CINXE.COM
Search results for: biological sex
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biological sex</title> <meta name="description" content="Search results for: biological sex"> <meta name="keywords" content="biological sex"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biological sex" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biological sex"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2316</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biological sex</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2316</span> Removal of Protein from Chromium Tanning Bath by Biological Treatment Using Pseudomonas sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Benhadji">Amel Benhadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Taleb%20Ahmed"> Mourad Taleb Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Maachi"> Rachida Maachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenge for the new millennium is to develop an industrial system that has minimal socio-ecological impacts, without compromising quality of life. Leather industry is one of these industries demanding environmentally friendly products. In this study, we investigated the possibility of applying innovative low cost biological treatment using Pseudomonas aeruginosa. This strain tested the efficiency of the batch biological treatment in the recovery of protein and hexavalent chromium from chromium tanning bath. We have compared suspended and fixed bacteria culture. The results showed the removal of the total protein of treatment and a decrease of hexavalent chromium concentration is during the treatment. The better efficiency of the biological treatment is obtained when using fixed culture of P. aeruginosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanning%20wastewater" title="tanning wastewater">tanning wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20removal" title=" protein removal"> protein removal</a>, <a href="https://publications.waset.org/abstracts/search?q=hexavalent%20chromium" title=" hexavalent chromium"> hexavalent chromium</a> </p> <a href="https://publications.waset.org/abstracts/35667/removal-of-protein-from-chromium-tanning-bath-by-biological-treatment-using-pseudomonas-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2315</span> Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Keshavarz%20Afshar">Leila Keshavarz Afshar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedieh%20Sajedi"> Hedieh Sajedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20age%20estimation" title="brain age estimation">brain age estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20age" title=" biological age"> biological age</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-CNN" title=" 3D-CNN"> 3D-CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=T1-weighted%20image" title=" T1-weighted image"> T1-weighted image</a>, <a href="https://publications.waset.org/abstracts/search?q=SPM" title=" SPM"> SPM</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing" title=" preprocessing"> preprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=canny" title=" canny"> canny</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20matter" title=" gray matter"> gray matter</a> </p> <a href="https://publications.waset.org/abstracts/113560/brain-age-prediction-based-on-brain-magnetic-resonance-imaging-by-3d-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2314</span> The Effect of Biological Fertilizers on Yield and Yield Components of Maize with Different Levels of Chemical Fertilizers in Normal and Difficit Irrigation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felora%20Rafiei">Felora Rafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Shoaei"> Shahram Shoaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this studies was to evaluate effect of nitroxin, super nitro plus and biophosphorus on yield and yield components of maize (Zea mays) under different levels of chemical fertilizers in the condition of normal and difficiet irrigation. Experiment laid out as split plot factorial based on randomized complete block design with three replications. Main plots includes two irrigation treatments of 70 (I1), 120(I2) mm evaporation from class A pan. Sub plots were biological fertilizer and chemical fertilizer as factorial biological fertilizer consisting of nitroxin: Azospirillium lipoferum, Azospirillium brasilens, Azotobacter chroococcum Azotobacter agilis (108 CFU ml-1) (B1), super nitro plus (Azospirillium spp, + Pseudomonas fluorescence + Bacillus subtilis (108 CFU ml-1) + biological fungicide) (B2), biophosphorus (Pseudomonas spp + Bacillus spp (107 CFU ml-1) (B3), and chemical fertilizer consisting of NPK (C1), N5oP5oK5o (C2) and NoPoKo (C3).The results showed that usage of biological fertilizer have positive effects on chemical fertilizers use efficiency and tolerance to drought stress in maize. Also with use of biological fertilizer can decrease usage of chemical fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title="biological fertilizer">biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20component" title=" yield component"> yield component</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a> </p> <a href="https://publications.waset.org/abstracts/33467/the-effect-of-biological-fertilizers-on-yield-and-yield-components-of-maize-with-different-levels-of-chemical-fertilizers-in-normal-and-difficit-irrigation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2313</span> Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavi">M. Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohseni"> M. Mohseni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rafiei"> R. Rafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yari"> H. Yari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refinish%20clear%20coat" title="refinish clear coat">refinish clear coat</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatin" title=" pancreatin"> pancreatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title=" Arabic gum"> Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title=" cross-linking"> cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20degradation" title=" biological degradation"> biological degradation</a> </p> <a href="https://publications.waset.org/abstracts/18510/degradation-mechanism-of-automotive-refinish-coatings-exposed-to-biological-substances-the-role-of-cross-linking-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2312</span> Influence of Biological and Chemical Fertilizers on Quantitative Characteristics of Sweet Wormwood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Yarahmadi">Anahita Yarahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Mahboobi"> Nazanin Mahboobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Sadat%20Rahmatpour%20Nori"> Nahid Sadat Rahmatpour Nori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Bijeh%20Keshavarzi"> Mohammad Hossein Bijeh Keshavarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Shakori"> Mohammad Javad Shakori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at considering biological fertilizer effect and chemical fertilizer on the quantitative characteristics of Sweet wormwood (Artemisia annua L.), an experiment was carried out in factorial design in completely randomized design with 4 replications in an experimental greenhouse which was located in Tehran. Experimental treatment involved chemical fertilizers (Nitrogen, Phosphorus) in4 levels and biological fertilizers in 4 levels (control, Nitroxin, Bio-phosphorus and Vemricompost). Results showed that using biological fertilizers and increasing different levels of chemical fertilizers (N, P) had significant effects on all the characteristics. Considering means comparison showed that biological fertilizers lead to significant enhancement on all the characteristics and among biological fertilizers, Vermicompost treatment has the most effect. Considering means comparison tables of different levels of chemical fertilizer have been found that (N80P80) had the most increase on characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20annua%20L" title="Artemisia annua L">Artemisia annua L</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-fertilizer" title=" bio-fertilizer"> bio-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/66492/influence-of-biological-and-chemical-fertilizers-on-quantitative-characteristics-of-sweet-wormwood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2311</span> Biological Studies on Producing Samoli Bread Supplement with Irradiated Sunflower Flour by Gamma Rays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal.%20N.%20Al-Kuraieef">Amal. N. Al-Kuraieef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smoli bread was made by supplementation sunflower flour which was prepared from sunflower (Dahr-EL-Haea) gray after hilling and milling, flour was irradiated by two doses (5 and 10 kGy). After that, the ratios of irradiated sunflower flour were 5 and 10%. All samples of samoli bread were examined for organoleptic and biological evaluation. Biological assay (PER, NPU, FE, DC and BV) was carried out on rats fed 5 and 10% irradiated and non-irradiated sunflower Samoli bread. Results obtained showed that, total lipids, cholesterol and triglycerides were reduced comparable, to that of casein. Also, figures of the biological evaluations were higher than those of the control samoli bread and improved its nutritive values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20rays" title="gamma rays">gamma rays</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=samoli%20bread" title=" samoli bread"> samoli bread</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=triglycerides" title=" triglycerides"> triglycerides</a> </p> <a href="https://publications.waset.org/abstracts/120264/biological-studies-on-producing-samoli-bread-supplement-with-irradiated-sunflower-flour-by-gamma-rays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2310</span> Perceptions of Greenhouse Vegetable Growers Regarding Use of Biological Control Practices: A Case Study in Jiroft County, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Shabanali%20Fami">Hossein Shabanali Fami</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Sharifi"> Omid Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Ghasemi"> Javad Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahtab%20Pouratashi"> Mahtab Pouratashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Sadat%20Moghadasian"> Mona Sadat Moghadasian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study was to investigate perception of greenhouse vegetable growers regarding use of biological control practices during the growing season. The statistical population of the study included greenhouse vegetable growers in Jiroft county (N=1862). A sample of 137 vegetable growers was selected, using random sampling method. Data were collected via a questionnaire. The validity of the instrument was obtained by the faculty members of the Department of Agricultural Development and Management in the University of Tehran. Cronbach’s alpha was applied to estimate the reliability which showed a high reliability for the instrument. Data was analyzed using SPSS/Windows 13.5. The results revealed that greenhouse vegetable growers had moderate level of perception regarding biological control practices. Levels of vegetable growers’ perceptions regarding biological control practices were different on the basis of their academic qualifications as well as educational level and job. In addition, the results indicated that about 54.1% of variations in vegetable growers’ perceptions could be explained by variables such as awareness of biological control practices, knowledge on pests, annual production and age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title="greenhouse">greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20agents" title=" biological agents"> biological agents</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20grower" title=" vegetable grower"> vegetable grower</a> </p> <a