CINXE.COM
Search results for: ultrasonic sensors
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ultrasonic sensors</title> <meta name="description" content="Search results for: ultrasonic sensors"> <meta name="keywords" content="ultrasonic sensors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ultrasonic sensors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ultrasonic sensors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1609</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ultrasonic sensors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1609</span> Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herlina%20Abdul%20Rahim">Herlina Abdul Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Abbaszadeh"> Javad Abbaszadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruzairi%20Abdul%20Rahim"> Ruzairi Abdul Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20transmission%20tomography" title="ultrasonic transmission tomography">ultrasonic transmission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors" title=" ultrasonic sensors"> ultrasonic sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20wave" title=" ultrasonic wave"> ultrasonic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20tomography" title=" non-invasive tomography"> non-invasive tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pipe" title=" metal pipe"> metal pipe</a> </p> <a href="https://publications.waset.org/abstracts/50272/non-destructive-testing-of-metal-pipes-with-ultrasonic-sensors-based-on-determination-of-maximum-ultrasonic-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1608</span> An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shawki%20Elamir">Mohamed Shawki Elamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Heinrich%20Gotzig"> Heinrich Gotzig</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoul%20Zoellner"> Raoul Zoellner</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Maeder"> Patrick Maeder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analog%20to%20digital%20conversion" title="analog to digital conversion">analog to digital conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=digitization" title=" digitization"> digitization</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20rate" title=" sampling rate"> sampling rate</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/141040/an-application-driven-procedure-for-optimal-signal-digitization-of-automotive-grade-ultrasonic-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1607</span> Autonomous Control of Ultrasonic Transducer Drive System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Keun%20Jeong">Dong-Keun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hyun%20Kim"> Jong-Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Woon-Ha%20Yoon"> Woon-Ha Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Je%20Kim"> Hee-Je Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20transducer%20drive%20system" title="ultrasonic transducer drive system">ultrasonic transducer drive system</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20change" title=" impedance change"> impedance change</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorless" title=" sensorless"> sensorless</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20control%20algorithm" title=" autonomous control algorithm"> autonomous control algorithm</a> </p> <a href="https://publications.waset.org/abstracts/63698/autonomous-control-of-ultrasonic-transducer-drive-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1606</span> Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeenat%20Parveen">Zeenat Parveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashiq%20Hussain"> Ashiq Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic%20sensing" title="fiber optic sensing">fiber optic sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS%20materials" title=" PDMS materials"> PDMS materials</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic" title=" acoustic"> acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20sensor" title=" current sensor"> current sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20measurements" title=" mechanical measurements"> mechanical measurements</a> </p> <a href="https://publications.waset.org/abstracts/16171/polydimethylsiloxane-applications-in-interferometric-optical-fiber-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1605</span> Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moiz%20S.%20Vohra">Moiz S. Vohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagalingam%20Arun%20Prasanth"> Nagalingam Arun Prasanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20L.%20Tan"> Wei L. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yeo"> S. H. Yeo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20cavitation" title="ultrasonic cavitation">ultrasonic cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20collapse" title=" bubble collapse"> bubble collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20mapping%20sensor" title=" pressure mapping sensor"> pressure mapping sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title=" impact load"> impact load</a> </p> <a href="https://publications.waset.org/abstracts/76641/analysis-of-impact-load-induced-by-ultrasonic-cavitation-bubble-collapse-using-thin-film-pressure-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1604</span> 2D-Modeling with Lego Mindstorms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Popelka">Miroslav Popelka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Nozicka"> Jakub Nozicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEGO%20Mindstorms" title="LEGO Mindstorms">LEGO Mindstorms</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensor" title=" ultrasonic sensor"> ultrasonic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20modeling" title=" real-time modeling"> real-time modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20object" title=" 2D object"> 2D object</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost%20robotics%20systems" title=" low-cost robotics systems"> low-cost robotics systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=EV3%20Home%20Edition%20Software" title=" EV3 Home Edition Software "> EV3 Home Edition Software </a> </p> <a href="https://publications.waset.org/abstracts/10888/2d-modeling-with-lego-mindstorms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1603</span> Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sun">D. