collector attains the maximum efficiency of 46.26% during 14:00 to 15:00h. Steam has been generated for two hours from 13:30 to 15:30 h on a winter day. Maximum solar intensity and maximum ambient temperatures are 795W/m<sup>2</sup> and 19<sup>o</sup>C respectively on this day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evacuated%20tube" title="evacuated tube">evacuated tube</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20water" title=" hot water"> hot water</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20generation" title=" steam generation"> steam generation</a> </p> <a href="https://publications.waset.org/abstracts/46207/an-experimental-study-on-evacuated-tube-solar-collector-for-steam-generation-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">790</span> Development of an Analytical Model for a Synchronous Permanent Magnet Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sahbani">T. Sahbani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouteraa"> M. Bouteraa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wamkeue"> R. Wamkeue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20permanent%20magnet%20generator" title=" synchronous permanent magnet generator"> synchronous permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/23479/development-of-an-analytical-model-for-a-synchronous-permanent-magnet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">789</span> Generator Subgraphs of the Wheel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neil%20M.%20Mame">Neil M. Mame</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20space" title="edge space">edge space</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-induced%20subgraph" title=" edge-induced subgraph"> edge-induced subgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=generator%20subgraph" title=" generator subgraph"> generator subgraph</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/28953/generator-subgraphs-of-the-wheel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">788</span> In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanbao%20Chen">Wanbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianqian%20Yao"> Qianqian Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenming%20Zhou"> Zhenming Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cereal%20grains" title="cereal grains">cereal grains</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20production" title=" gas production"> gas production</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20rumen%20fermentation" title=" in vitro rumen fermentation"> in vitro rumen fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=steam-flaking%20processing" title=" steam-flaking processing"> steam-flaking processing</a> </p> <a href="https://publications.waset.org/abstracts/72557/in-vitro-method-to-evaluate-the-effect-of-steam-flaking-on-the-quality-of-common-cereal-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">787</span> Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Rahama%20Adam%20Hamid">Ismail Rahama Adam Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20piston%20engine" title="free piston engine">free piston engine</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20generator" title=" linear generator"> linear generator</a>, <a href="https://publications.waset.org/abstracts/search?q=demagnetization" title=" demagnetization"> demagnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/185409/temperature-rises-characteristics-of-distinct-double-sided-flat-permanent-magnet-linear-generator-for-free-piston-engines-for-hybrid-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Six-Phase Tooth-Coil Winding Starter-Generator Embedded in Aerospace Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flur%20R.%20Ismagilov">Flur R. Ismagilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vyacheslav%20E.%20Vavilov"> Vyacheslav E. Vavilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20V.%20Gusakov"> Denis V. Gusakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is devoted to solve the problem of increasing the electrification of aircraft engines by installing a synchronous generator at high pressure shaft. Technical solution of this problem by various research centers is discussed. A design solution of the problem was proposed. To evaluate the effectiveness of the proposed cooling system, thermal analysis was carried out in ANSYS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starter-generator" title="starter-generator">starter-generator</a>, <a href="https://publications.waset.org/abstracts/search?q=more%20electrical%20engine" title=" more electrical engine"> more electrical engine</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engines" title=" aircraft engines"> aircraft engines</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20shaft" title=" high pressure shaft"> high pressure shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a> </p> <a href="https://publications.waset.org/abstracts/57565/six-phase-tooth-coil-winding-starter-generator-embedded-in-aerospace-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> Piezoelectric Micro-generator Characterization for Energy Harvesting Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20E.%20Q.%20Souza">José E. Q. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcio%20Fontana"> Marcio Fontana</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20C.%20C.%20Lima"> Antonio C. C. Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4&mu;W (linear mass position = 25mm) and an average power of 543.3&mu;W (angular mass position = 35&deg;). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title="piezoelectric">piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-generator" title=" micro-generator"> micro-generator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever%20beam" title=" cantilever beam"> cantilever beam</a> </p> <a href="https://publications.waset.org/abstracts/88034/piezoelectric-micro-generator-characterization-for-energy-harvesting-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steam%20generator&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10