href="https://publications.waset.org/abstracts/51015/perceptions-of-greenhouse-vegetable-growers-regarding-use-of-biological-control-practices-a-case-study-in-jiroft-county-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2309</span> Signals Monitored during Anaesthesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Launcelot.McGrath">Launcelot.McGrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Biosignal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20biosignals" title="general biosignals">general biosignals</a>, <a href="https://publications.waset.org/abstracts/search?q=anaesthesia" title=" anaesthesia"> anaesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=biological" title=" biological"> biological</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram" title=" electroencephalogram"> electroencephalogram</a> </p> <a href="https://publications.waset.org/abstracts/158537/signals-monitored-during-anaesthesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2308</span> The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mojaddam">M. Mojaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Araei"> M. Araei</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saki%20Nejad"> T. Saki Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Soltani%20Howyzeh"> M. Soltani Howyzeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications.) The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plan height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20phosphate%20fertilizer%20%28fertile%202%29" title="biological phosphate fertilizer (fertile 2)">biological phosphate fertilizer (fertile 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20super%20phosphate" title=" triple super phosphate"> triple super phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20traits" title=" morphological traits"> morphological traits</a> </p> <a href="https://publications.waset.org/abstracts/31865/the-effect-of-application-of-biological-phosphate-fertilizer-fertile-2-and-triple-super-phosphate-chemical-fertilizers-on-some-morphological-traits-of-corn-sc704" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2307</span> Signals Monitored During Anaesthesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Launcelot%20McGrath">Launcelot McGrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoxiao%20Liu"> Xiaoxiao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Flanagan"> Colin Flanagan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is widely recognised that a comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Bio signal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. There are tremendous biological signals during anaesthesia, and not all of them are important, which to choose to observe is a significant decision. It is important that the anaesthesiologist understand both the signals themselves, and the limitations introduced by the processes of acquisition. In this article, we provide an all-sided overview of different types of biological signals as well as the mechanisms applied to acquire them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20biosignals" title="general biosignals">general biosignals</a>, <a href="https://publications.waset.org/abstracts/search?q=anaesthesia" title=" anaesthesia"> anaesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=biological" title=" biological"> biological</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram" title=" electroencephalogram"> electroencephalogram</a> </p> <a href="https://publications.waset.org/abstracts/157332/signals-monitored-during-anaesthesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2306</span> Identifying Network Subgraph-Associated Essential Genes in Molecular Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efendi%20Zaenudin">Efendi Zaenudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hung%20Huang"> Chien-Hung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka-Lok%20Ng"> Ka-Lok Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20molecular%20networks" title="biological molecular networks">biological molecular networks</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20genes" title=" essential genes"> essential genes</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20subgraphs" title=" network subgraphs"> network subgraphs</a> </p> <a href="https://publications.waset.org/abstracts/128285/identifying-network-subgraph-associated-essential-genes-in-molecular-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2305</span> Signals Monitored During Anaesthesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Launcelot%20McGrath">Launcelot McGrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Bio signal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20signals" title="biological signals">biological signals</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20acquisition" title=" signal acquisition"> signal acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=anaesthesiology" title=" anaesthesiology"> anaesthesiology</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20monitoring" title=" patient monitoring"> patient monitoring</a> </p> <a href="https://publications.waset.org/abstracts/158784/signals-monitored-during-anaesthesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2304</span> Performance Evaluation of Pilot Rotating Biological Contactor for Decentralised Management of Domestic Sewage in Delhi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Sreekrishnan">T. R. Sreekrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Khare"> Mukesh Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Upadhyay"> Dinesh Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a Rotating Biological Contactor (RBC), the biological film responsible for removal of pollutants is formed on the surface of discs. Evaluation studies of a pilot RBC designed to treat sewage of 150 persons with BOD Loading Rate: 8.2–26.7 g/m2/d, Discharge: 57.6 – 115.2 m3/day, HRT 1.25 – 2.5 hrs, at STP Yamuna Vihar Delhi. Removal of organic materials through use of fixed