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20F.%20Lu"> T. F. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zander"> A. Zander</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Trinkle"> M. Trinkle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne" title="airborne">airborne</a>, <a href="https://publications.waset.org/abstracts/search?q=airflow" title=" airflow"> airflow</a>, <a href="https://publications.waset.org/abstracts/search?q=focused%20sound%20field" title=" focused sound field"> focused sound field</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20phased%20array" title=" ultrasonic phased array"> ultrasonic phased array</a> </p> <a href="https://publications.waset.org/abstracts/42051/near-field-focusing-behaviour-of-airborne-ultrasonic-phased-arrays-influenced-by-airflows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1602</span> Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Nabeshima">Yasuyuki Nabeshima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel" title="tunnel">tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=lining%20concrete" title=" lining concrete"> lining concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=void" title=" void"> void</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20inspection" title=" non-destructive inspection"> non-destructive inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/74615/non-destructive-inspection-for-tunnel-lining-concrete-with-small-void-by-using-ultrasonic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1601</span> Design of a Pulse Generator Based on a Programmable System-on-Chip (PSoC) for Ultrasonic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Acevedo">Pedro Acevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20D%C3%ADaz"> Carlos Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B3nica%20V%C3%A1zquez"> Mónica Vázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Dur%C3%A1n"> Joel Durán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the design of a pulse generator based on the Programmable System-on-Chip (PSoC) module. In this module, using programmable logic is possible to implement different pulses which are required for ultrasonic applications, either in a single channel or multiple channels. This module can operate with programmable frequencies from 3-74 MHz; its programming may be versatile covering a wide range of ultrasonic applications. It is ideal for low-power ultrasonic applications where PZT or PVDF transducers are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PSoC" title="PSoC">PSoC</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20generator" title=" pulse generator"> pulse generator</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20transducer" title=" ultrasonic transducer"> ultrasonic transducer</a> </p> <a href="https://publications.waset.org/abstracts/41457/design-of-a-pulse-generator-based-on-a-programmable-system-on-chip-psoc-for-ultrasonic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1600</span> Effect of Ultrasonic Treatment on the Suspension Stability, Zeta Potential and Contact Angle of Celestite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiraz%20Esmeli">Kiraz Esmeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Ozkan"> Alper Ozkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, firstly, the effect of ultrasonic treatment on the stability of celestite suspension was investigated. In this context, the variations of the suspension stability with ultrasonic power, treatment time, immersion depth of ultrasonic probe, and treatment regime (batch and continuous) were determined. The experimental results showed that the suspension stability and zeta potential of celestite decreased with ultrasonic treatment. Also, the treatment time, immersion depth of probe, and treatment regime affected the stability of celestite suspension. Secondly, the effect of pre-treatment of the suspension with the ultrasonic process on the shear flocculation of celestite using sodium dodecyl sulfate (SDS) was studied and the variations of the flocculation, zeta potential, and contact angle of the mineral with SDS concentration were presented. It was found that the ultrasonic pre-treatment slightly improved the shear flocculation of celestite particles in accordance with the increase in the contact angles. In addition, the ultrasonic process again relatively reduced the magnitude of the negative potential of celestite particles in the presence of SDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celestite" title="celestite">celestite</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension%20stability" title=" suspension stability"> suspension stability</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20treatment" title=" ultrasonic treatment"> ultrasonic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a> </p> <a href="https://publications.waset.org/abstracts/89475/effect-of-ultrasonic-treatment-on-the-suspension-stability-zeta-potential-and-contact-angle-of-celestite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1599</span> Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Brozovsky">Jiri Brozovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20brick" title="calcium silicate brick">calcium silicate brick</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20method" title=" ultrasonic pulse method"> ultrasonic pulse method</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus%20of%20elasticity" title=" dynamic modulus of elasticity"> dynamic modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/12508/calcium-silicate-bricks-ultrasonic-pulse-method-effects-of-natural-frequency-of-transducers-on-measurement-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1598</span> Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyu-Jin%20Kim">Gyu-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Gyoung%20Kwak"> Hyo-Gyoung Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20crack" title="micro crack">micro crack</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20ultrasonic%20resonant%20spectroscopy" title=" nonlinear ultrasonic resonant spectroscopy"> nonlinear ultrasonic resonant spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete%20beam" title=" prestressed concrete beam"> prestressed concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressing%20force" title=" prestressing force"> prestressing force</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20nonlinearity" title=" ultrasonic nonlinearity"> ultrasonic nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/75772/characterization-of-ultrasonic-nonlinearity-in-concrete-under-cyclic-change-of-prestressing-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1597</span> Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziad.%20Sh.%20Al%20Sarraf">Ziad. Sh. Al Sarraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20welding" title="ultrasonic welding">ultrasonic welding</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20amplitude" title=" vibration amplitude"> vibration amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20force" title=" welding force"> welding force</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20strength" title=" weld strength"> weld strength</a> </p> <a href="https://publications.waset.org/abstracts/41161/effect-of-vibration-amplitude-and-welding-force-on-weld-strength-of-ultrasonic-metal-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1596</span> Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raunak%20Munjal">Raunak Munjal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Akif%20Ali"> Mohammad Akif Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Prithiv%20Raj"> Prithiv Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20distance%20measurement" title="ultrasonic distance measurement">ultrasonic distance measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy%20and%20consistency" title=" accuracy and consistency"> accuracy and consistency</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20controller%20comparisons" title=" flight controller comparisons"> flight controller comparisons</a>, <a href="https://publications.waset.org/abstracts/search?q=ESP32%20vs%20arduino%20nano" title=" ESP32 vs arduino nano"> ESP32 vs arduino nano</a> </p> <a href="https://publications.waset.org/abstracts/183773/beyond-the-beep-optimizing-flight-controller-performance-for-reliable-ultrasonic-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1595</span> Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassam%20Muazzam">Hassam Muazzam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20self-driven%20vehicle" title="autonomous self-driven vehicle">autonomous self-driven vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=desired%20location" title=" desired location"> desired location</a>, <a href="https://publications.waset.org/abstracts/search?q=pythagoras%20theorem" title=" pythagoras theorem"> pythagoras theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20location" title=" remote location"> remote location</a> </p> <a href="https://publications.waset.org/abstracts/39101/design-and-implementation-of-neural-network-based-controller-for-self-driven-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1594</span> Blood Clot Emulsification via Ultrasonic Thrombolysis Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Tao">Sun Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lou%20Liang"> Lou Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Xing%20Haw%20Marvin">Tan Xing Haw Marvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Yuandong%20Alex"> Gu Yuandong Alex</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patients with blood clots in their brains can experience problems with their vision or speech, seizures and general weakness. To treat blood clots, clinicians presently have two options. The first involves drug therapy to thin the blood and thus reduce the clot. The second choice is to invasively remove the clot using a plastic tube called a catheter. Both approaches carry a high risk of bleeding, and invasive procedures, such as catheter intervention, can also damage the blood vessel wall and cause infection. Ultrasonic treatment as a potential alternative therapy to break down clots is attracting growing interests due to the reduced adverse effects. To demonstrate the concept, in this investigation a microfabricated ultrasonic device was electrically packaged with printed circuit board to treat healthy human blood. The red blood cells could be broken down after 3-hour ultrasonic treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title="microfabrication">microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20clot" title=" blood clot"> blood clot</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20thrombolysis%20device" title=" ultrasonic thrombolysis device"> ultrasonic thrombolysis device</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20device" title=" ultrasonic device"> ultrasonic device</a> </p> <a href="https://publications.waset.org/abstracts/35989/blood-clot-emulsification-via-ultrasonic-thrombolysis-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1593</span> Effect of Ultrasonic Vibration on the Dilution, Mechanical, and Metallurgical Properties in Cladding of 308 on Mild Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Singh%20Sandhu">Sandeep Singh Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karanvir%20Singh%20Ghuman"> Karanvir Singh Ghuman</a>, <a href="https://publications.waset.org/abstracts/search?q=Parminder%20Singh%20Saini">Parminder Singh Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present investigation was to study the effect of ultrasonic vibration on the cladding of the AISI 308 on the mild steel plates using