CINXE.COM

Search results for: Deltamethrin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Deltamethrin</title> <meta name="description" content="Search results for: Deltamethrin"> <meta name="keywords" content="Deltamethrin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Deltamethrin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Deltamethrin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Deltamethrin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Relative Toxicity of Apparent Pesticides against Safflower Capsule Fly, Acanthiophilus helianthi Rossi (Diptera: Tephritidae) under Laboratory Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Saeidi">Karim Saeidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safflower capsule fly, Acanthiophilus helianthi Rossi (Diptera: Tephritidae), is a key pest of safflower in Iran. The toxicity of Methidathion, Malathion, Deltamethrin, and Lufenuron to adult males and females of Acanthiophilus helianthi was studied under laboratory conditions. Malathion was the most toxic among the tested compounds followed by Methidathion, Lufenuron, and Deltamethrin to Acanthiophilus helianthi at 24 h post treatment, the respective LC50 values were 0.40 ppm, 0.68 ppm, 10.99 ppm, and 11.75 ppm for males and 0.46 ppm, 0.97 ppm, 13.45 ppm, and 16.32 ppm for females. At 48 h post treatment, Malathion was the most toxic followed by Methidathion, Deltamethrin, and Lufenuron to Acanthiophilus helianthi, LC50 values were 0.08 ppm, 0.54 ppm, 1.80 ppm, and 1.96 ppm for males and 0.34 ppm, 0.64 ppm, 1.88 ppm, and 2.37 ppm for females. At 72 h post treatment, Malathion was the most toxic followed by Methidathion, Lufenuron, and Deltamethrin to Acanthiophilus helianthi LC50 values were 0.04 ppm, 0.33 ppm, 0.44 ppm, and 0.71 ppm for males and 0.09 ppm, 0.36 ppm, 0.75 ppm, and 0.82 ppm for females. It is observed that LC50 values for treated adult females increased more than in the treated adult males at 24 h, 48 h, and 72 h post treatment. It means that the adult males were more susceptible to the tested insecticides than the adult females. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safflower" title="safflower">safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=Methidathion" title=" Methidathion"> Methidathion</a>, <a href="https://publications.waset.org/abstracts/search?q=Deltamethrin" title=" Deltamethrin"> Deltamethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lufenuron" title=" Lufenuron"> Lufenuron</a>, <a href="https://publications.waset.org/abstracts/search?q=Malathion" title=" Malathion"> Malathion</a>, <a href="https://publications.waset.org/abstracts/search?q=Tephritidae" title=" Tephritidae"> Tephritidae</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower%20capsule%20fly" title=" safflower capsule fly"> safflower capsule fly</a>, <a href="https://publications.waset.org/abstracts/search?q=Acanthiophilus%20helianthi" title=" Acanthiophilus helianthi "> Acanthiophilus helianthi </a> </p> <a href="https://publications.waset.org/abstracts/17503/relative-toxicity-of-apparent-pesticides-against-safflower-capsule-fly-acanthiophilus-helianthi-rossi-diptera-tephritidae-under-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Aarumugam">P. Aarumugam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Krishnamoorthy"> N. Krishnamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gunasekaran"> K. Gunasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20stephensi" title="Anopheles stephensi">Anopheles stephensi</a>, <a href="https://publications.waset.org/abstracts/search?q=deltamethrin" title=" deltamethrin"> deltamethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20mortality" title=" functional mortality"> functional mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20pyrethroids" title=" synthetic pyrethroids"> synthetic pyrethroids</a> </p> <a href="https://publications.waset.org/abstracts/11652/functional-mortality-of-anopheles-stephensi-the-urban-malaria-vector-as-induced-by-the-sublethal-exposure-to-deltamethrin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Dietary Sour Lemon Peel Essential Oil on Serum Parameters in Rainbow Trout (Oncorhynchus mykiss) Fingerlings against Deltamethrin Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Amiri%20Resketi">Maryam Amiri Resketi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakineh%20Yeganeh"> Sakineh Yeganeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khosro%20Jani%20Khalili"> Khosro Jani Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the effect of dietary lemon peel essential oil (Citrus limon) on serum parameters and liver enzyme activity of rainbow trout (Oncorhynchus mykiss) was exposed to deltamethrin. The 96-hour lethal concentrations of the toxin on rainbow trout (Oncorhynchus mykiss), was determined according to standard procedures O.E.C.D in static (Static). 