film reactors such as RBC is accomplished by means of a biological film on the fixed media. May and June in Delhi are dry summer months where the ambient temperature is in the range of 35oC to 45oC. July is a wet monsoon month that receives occasional precipitation, cloud cover, high humidity, with ambient temperature in the range of 30oC to 35oC. The organic and inorganic loads to the RBC employed in this study are actual city sewage conditions. Average in fluent BOD concentrations have been 330 mg/l, 245 mg/l and 160 mg/l and the average COD concentrations have been 670 mg/l, 500 mg/l, and 275 mg/l. The city sewage also has high concentration of ammonia, phosphorous, total suspended solids (TSS). pH of the city sewage is near neutral. Overall, the substrate conditions of city sewage are conducive for biological treatment though aerobic process. The presentation is a part of the ongoing collaborative research initiative between IIT Delhi and Karlsruhe Institute of Technology, Germany which is going on for last 15 years or so in the treatment of sewage waste of Delhi using semi-decentralized treatment system based on Rotating Biological Contactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rotating%20Biological%20Contactor%20%28RBC%29" title="Rotating Biological Contactor (RBC)">Rotating Biological Contactor (RBC)</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD" title=" BOD"> BOD</a>, <a href="https://publications.waset.org/abstracts/search?q=HRT" title=" HRT"> HRT</a>, <a href="https://publications.waset.org/abstracts/search?q=STP" title=" STP"> STP</a> </p> <a href="https://publications.waset.org/abstracts/20740/performance-evaluation-of-pilot-rotating-biological-contactor-for-decentralised-management-of-domestic-sewage-in-delhi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2303</span> Biological Feedstocks for Sustainable Aviation Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odi%20Fawwaz%20Alrebei">Odi Fawwaz Alrebei</a>, <a href="https://publications.waset.org/abstracts/search?q=Rim%20Ismail"> Rim Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable aviation fuel (SAF) has emerged as a critical solution for reducing the aviation sector's carbon footprint. Biological feedstocks, such as lignocellulosic biomass, microalgae, used cooking oil, and municipal solid waste, offer significant potential to replace fossil-based jet fuels with renewable alternatives. This review paper aims to critically examine the current landscape of biological feedstocks for SAF production, focusing on feedstock availability, conversion technologies, and environmental impacts. The paper evaluates the biochemical pathways employed in transforming these feedstocks into SAF, such as hydrothermal liquefaction, Fischer-Tropsch synthesis, and microbial fermentation, highlighting the advancements and challenges in each method. Additionally, the sustainability of biological feedstocks is analyzed with respect to lifecycle emissions, land use, and water consumption, emphasizing the need for region-specific strategies to maximize benefits. Special attention is given to the role of microbial consortia in optimizing feedstock degradation and conversion processes. The review concludes by discussing the scalability and economic viability of biological feedstock-based SAF, with a focus on policy frameworks and technological innovations that can facilitate widespread adoption. This comprehensive review underscores the pivotal role of biological feedstocks in achieving a decarbonized aviation sector and identifies future research directions for improving SAF production efficiency and sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20diversity" title="fuel diversity">fuel diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20feedstocks" title=" biological feedstocks"> biological feedstocks</a>, <a href="https://publications.waset.org/abstracts/search?q=SAF" title=" SAF"> SAF</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation" title=" aviation"> aviation</a> </p> <a href="https://publications.waset.org/abstracts/192674/biological-feedstocks-for-sustainable-aviation-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2302</span> Biomedical Countermeasures to Category a Biological Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Cochrane">Laura Cochrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The United States Centers for Disease Control and Prevention has established three categories of biological agents based on their ease of spread and the severity of the disease they cause. Category A biological agents are the highest priority because of their high degree of morbidity and mortality, ease of dissemination, the potential to cause social disruption and panic, special requirements for public health preparedness, and past use as a biological weapon. Despite the threat of Category A biological agents, opportunities for medical intervention exist. This work summarizes public information, consolidated and reviewed across the situational usefulness and disease awareness to offer discussion to three specific Category A agents: anthrax (Bacillus anthracis), botulism (Clostridium botulinum toxin), and smallpox (variola major), and provides an overview on the management of medical countermeasures available to treat these three (3) different types of pathogens. The medical countermeasures are discussed in the setting of pre-exposure prophylaxis, post-exposure prophylaxis, and therapeutic treatments to provide a framework for requirements in public health preparedness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthrax" title="anthrax">anthrax</a>, <a href="https://publications.waset.org/abstracts/search?q=botulism" title=" botulism"> botulism</a>, <a href="https://publications.waset.org/abstracts/search?q=smallpox" title=" smallpox"> smallpox</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20countermeasures" title=" medical countermeasures"> medical countermeasures</a> </p> <a