the shielded metal arc welding (SMAW). Ultrasonic vibrations were applied to molten austenitic stainless steel during the welding process. Due to acoustically induced cavitations and streaming there is a complete mixture of the clad metal and the base metal. It was revealed that cladding of AISI 308 over mild steel along with ultrasonic vibrations result in uniform and finer grain structures. The effect of the vibration on the dilution, mechanical properties and metallographic studies were also studied. It was found that the welding done using the ultrasonic vibration has the less dilution and CVN value for the vibrated sample was also high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfacing" title="surfacing">surfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20vibrations" title=" ultrasonic vibrations"> ultrasonic vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shielded%20metal%20arc%20welding" title=" shielded metal arc welding"> shielded metal arc welding</a> </p> <a href="https://publications.waset.org/abstracts/33132/effect-of-ultrasonic-vibration-on-the-dilution-mechanical-and-metallurgical-properties-in-cladding-of-308-on-mild-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> Array Type Miniaturized Ultrasonic Sensors for Detecting Sinkhole in the City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Young%20Choi">Won Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20Kyu%20Park"> Kwan Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the road depression happening in the urban area is different from the cause of the sink hole and the generation mechanism occurring in the limestone area. The main cause of sinkholes occurring in the city center is the loss of soil due to the damage of old underground buried materials and groundwater discharge due to large underground excavation works. The method of detecting the sinkhole in the urban area is mostly using the Ground Penetration Radar (GPR). However, it is challenging to implement compact system and detecting watery state since it is based on electromagnetic waves. Although many ultrasonic underground detection studies have been conducted, near-ground detection (several tens of cm to several meters) has been developed for bulk systems using geophones as a receiver. The goal of this work is to fabricate a miniaturized sinkhole detecting system based on low-cost ultrasonic transducers of 40 kHz resonant frequency with high transmission pressure and receiving sensitivity. Motived by biomedical ultrasonic imaging methods, we detect air layers below the ground such as asphalt through the pulse-echo method. To improve image quality using multi-channel, linear array system is implemented, and image is acquired by classical synthetic aperture imaging method. We present the successful feasibility test of multi-channel sinkhole detector based on ultrasonic transducer. In this work, we presented and analyzed image results which are imaged by single channel pulse-echo imaging, synthetic aperture imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20depression" title="road depression">road depression</a>, <a href="https://publications.waset.org/abstracts/search?q=sinkhole" title=" sinkhole"> sinkhole</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20imaging" title=" synthetic aperture imaging"> synthetic aperture imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20transducer" title=" ultrasonic transducer"> ultrasonic transducer</a> </p> <a href="https://publications.waset.org/abstracts/88771/array-type-miniaturized-ultrasonic-sensors-for-detecting-sinkhole-in-the-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> Ultrasonic Assisted Growth of ZnO Nanorods at Low Temperature </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Anuar">Khairul Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=Wai%20Yee%20Lee"> Wai Yee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20C.%20S.%20Bien"> Daniel C. S. Bien</a>, <a href="https://publications.waset.org/abstracts/search?q=Hing%20Wah%20Lee"> Hing Wah Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Azid"> Ishak Azid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effect of ultrasonic treatment on ZnO nutrient solution prior to the growth of ZnO nanorods, where the seed layer is annealed at 50 and 100°C. The results show that the ZnO nanorods are successfully grown on the sample annealed at 50°C in the sonicated ZnO nutrient solution with a length and a diameter of approximately 8.025 µm and 92 nm, respectively. However, no ZnO nanorods structures are observed for the sample annealed at 50°C and grown in unsonicated ZnO nutrient solution. Meanwhile, the ZnO nanorods for the sample annealed at 100°C are successfully grown in both sonicated and unsonicated ZnO nutrient solutions. The length and diameter of the nanorods for the sample grown in the sonicated solution are 8.681 µm and 1.033 nm, whereas those for the sample grown in the unsonicated solution are 7.613 µm and 1.040 nm. This result shows that with ultrasonic treatment, the length of the ZnO nanorods increases by 14%, whereas their diameter is reduced by 0.7%, resulting in an increase of aspect ratio from 7:1 to 8:1. Electroconductivity and pH sensors are used to measure the conductivity and acidity level of the sonicated and unsonicated solutions, respectively. The result shows that the conductivity increases from 87 mS/cm to 10.4 mS/cm, whereas the solution pH decreases from 6.52 to 6.13 for the sonicated and unsonicated solutions, respectively. The increase in solution conductivity and acidity level elucidates the higher amount of zinc nutrient in the sonicated solution than in the unsonicated solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20treatment" title="ultrasonic treatment">ultrasonic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20annealing%20temperature" title=" low annealing temperature"> low annealing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanostructure" title=" ZnO nanostructure"> ZnO nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=nanorods" title=" nanorods"> nanorods</a> </p> <a