96-hour LC50 was obtained 0.0082 mg/l by using statistical methods Probit program version. The maximum allowable concentration of deltamethrin was calculated 0.00082 mg/l in natural environment and was used for this experiment. Eight treatments were designed based on 3 levels of lemon essential oil 200, 400 and 600 mg/kg and 2 levels of deltamethrin 0 and 0.00082. Rainbow trout with an average weight of 95.14 ± 3.8 g were distributed in 300-liter tanks and cultured for eight weeks. Fish were fed in an amount of 2% of body weight. Water changes were done on a daily basis (90 percent of the tank). About the tanks containing 10 % deltamethrin, after dewatering, suitable concentration of toxin was added to water. At the end of the test, serum biochemical parameters (total protein, albumin, glucose, cholesterol, and triglycerides) and liver enzymes (ALP, AST, ALT and LDH) were evaluated. In treatments without and with toxin, increasing 400 mg/kg oil increased total protein and albumin levels and lower cholesterol and triglycerides were observed (p < 0.05). Rise to the level of 400 mg/kg of lemon peel essential oil treatments contain pesticides, reduced the amount of enzymes ALP, ALT and LDH compared to treatment of toxin-free lemon peel essential oil (p < 0.05). The results showed that usage of lemon peel essential oil in fish diet can increase the immune system parameters and strengthen it with strong antioxidant activity followed by reducing the effect of deltamethrin on the immune system of fish and effective dose can prevent the adverse effects of toxin due to the weakening of the fish immune system at the time of toxic pollutant entrance in fish farms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deltamethrin" title="deltamethrin">deltamethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Oncorhynchus%20mykiss" title=" Oncorhynchus mykiss"> Oncorhynchus mykiss</a>, <a href="https://publications.waset.org/abstracts/search?q=LC5096h" title=" LC5096h"> LC5096h</a>, <a href="https://publications.waset.org/abstracts/search?q=lemon%20peel%20%28citrus%20limon%29%20essential%20oil" title=" lemon peel (citrus limon) essential oil"> lemon peel (citrus limon) essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20parameters" title=" serum parameters"> serum parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20enzymes" title=" liver enzymes"> liver enzymes</a> </p> <a href="https://publications.waset.org/abstracts/74591/effect-of-dietary-sour-lemon-peel-essential-oil-on-serum-parameters-in-rainbow-trout-oncorhynchus-mykiss-fingerlings-against-deltamethrin-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Deltamethrin-Induces Oxidative Stress to the Freshwater Ciliate Model: Paramecium tetraurelia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amamra%20Ryma">Amamra Ryma</a>, <a href="https://publications.waset.org/abstracts/search?q=Djebar%20Mohamed%20Reda"> Djebar Mohamed Reda</a>, <a href="https://publications.waset.org/abstracts/search?q=Moumeni%20Ouissem"> Moumeni Ouissem</a>, <a href="https://publications.waset.org/abstracts/search?q=Otmani%20Hadjer"> Otmani Hadjer</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrebbah%20Houria"> Berrebbah Houria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of environmental contamination by the excessive use of organics cannot be neglected. Extensive application is usually companied with serious problems and health risk. It is established that many chemicals, in common use, can produce some toxic effects on biological systems through their mode of action or by production of free radicals that damage all cell compounds. Deltamethrin, a widely used type II pyrethroid pesticide, is one of the most common contaminants in freshwater aquatic system. In this study, we investigate the effects of deltamethrin exposure on the induction of oxidative stress to the freshwater ciliate Paramecium tetraurelia. After the treatment of paramecium cells with increasing concentrations of insecticide, we followed up the growth kinetics, generation time and the percentage response. Also, we studied the variation in biomarkers of stress such as: GSH content, GST, GPX and CAT activities. Our results showed a significant decrease in the proliferation of cells correlated by the decrease in generation number and the increase in generation time. Also, we noted an inhibition in the percentage response. The monitoring of biomarkers revealed depletion in GSH content in a proportional and dose dependent manner accompanied by an increase in the GST activity. In parallel, a strong induction in the CAT and GPX activities was noted specially for the highest dose. In summary, under the current experimental conditions, deltamethrin is highly toxic to the freshwater ciliate Paramecium tetraurelia. Exposure to low concentrations showed significant adverse on growth accompanied with the induction of oxidative damage supported by the decrease in GSH content and the intensification of the antioxidant enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deltamethrin" title="deltamethrin">deltamethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramecium%20tetraurelia" title=" Paramecium tetraurelia"> Paramecium tetraurelia</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/17533/deltamethrin-induces-oxidative-stress-to-the-freshwater-ciliate-model-paramecium-tetraurelia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Insecticide Resistance Detection on Filarial Vector, Simulium (Simulium) nobile (Diptera: Simuliidae) in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chee%20Dhang%20Chen">Chee