href="https://publications.waset.org/abstracts/146987/biomedical-countermeasures-to-category-a-biological-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2301</span> Determination of Biological Efficiency Values of Some Pesticide Application Methods under Second Crop Maize Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bolat">Ali Bolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bayat"> Ali Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gullu"> Mustafa Gullu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize can be cultivated both under main and second crop conditions in Turkey. Main pests of maize under second crop conditions are Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hübner (Lepidoptera: Crambidae). Aerial spraying applications to control these two main maize pests can be carried out until 2006 in Turkey before it was banned due to environmental concerns like drifting of sprayed pestisides and low biological efficiency. In this context, pulverizers which can spray tall maize plants ( > 175 cm) from the ground have begun to be used. However, the biological efficiency of these sprayers is unknown. Some methods have been tested to increase the success of ground spraying in field experiments conducted in second crop maize in 2008 and 2009. For this aim, 6 spraying methods (air assisted spraying with TX cone jet, domestic cone nozzles, twinjet nozzles, air induction nozzles, standard domestic cone nozzles and tail booms) were used at two application rates (150 and 300 l.ha-1) by a sprayer. In the study, biological efficacy evaluations of each methods were measured in each parcel. Biological efficacy evaluations included counts of number of insect damaged plants, number of holes in stems and live larvae and pupa in stems of selected plants. As a result, the highest biological efficacy value (close to 70%) was obtained from Air Assisted Spraying method at 300 l / ha application volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20assisted%20sprayer" title="air assisted sprayer">air assisted sprayer</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20nozzles" title=" drift nozzles"> drift nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20efficiency" title=" biological efficiency"> biological efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20plant" title=" maize plant"> maize plant</a> </p> <a href="https://publications.waset.org/abstracts/79987/determination-of-biological-efficiency-values-of-some-pesticide-application-methods-under-second-crop-maize-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2300</span> Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giselle%20Maggie-Fer%20Casta%C3%B1eda%20Lozano">Giselle Maggie-Fer Castañeda Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparative%20psychology" title="comparative psychology">comparative psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=connectionism" title=" connectionism"> connectionism</a>, <a href="https://publications.waset.org/abstracts/search?q=conditioning" title=" conditioning"> conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20analysis%20of%20behavior" title=" experimental analysis of behavior"> experimental analysis of behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/174102/comparative-connectionism-study-of-the-biological-constraints-of-learning-through-the-manipulation-of-various-architectures-in-a-neural-network-model-under-the-biological-principle-of-the-correlation-between-structure-and-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2299</span> The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beth%20Taylor">Beth Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kojima%20Mituaki"> Kojima Mituaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Senda"> Atsushi Senda</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Morishita"> Koji Morishita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Otomo"> Yasuhiro Otomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exosomes" title="exosomes">exosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20ischaemia" title=" intestinal ischaemia"> intestinal ischaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenteric%20lymph" title=" mesenteric lymph"> mesenteric lymph</a>, <a href="https://publications.waset.org/abstracts/search?q=vagal%20stimulation" title=" vagal stimulation"> vagal stimulation</a> </p> <a href="https://publications.waset.org/abstracts/111415/the-impact-of-intestinal-ischaemia-reperfusion-injury-upon-the-biological-function-of-mesenteric-lymph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2298</span> Effects of Chemical and Biological Fertilizer on, Yield, Nitrogen Uptake and Nitrogen Harvest Index of Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Nasrollah%20Zadeh">Azin Nasrollah Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A factorial experiment was applied to evaluate the effect of chemical and biological fertilizer on yield, total nitrogen uptake and NHI of rice. Four biological treatments including:(M1:no fertilizer),( M2:10 ton/ha cow dung ),(M3:20 ton/ha cow dung) and (M4:5 ton/ha azolla compost) and four chemical fertilizer treatments including: (S1: no fertilizer),(S2:40 kg N /ha),(S3:60 kg N /ha) and ( S4:80 kg N /ha ) were compared. Results showed that highest rate of yield (3387 kg/ha) and total nitrogen uptake (81.4 kg/ha) were reached the highest value at M4. Among the chemical fertilizers the highest grain yield (3373 kg/ha) and total nitrogen uptake (87.7) belonged to highest nitrogen level (S4).Also biological and chemical fertilizers were no significant on Harvest index (NHI). Interaction effect of chemical × biological fertilizers didn't show significant difference between all parameters except of yield, as the most grain yield were obtained in M4S4. So it can be concluded that using of bioilogical fertilizers at appropriate rate and type, considering plant requirement, may improve grain yield, nitrogen uptake and use efficiency in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azolla" title="azolla">azolla</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20uptake" title=" nitrogen