href="https://publications.waset.org/abstracts/10106/ultrasonic-assisted-growth-of-zno-nanorods-at-low-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park">Seunghee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim"> Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Seok%20Shin"> Eun-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hun%20Han"> Sang-Hun Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20concrete" title="underwater concrete">underwater concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rebound%20hardness" title=" rebound hardness"> rebound hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=Schmidt%20hammer" title=" Schmidt hammer"> Schmidt hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensor" title=" ultrasonic sensor"> ultrasonic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a> </p> <a href="https://publications.waset.org/abstracts/2714/compressive-strength-evaluation-of-underwater-concrete-structures-integrating-the-combination-of-rebound-hardness-and-ultrasonic-pulse-velocity-methods-with-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Evaluation of Ultrasonic Techniques for the Estimation of Air Voids in Asphalt Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Zargar">Majid Zargar</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Bullen"> Frank Bullen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ron%20Ayers"> Ron Ayers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important factors in the design of asphalt concrete mixes is the accurate measurement of air voids and their variable distribution. Both can have significant impact on long and short term fatigue and creep behaviour under traffic. While some simple methods exist for overall evaluation of air voids, measuring air void distribution in asphalt concrete is very complex, involving expensive techniques such as X-ray methodologies. The research reported in the paper investigated the use of non-destructive ultrasonic techniques as an alternative to estimate the amount of air voids and their distribution within asphalt samples. Seventy-four Standard AC–14 asphalt samples made with three types of bitumen; Multigrade, PMB and C320 were analysed using ultrasonic techniques. The results have illustrated that ultrasonic testing has the potential of being a rapid, accurate and cost-effective method of estimating air void distribution in asphalt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title="asphalt concrete">asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20voids" title=" air voids"> air voids</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behaviour" title=" mechanical behaviour"> mechanical behaviour</a> </p> <a href="https://publications.waset.org/abstracts/59847/evaluation-of-ultrasonic-techniques-for-the-estimation-of-air-voids-in-asphalt-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Belousova">Margarita Belousova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intraoral%20ultrasonic%20densitometry" title="intraoral ultrasonic densitometry">intraoral ultrasonic densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20density%20of%20jaws" title=" bone tissue density of jaws"> bone tissue density of jaws</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20density%20of%20phalanges%20of%20fingers" title=" bone tissue density of phalanges of fingers"> bone tissue density of phalanges of fingers</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20treatment" title=" orthodontic treatment"> orthodontic treatment</a> </p> <a href="https://publications.waset.org/abstracts/54572/ultrasonic-densitometry-of-bone-tissue-of-jaws-and-phalanges-of-fingers-in-patients-after-orthodontic-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> Vibration Analysis and Optimization Design of Ultrasonic Horn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuen%20Ming%20Shu">Kuen Ming Shu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%20Kai%20Ho"> Ren Kai Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horn" title="horn">horn</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20optimization" title=" response surface optimization"> response surface optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20vibration" title=" ultrasonic vibration"> ultrasonic vibration</a> </p> <a href="https://publications.waset.org/abstracts/151835/vibration-analysis-and-optimization-design-of-ultrasonic-horn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ufuk%20Tosun">Ufuk Tosun</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Aghazadeh"> Reza Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20B%C3%BClent%20%C3%96zer"> Mehmet Bülent Özer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title="fluid structure interaction">fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20liquid%20damper" title=" tuned liquid damper"> tuned liquid damper</a> </p> <a href="https://publications.waset.org/abstracts/30783/investigating-the-sloshing-characteristics-of-a-liquid-by-using-an-image-processing-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Non-Destructing Testing of Sandstones from Unconventional Reservoir in Poland with Use of Ultrasonic Pulse Velocity Technique and X-Ray Computed Microtomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Maksimczuk">Michał Maksimczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Kaczmarek"> Łukasz Kaczmarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Wejrzanowski"> Tomasz Wejrzanowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study concerns high-resolution X-ray computed microtomography (µCT) and ultrasonic pulse analysis of Cambrian sandstones from a borehole located in the Baltic Sea Coast of northern Poland. µCT and ultrasonic technique are non-destructive methods commonly used to determine the internal structure of reservoir rock sample. The spatial resolution of the µCT images obtained was 27 µm, which enabled the author to create accurate 3-D visualizations of structure geometry and to calculate the ratio of pores volume to the total sample volume. A copper X-ray source filter was used