Dhang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Takaoka"> Hiroyuki Takaoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Koon%20Weng%20Lau"> Koon Weng Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Poh%20Ruey%20Tan"> Poh Ruey Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ai%20Chdon%20Chin"> Ai Chdon Chin</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Lun%20Low"> Van Lun Low</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Azidah"> Abdul Aziz Azidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Sofian-Azirun"> Mohd Sofian-Azirun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Susceptibility status of Simulium (Simulium) nobile (Diptera: Simuliidae) adults obtained from Pahang, Malaysia was evaluated against 11 adulticides representing four major insecticide classes: organochlorines (DDT, dieldrin), organophosphates (malathion, fenitrothion), carbamates (bendiocarb, propoxur) and pyrethroids (etofenprox, deltamethrin, lambdacyhalothrin, permethrin, cyfluthrin). The adult bioassay was conducted according to WHO standard protocol to determine the insecticide susceptibility. Mortality at 24 h post treatment was used as indicator for susceptibility status. The results revealed that S. nobile obtained was susceptible to propoxur, cyfluthrin and bendiocarb with 100% mortality. S. nobile was resistant or exhibited some tolerant against lambdacyhalothrin and deltamethrin with mortality ranged ≥ 90% but < 98%. S. nobile populations in Pahang exhibited different level of resistant against 11 adulticides with mortality ranged from 60.00 ± 10.00 to 100.00 ± 0.00. In conclusion, S. nobile populations in Pahang were susceptible to propoxur, cyfluthrin and bendiocarb. The susceptibility status of S. nobile in descending order was propoxur, cyfluthrin > bendicarb > deltamethrin > lambdacyhalothrin > permethrin > etofenprox > DDT > malathion > fenitrothion > dieldrin. Regular surveys should be conducted to monitor the susceptibility status of this insect vector in order to prevent further development of resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20fly" title="black fly">black fly</a>, <a href="https://publications.waset.org/abstracts/search?q=adult%20bioassay" title=" adult bioassay"> adult bioassay</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide%20resistance" title=" insecticide resistance"> insecticide resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/47792/insecticide-resistance-detection-on-filarial-vector-simulium-simulium-nobile-diptera-simuliidae-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Insecticide Resistance Detection on Dengue Vector, Aedes albopictus Obtained from Kapit, Kuching and Sibu Districts in Sarawak State, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koon%20Weng%20Lau">Koon Weng Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Dhang%20Chen"> Chee Dhang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Azidah"> Abdul Aziz Azidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Sofian-Azirun"> Mohd Sofian-Azirun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, Sarawak state of Malaysia encounter an outbreak of dengue fever. Aedes albopictus has incriminated as one of the important vectors of dengue transmission. Without an effective vaccine, approaches to control or prevent dengue will be a focus on the vectors. The control of Aedes mosquitoes is still dependent on the use of chemical insecticides and insecticide resistance represents a threat to the effectiveness of vector control. This study was conducted to determine the resistance status of 11 active ingredients representing four major insecticide classes: DDT, dieldrin, malathion, fenitrothion, bendiocarb, propoxur, etofenprox, deltamethrin, lambda-cyhalothrin, cyfluthrin, and permethrin. Standard WHO test procedures were conducted to determine the insecticide susceptibility. Aedes albopictus collected from Kapit (resistance ratio, RR = 1.04–3.02), Kuching (RR = 1.17–4.61), and Sibu (RR = 1.06–3.59) exhibited low resistance toward all insecticides except dieldrin. This study reveled that dieldrin is still effective against Ae. albopictus, followed by fenitrothion, cyfluthrin, and deltamethrin. In conclusion, Ae. albopictus in Sarawak exhibited different resistance levels toward various insecticides and alternative solutions should be implemented to prevent further deterioration of the condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aedes%20albopictus" title="Aedes albopictus">Aedes albopictus</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue" title=" dengue"> dengue</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide%20resistance" title=" insecticide resistance"> insecticide resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/33656/insecticide-resistance-detection-on-dengue-vector-aedes-albopictus-obtained-from-kapit-kuching-and-sibu-districts-in-sarawak-state-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Multiple Insecticide Resistance in Culex quinquefasciatus Say, from Siliguri, West Bengal, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minu%20Bharati">Minu