uptake"> nitrogen uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/28466/effects-of-chemical-and-biological-fertilizer-on-yield-nitrogen-uptake-and-nitrogen-harvest-index-of-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2297</span> Application of Biosensors in Forensic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirin%20jalili">Shirin jalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Shirzad"> Hadi Shirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nabavi"> Samaneh Nabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Khanjani"> Somayeh Khanjani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensors" title="biosensors">biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20analysis" title=" forensic analysis"> forensic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20fluid" title=" biological fluid"> biological fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=crime%20detection" title=" crime detection "> crime detection </a> </p> <a href="https://publications.waset.org/abstracts/28079/application-of-biosensors-in-forensic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2296</span> Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahan%20Qwamizadeh">Mahan Qwamizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Zhou"> Kun Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuoqi%20Zhang"> Zuoqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Wei%20Zhang"> Yong Wei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-bearing%20biological%20materials" title="load-bearing biological materials">load-bearing biological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20structure" title=" staggered structure"> staggered structure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20wave%20decay" title=" stress wave decay"> stress wave decay</a> </p> <a href="https://publications.waset.org/abstracts/31314/dynamic-behavior-of-the-nanostructure-of-load-bearing-biological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2295</span> The Acquisition of Case in Biological Domain Based on Text Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shen%20Jian">Shen Jian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Jie"> Hu Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Jin"> Qi Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Wei%20Jie"> Liu Wei Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Ji%20Yi"> Chen Ji Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Ying%20Hong"> Peng Ying Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title="text mining">text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20space%20model" title=" vector space model"> vector space model</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=biologically%20inspired%20design" title=" biologically inspired design"> biologically inspired design</a> </p> <a href="https://publications.waset.org/abstracts/88075/the-acquisition-of-case-in-biological-domain-based-on-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2294</span> Scoping Review of Biological Age Measurement Composed of Biomarkers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Alejandro%20Esp%C3%ADndola-Fern%C3%A1ndez">Diego Alejandro Espíndola-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Mar%C3%ADa%20Posada-Cano"> Ana María Posada-Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagn%C3%B3var%20Aristiz%C3%A1bal-Ocampo"> Dagnóvar Aristizábal-Ocampo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Alberto%20Gallo-Villegas"> Jaime Alberto Gallo-Villegas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: With the increase in life expectancy, aging has been subject of frequent research, and therefore multiple strategies have been proposed to quantify the advance of the years based on the known physiology of human senescence. For several decades, attempts have been made to characterize these changes through the concept of biological age, which aims to integrate, in a measure of time, structural or functional variation through biomarkers in comparison with simple chronological age. The objective of this scoping review is to deepen the updated concept of measuring biological age composed of biomarkers in the general population and to summarize recent evidence to identify gaps and priorities for future research. Methods: A scoping review was conducted according to the five-phase methodology developed by Arksey and O'Malley through a search of five bibliographic databases to February 2021. Original articles were included with no time or language limit that described the biological age composed of at least two biomarkers in those over 18 years of age. Results: 674 articles were identified, of which 105 were evaluated for eligibility and 65 were included with information on the measurement of biological age composed of biomarkers. Articles from 1974 of 15 nationalities were found, most observational studies, in which clinical or paraclinical biomarkers were used, and 11 different methods described for the calculation of the composite biological age were informed. The outcomes reported were the relationship with the same measured biomarkers, specified risk factors, comorbidities, physical or cognitive functionality, and mortality. Conclusions: The concept of biological age composed of biomarkers has evolved since the 1970s and multiple methods of its quantification have been described through the combination of different clinical and paraclinical variables from observational studies. Future research should consider the population characteristics, and the choice of biomarkers against the proposed outcomes to improve the understanding of aging variables to direct effective strategies for a proper approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20age" title="biological age">biological age</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20aging" title=" biological aging"> biological aging</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=senescence" title=" senescence"> senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a> </p> <a