to reduce image artifacts. Furthermore, samples Young’s modulus and Poisson ratio were obtained with use of ultrasonic pulse technique. µCT and ultrasonic pulse technique provide complex information which can be used for explorations and characterization of reservoir rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20parameters" title="elastic parameters">elastic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20absorption%20coefficient" title=" linear absorption coefficient"> linear absorption coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=northern%20Poland" title=" northern Poland"> northern Poland</a>, <a href="https://publications.waset.org/abstracts/search?q=tight%20gas" title=" tight gas"> tight gas</a> </p> <a href="https://publications.waset.org/abstracts/65737/non-destructing-testing-of-sandstones-from-unconventional-reservoir-in-poland-with-use-of-ultrasonic-pulse-velocity-technique-and-x-ray-computed-microtomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Forero-Garcia">Edwin Forero-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Vitola"> Jaime Vitola</a>, <a href="https://publications.waset.org/abstracts/search?q=Brayan%20Cardenas"> Brayan Cardenas</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Casagua"> Johan Casagua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisition" title="acquisition">acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=SAFT" title=" SAFT"> SAFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HMI" title=" HMI"> HMI</a> </p> <a href="https://publications.waset.org/abstracts/162674/an-ultrasonic-signal-processing-system-for-tomographic-imaging-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Dominguez%20Almaraz">G. M. Dominguez Almaraz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Ruiz%20Vilchez"> J. A. Ruiz Vilchez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sanchez%20Miranda"> M. A. Sanchez Miranda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclusions" title="inclusions">inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20fatigue" title=" ultrasonic fatigue"> ultrasonic fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=maraging%20300%20steel" title=" maraging 300 steel"> maraging 300 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20initiation" title=" crack initiation"> crack initiation</a> </p> <a href="https://publications.waset.org/abstracts/141323/effect-of-inclusions-in-the-ultrasonic-fatigue-endurance-of-maraging-300-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> Ultrasonic Spectroscopy of Polymer Based PVDF-TrFE Composites with CNT Fillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Belovickis">J. Belovickis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Samulionis"> V. Samulionis</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Banys"> J. Banys</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Silibin"> M. V. Silibin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Solnyshkin"> A. V. Solnyshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Sysa"> A. V. Sysa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferroelectric polymers exhibit good flexibility, processability and low cost of production. Doping of ferroelectric polymers with nanofillers may modify its dielectric, elastic or piezoelectric properties. Carbon nanotubes are one of the ingredients that can improve the mechanical properties of polymer based composites. In this work, we report on both the ultrasonic and the dielectric properties of the copolymer polyvinylidene fluoride/tetrafluoroethylene (P(VDF-TrFE)) of the composition 70/30 mol% with various concentrations of carbon nanotubes (CNT). Experimental study of ultrasonic wave attenuation and velocity in these composites has been performed over wide temperature range (100 K – 410 K) using an ultrasonic automatic pulse-echo tecnique. The temperature dependences of ultrasonic velocity and attenuation showed anomalies attributed to the glass transition and paraelectric-ferroelectric phase transition. Our investigations showed mechanical losses to be dependent on the volume fraction of the CNTs within the composites. The existence of broad hysteresis of the ultrasonic wave attenuation and velocity within the nanocomposites is presented between cooling and heating cycles. By the means of dielectric spectroscopy, it is shown that the dielectric properties may be tuned by varying the volume fraction of the CNT fillers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF-TrFE" title=" PVDF-TrFE"> PVDF-TrFE</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20spectroscopy" title=" ultrasonic spectroscopy"> ultrasonic spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/40938/ultrasonic-spectroscopy-of-polymer-based-pvdf-trfe-composites-with-cnt-fillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Alshaafi">E. A. Alshaafi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Prakash"> A. Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20techniques" title="ultrasonic techniques">ultrasonic techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion" title=" emulsion"> emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20size" title=" droplet size"> droplet size</a> </p> <a href="https://publications.waset.org/abstracts/74038/ultrasonic-techniques-to-characterize-and-monitor-water-in-oil-emulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Vardar">D. S. Vardar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borate" title="borate">borate</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20method" title=" ultrasonic method"> ultrasonic method</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20borate" title=" zinc borate"> zinc borate</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20borate%20synthesis" title=" zinc borate synthesis"> zinc borate synthesis</a> </p> <a href="https://publications.waset.org/abstracts/32481/zinc-borate-synthesis-using-hydrozincite-and-boric-acid-with-ultrasonic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultrasonic%20sensors&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>