Bharati</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Rai"> Priyanka Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Satarupa%20Dutta"> Satarupa Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhiraj%20Saha"> Dhiraj Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Culex quinquefasciatus Say, is a mosquito of immense public health concern due to its role in transmission of filariasis, which is an endemic disease in 20 states and union territories of India, putting about 600 million people at the risk of infection. The main strategies to control filaria in India include anti-larval measures in urban areas, Indoor Residual Spray (IRS) in rural areas and mass diethylcarbamazine citrate (DEC) administration. Larval destruction measures and IRS are done with the use of insecticides. In this study, Susceptibility/ Resistance to insecticides were assessed in Culex quinquefasciatus mosquitoes collected from eight densely populated areas of Siliguri subdivision, which has a high rate of filarial infection. To unveil the insecticide susceptibility status of Culex quinquefasciatus, bioassays were performed on field-caught mosquitoes against two major groups of insecticides, i.e. Synthetic Pyrethroids (SPs): 0.05% deltamethrin and 0.05% lambda-cyhalothrin and Organophosphates (OPs): 5% malathion and temephos using World Health Organisation (WHO) discriminating doses. The knockdown rates and knockdown times (KDT50) were also noted against deltamethrin, lambda-cyhalothrin and malathion. Also, activities of major detoxifying enzymes, i.e. α-carboxylesterases, β-carboxylesterases and cytochrome P450 (CYP450) monooxygenases were determined to find the involvement of biochemical mechanisms in resistance phenomenon (if any). The results obtained showed that, majority of the mosquito populations were moderately to severely resistant against both the SPs and one OP, i.e. temephos. Whereas, most of the populations showed 100% susceptibility to malathion. The knockdown rates and KDT50 in response to above-mentioned insecticides showed significant variation among different populations. Variability in activities of carboxylesterases and CYP450 monooxygenases were also observed with hints of their involvement in contribution towards insecticide resistance in some of the tested populations. It may be concluded that, Culex quinquefasciatus has started developing resistance against deltamethrin, lambda-cyhalothrin and temephos in Siliguri subdivision. Malathion seems to hold the greatest potentiality for control of these mosquitoes in this area as revealed through this study. Adoption of Integrated mosquito management (IMM) strategy should be the prime objective of the concerned authorities to delimit the insecticide resistance phenomenon and filariasis infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Culex%20quinquefasciatus" title="Culex quinquefasciatus">Culex quinquefasciatus</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxifying%20enzymes" title=" detoxifying enzymes"> detoxifying enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide%20resistance" title=" insecticide resistance"> insecticide resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=knockdown%20rate" title=" knockdown rate"> knockdown rate</a> </p> <a href="https://publications.waset.org/abstracts/72552/multiple-insecticide-resistance-in-culex-quinquefasciatus-say-from-siliguri-west-bengal-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Pyrethroid Resistance and Its Mechanism in Field Populations of the Sand Termite, Psammotermes hypostoma Desneux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai.%20M.%20Toughan">Mai. M. Toughan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20A.%20Sallam"> Ahmed A. A. Sallam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20O.%20Abd%20El-Latif"> Ashraf O. Abd El-Latif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Termites are eusocial insects that are found on all continents except Antarctica. Termites have serious destructive impact, damaging local huts and crops of poor subsistence. The annual cost of termite damage and its control is determined in the billions globally. In Egypt, most of these damages are due to the subterranean termite species especially the sand termite, <em>P. hypostoma</em>. Pyrethroids became the primary weapon for subterranean termite control, after the use of chlorpyrifos as a soil termiticide was banned. Despite the important role of pyrethroids in termite control, its extensive use in pest control led to the eventual rise of insecticide resistance which may make many of the pyrethroids ineffective. The ability to diagnose the precise mechanism of pyrethroid resistance in any insect species would be the key component of its management at specified location for a specific population. In the present study, detailed toxicological and biochemical studies was conducted on the mechanism of pyrethroid resistance in <em>P. hypostoma</em>. The susceptibility of field populations of <em>P. hypostoma</em> against deltamethrin, &alpha;-cypermethrin and ƛ-cyhalothrin was evaluated. The obtained results revealed that the workers of <em>P. hypostoma</em> have developed high resistance level against the tested pyrethroids. Studies carried out through estimation of detoxification enzyme activity indicated that enhanced esterase and cytochrome P450 activities were probably important mechanisms for pyrethroid resistance in field populations. Elevated esterase activity and also additional esterase isozyme were observed in the pyrethroid-resistant populations compared to the susceptible populations. Strong positive correlation between cytochrome P450 activity and pyrethroid resistance was also reported. |Deltamethrin could be recommended as a resistance-breaking pyrethroid that is active against resistant populations of <em>P. hypostoma.