href="https://publications.waset.org/abstracts/144297/scoping-review-of-biological-age-measurement-composed-of-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2293</span> Study of Regulation and Registration Law of Veterinary Biological Drugs in Iran and Comparison between FDA, EMA and WHO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Dehghani">Hoda Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Dehghani"> Zahra Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the obvious growth and variety of veterinary biological product and increase consumption and also the price, it is necessary to establish the rules and serious monitoring of this products which are less expensive than the original products. The scope of this research is the study of comparing the registration criteria and procedures of veterinary biological drugs in the world's leading agencies such as EMA, FDA, and WHO. For this, purpose the rules and regulations for registration of these drugs in prestigious organizations such as the FDA, EMA and WHO were examined and compared with the existing legislation in Iran. Studies show that EMA is the forefront of the compilation and registration of drugs in the world. China is a one of the greatest country in the development of drugs and establishes very closely guidelines with creditable global guidelines, and Now, is the first country to implement the rules codified in the Far East and followed by china, India and, South Korea and Taiwan have taken incorporate the industry's top ranking in Asia. At now, Asia by creating appropriate indicators not only as a powerful center in the field of drug delivery but also as a competitor to the United States is a major source of drug discovery and creation of innovation. the activities such as clinical trials and pharmaceutical investment is the speed of technology on the continent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=veterinary%20biological%20product" title="veterinary biological product">veterinary biological product</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation%20of%20registration" title=" regulation of registration"> regulation of registration</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20products" title=" biological products"> biological products</a>, <a href="https://publications.waset.org/abstracts/search?q=regularity%20authorities" title=" regularity authorities"> regularity authorities</a> </p> <a href="https://publications.waset.org/abstracts/38674/study-of-regulation-and-registration-law-of-veterinary-biological-drugs-in-iran-and-comparison-between-fda-ema-and-who" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2292</span> Mixed Treatment (Physical-Chemical and Biological) of Ouled Fayet Landfill Leachates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Balamane-Zizi">O. Balamane-Zizi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Rouidi"> L. M. Rouidi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boukhrissa"> A. Boukhrissa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Daas"> N. Daas</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ait-amar"> H. Ait-amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to test the possibility of a mixed treatment (physical-chemical and biological) of Ouled Fayet leachates which date of 10 years and has a large fraction of hard COD that can be reduced by coagulation-flocculation. Previous batch tests showed the possibility of applying the physical-chemical and biological treatments separately; the removal efficiencies obtained in this case were not interesting. We propose, therefore, to test the possibility of a combined treatment, in order to improve the quality of the leachates. Estimation of the treatment’s effectiveness was done by analysis of some pollution parameters such as COD, suspended solids, and heavy metals (particularly iron and nickel). The main results obtained after the combination of treatments, show reduction rate of about 63% for COD, 73% for suspended solids and 80% for iron and nickel. We also noted an improvement in the turbidity of treated leachates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachates" title="landfill leachates">landfill leachates</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-chemical%20treatment" title=" physical-chemical treatment"> physical-chemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a> </p> <a href="https://publications.waset.org/abstracts/32364/mixed-treatment-physical-chemical-and-biological-of-ouled-fayet-landfill-leachates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2291</span> Gene Names Identity Recognition Using Siamese Network for Biomedical Publications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micheal%20Olaolu%20Arowolo">Micheal Olaolu Arowolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azam"> Muhammad Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20He"> Fei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihail%20Popescu"> Mihail Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Xu"> Dong Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20pathway" title="biological pathway">biological pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20identification" title=" gene identification"> gene identification</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamese%20network" title=" Siamese network"> Siamese network</a> </p> <a href="https://publications.waset.org/abstracts/160725/gene-names-identity-recognition-using-siamese-network-for-biomedical-publications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2290</span> Theoretical Study on the Nonlinear Optical Responses of Peptide Bonds Created between Alanine and Some Unnatural Amino Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Derrar">S. N. Derrar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sekkal-Rahal"> M. Sekkal-Rahal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nonlinear optics (NLO) technique is widely used in the field of biological imaging. In fact, grafting biological entities with a high