</em> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Psammotermes%20hypostoma" title="Psammotermes hypostoma">Psammotermes hypostoma</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrethroid%20resistance" title=" pyrethroid resistance"> pyrethroid resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=esterase" title=" esterase"> esterase</a>, <a href="https://publications.waset.org/abstracts/search?q=cytochrome%20P450" title=" cytochrome P450"> cytochrome P450</a> </p> <a href="https://publications.waset.org/abstracts/71638/pyrethroid-resistance-and-its-mechanism-in-field-populations-of-the-sand-termite-psammotermes-hypostoma-desneux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Occurrence and Spatial Distribution of Pesticide Residues in Butter and Ghee (Clarified Butter Fat) in Punjab (India)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Bedi">J. S. Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20S.%20Gill"> J. P. S. Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Aulakh"> R. S. Aulakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhjit%20Kaur"> Prabhjit Kaur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was undertaken to monitor organochlorine, organophosphate and synthetic pyrethroid pesticide residues in butter and ghee samples collected from six different districts of Punjab. The estimation of pesticide residues was done by multiple residue analytical technique using gas chromatography equipped with GC-ECD and GC-FTD. The confirmation of residues was done on gas chromatography mass spectrometry in both SIM and Scan mode. Results indicated the presence of HCH and pp DDE as predominant contaminant in both butter and ghee even after their ban/restriction on usage in India. Residues of HCH were detected in 25.5 and 23.2 % samples of butter and ghee, respectively, while residues of pp DDE were recorded in 29.3 and 25.0 % butter and ghee samples, respectively. More importantly, the presence of endosulfan, cypermethrin, fenvalerate, deltamethrin and chlorpyrifos was observed in few butter and ghee samples indicating the serious concerns. The spatial variation of pesticide residues occurrence indicated the cotton belt of Punjab as most affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butter" title="butter">butter</a>, <a href="https://publications.waset.org/abstracts/search?q=ghee" title=" ghee"> ghee</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides%20residues" title=" pesticides residues"> pesticides residues</a>, <a href="https://publications.waset.org/abstracts/search?q=Punjab" title=" Punjab"> Punjab</a> </p> <a href="https://publications.waset.org/abstracts/24490/occurrence-and-spatial-distribution-of-pesticide-residues-in-butter-and-ghee-clarified-butter-fat-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Combined Use of Microbial Consortia for the Enhanced Degradation of Type-IIx Pyrethroids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parminder%20Kaur">Parminder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrajit%20B.%20Majumder"> Chandrajit B. Majumder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unrestrained usage of pesticides to meet the burgeoning demand of enhanced crop productivity has led to the serious contamination of both terrestrial and aquatic ecosystem. The remediation of mixture of pesticides is a challenging affair regarding inadvertent mixture of pesticides from agricultural lands treated with various compounds. Global concerns about the excessive use of pesticides have driven the need to develop more effective and safer alternatives for their remediation. We focused our work on the microbial degradation of a mixture of three Type II-pyrethroids, namely Cypermethrin, Cyhalothrin and Deltamethrin commonly applied for both agricultural and domestic purposes. The fungal strains (Fusarium strain 8-11P and Fusarium sp. zzz1124) had previously been isolated from agricultural soils and their ability to biotransform this amalgam was studied. In brief, the experiment was conducted in two growth systems (added carbon and carbon-free) enriched with variable concentrations of pyrethroids between 100 to 300 mgL⁻¹. Parameter optimization (pH, temperature, concentration and time) was done using a central composite design matrix of Response Surface Methodology (RSM). At concentrations below 200 mgL⁻¹, complete removal was observed; however, degradation of 95.6%/97.4 and 92.27%/95.65% (in carbon-free/added carbon) was observed for 250 and 300 mgL⁻¹ respectively. The consortium has been shown to degrade the pyrethroid mixture (300 mg L⁻¹) within 120 h. After 5 day incubation, the residual pyrethroids concentration in unsterilized