NLO response on tissues and cells enhances the NLO responses of these latter, and ameliorates, consequently, their biological imaging quality. In this optics, we carried out a theoretical study, in the aim of analyzing the peptide bonds created between alanine amino acid and both unnatural amino acids: L-Dopa and Azatryptophan, respectively. Ramachandran plots have been performed for these systems, and their structural parameters have been analyzed. The NLO responses of these peptides have been reported by calculating the first hyperpolarizability values of all the minima found on the plots. The use of such unnatural amino acids as endogenous probing molecules has been investigated through this study. The Density Functional Theory (DFT) has been used for structural properties, while the Second-order Møller-Plesset Perturbation Theory (MP2) has been employed for the NLO calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20imaging" title="biological imaging">biological imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperpolarizability" title=" hyperpolarizability"> hyperpolarizability</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=probing%20molecule" title=" probing molecule"> probing molecule</a> </p> <a href="https://publications.waset.org/abstracts/22238/theoretical-study-on-the-nonlinear-optical-responses-of-peptide-bonds-created-between-alanine-and-some-unnatural-amino-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2289</span> Green Synthesis, Characterization and Application of Zinc Oxide and Silver Oxide Nonparticipants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Khanfri">Nassima Khanfri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Boucenna"> Ali Boucenna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As metallic nanoparticles are increasingly used in many economic sectors, there is interest in the biological and environmental safety of their production. The main methods of synthesizing nanoparticales are chemical and physical approaches that are often expensive and potentially harmful to the environment. The present study is devoted to the possibility of the synthesis of silver nanoparticales and zinc oxide from silver nitrate and zinc acetate using basilica plant extracts. The products obtained are characterized by various analysis techniques, such as UV/V, XRD, MEB-EDX, FTIR, and RAMAN. These analyzes confirm the crystalline nature of AgNps and ZnONps. These crystalline powders having effective biological activities regarding the antioxidant and antibacterial, which could be used in several biological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title="green synthesis">green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-reduction" title=" bio-reduction"> bio-reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=metals%20nan%20Oparticales" title=" metals nan Oparticales"> metals nan Oparticales</a>, <a href="https://publications.waset.org/abstracts/search?q=Plants%20extracts" title=" Plants extracts"> Plants extracts</a> </p> <a href="https://publications.waset.org/abstracts/142677/green-synthesis-characterization-and-application-of-zinc-oxide-and-silver-oxide-nonparticipants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2288</span> A Survey of Semantic Integration Approaches in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaimaa%20Messaoudi">Chaimaa Messaoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Fissoune"> Rachida Fissoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Badir"> Hassan Badir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20ontology" title="biological ontology">biological ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=linked%20data" title=" linked data"> linked data</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data%20integration" title=" semantic data integration"> semantic data integration</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title=" semantic web"> semantic web</a> </p> <a href="https://publications.waset.org/abstracts/60697/a-survey-of-semantic-integration-approaches-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2287</span> Bioeconomic Modeling for the Sustainable Exploitation of Three Key Marine Species in Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%20.Ait%20El%20Harch">I .Ait El Harch</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Outaaoui"> K. Outaaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20El%20Foutayeni"> Y. El Foutayeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to deepen the understanding and optimize fishing activity in Morocco by holistically integrating biological and economic aspects. We develop a biological equilibrium model in which these competing species present their natural growth by logistic equations, taking into account density and competition between them. The integration of human intervention adds a realistic dimension to our model. A company specifically targets the three species, thus influencing population dynamics according to their fishing activities. The aim of this work is to determine the fishing effort that maximizes the company’s profit, taking into account the constraints associated with conserving ecosystem equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioeconomical%20modeling" title="bioeconomical modeling">bioeconomical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20complementarity%20problem%20LCP" title=" linear complementarity problem LCP"> linear complementarity problem LCP</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20equilibrium" title=" biological equilibrium"> biological equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=maximizing%20profits" title=" maximizing profits"> maximizing profits</a> </p> <a href="https://publications.waset.org/abstracts/191741/bioeconomic-modeling-for-the-sustainable-exploitation-of-three-key-marine-species-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=77">77</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biological%20sex&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>