soil were much lower than in sterilized soil, indicating that microbial degradation predominates in pyrethroids elimination with the half-life (t₁/₂) of 1.6 d and R² ranging from 0.992-0.999. Overall, these results showed that microbial consortia might be more efficient than single degrader strains. The findings will complement our current understanding of the bioremediation of mixture of Type II pyrethroids with microbial consortia and potentially heighten the importance for considering bioremediation as an effective alternative for the remediation of such pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrethroids" title=" pyrethroids"> pyrethroids</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/105524/combined-use-of-microbial-consortia-for-the-enhanced-degradation-of-type-iix-pyrethroids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Addressing the Biocide Residue Issue in Museum Collections Already in the Planning Phase: An Investigation Into the Decontamination of Biocide Polluted Museum Collections Using the Temperature and Humidity Controlled Integrated Contamination Manageme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaus%20Wilke">Nikolaus Wilke</a>, <a href="https://publications.waset.org/abstracts/search?q=Boaz%20Paz"> Boaz Paz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Museum staff, conservators, restorers, curators, registrars, art handlers but potentially also museum visitors are often exposed to the harmful effects of biocides, which have been applied to collections in the past for the protection and preservation of cultural heritage. Due to stable light, moisture, and temperature conditions, the biocidal active ingredients were preserved for much longer than originally assumed by chemists, pest controllers, and museum scientists. Given the requirements to minimize the use and handling of toxic substances and the obligations of employers regarding safe working environments for their employees, but also for visitors, the museum sector worldwide needs adequate decontamination solutions. Today there are millions of contaminated objects in museums. This paper introduces the results of a systematic investigation into the reduction rate of biocide contamination in various organic materials that were treated with the humidity and temperature controlled ICM (Integrated Contamination Management) method. In the past, collections were treated with a wide range, at times even with a combination of toxins, either preventively or to eliminate active insect or fungi infestations. It was only later that most of those toxins were recognized as CMR (cancerogenic mutagen reprotoxic) substances. Among them were numerous chemical substances that are banned today because of their toxicity. While the biocidal effect of inorganic salts such as arsenic (arsenic(III) oxide), sublimate (mercury(II) chloride), copper oxychloride (basic copper chloride) and zinc chloride was known very early on, organic tar distillates such as paradichlorobenzene, carbolineum, creosote and naphthalene were increasingly used from the 19th century onwards, especially as wood preservatives. With the rapid development of organic synthesis chemistry in the 20th century and the development of highly effective warfare agents, pesticides and fungicides, these substances were replaced by chlorogenic compounds (e.g. γ-hexachlorocyclohexane (lindane), dichlorodiphenyltrichloroethane (DDT), pentachlorophenol (PCP), hormone-like derivatives such as synthetic pyrethroids (e.g., permethrin, deltamethrin, cyfluthrin) and phosphoric acid esters (e.g., dichlorvos, chlorpyrifos). Today we know that textile artifacts (costumes, uniforms, carpets, tapestries), wooden objects, herbaria, libraries, archives and historical wall decorations made of fabric, paper and leather were also widely treated with toxic inorganic and organic substances. The migration (emission) of pollutants from the contaminated objects leads to continuous (secondary) contamination and accumulation in the indoor air and dust. It is important to note that many of mentioned toxic substances are also material-damaging; they cause discoloration and corrosion. Some, such as DDT, form crystals, which in turn can cause micro tectonic, destructive shifting, for example, in paint layers. Museums must integrate sustainable solutions to address the residual biocide problems already in the planning phase. Gas and dust phase measurements and analysis must become standard as well as methods of decontamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocides" title="biocides">biocides</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=museum%20collections" title=" museum collections"> museum collections</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20substances%20in%20museums" title=" toxic substances in museums"> toxic substances in museums</a> </p> <a href="https://publications.waset.org/abstracts/129387/addressing-the-biocide-residue-issue-in-museum-collections-already-in-the-planning-phase-an-investigation-into-the-decontamination-of-biocide-polluted-museum-collections-using-the-temperature-and-humidity-controlled-integrated-contamination-manageme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10